3D-printed ceramics may increase gas turbine fuel efficiency, researchers report
Stephen Lynch, associate professor of mechanical engineering, holds metal 3D-printed turbine vanes that are tested in the high speed cascade shown in the background. Lynch was part of a team that 3D printed a turbine component with ceramics, which are more heat tolerant than traditional metals.
Airplane engines can reach temperatures of more than 3,000 degrees Fahrenheit. The hotter they get, the more fuel efficient they become, but that efficiency is limited by how hot the metallic components inside the turbine can get without deforming. A team that includes Penn State researchers, including GTREO’s Dr. Stephen Lynch, recently 3D printed a turbine component with ceramics, which are more heat tolerant than the conventional metals. The resulting component has complex internal cooling features that enable it to withstand higher temperatures and, as a result, increase fuel efficiency.