In vivo Reprogramming for Brain Repair

The major goal of our research is to develop innovative technologies for brain repair using our newly established in vivo cell conversion technology (Guo et al., Cell Stem Cell, 2014).

         Reactive gliosis is a common pathological hallmark after brain injury or diseases. Currently there is no method available to reverse glial scars back to normal neural tissue. We have developed a novel technology to convert reactive glial cells, induced by brain injury or Alzheimer’s disease, directly into functional neurons in mouse brain in vivo. This is achieved by expressing a single neural transcription factor NeuroD1 in glial cells. We further demonstrated that human astrocytes in culture can be directly converted into functional neurons, suggesting that our new technology may benefit millions of patients worldwide.

       Our in vivo cell conversion technology may have broad applications in neural repair after stroke, traumatic brain injury, spinal cord injury, Alzheimer’s disease, Parkinson disease, Huntington disease, and glioma. We are currently developing gene therapy and small molecule therapy for human brain repair.