
IOP PUBLISHING NANOTECHNOLOGY

Nanotechnology 22 (2011) 245103 (8pp) doi:10.1088/0957-4484/22/24/245103

Non-vanishing ponderomotive AC
electrophoretic effect for particle trapping
Weihua Guan1, Jae Hyun Park2, Predrag S Krstić2 and
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Abstract
We present here a study on overlooked aspects of alternating current (AC) electrokinetics—AC
electrophoretic (ACEP) phenomena. The dynamics of a particle with both polarizability and net
charges in a non-uniform AC electric trapping field is investigated. It is found that either
electrophoretic (EP) or dielectrophoretic (DEP) effects can dominate the trapping dynamics,
depending on experimental conditions. A dimensionless parameter γ is developed to predict the
relative strength of EP and DEP effects in a quadrupole AC field. An ACEP trap is feasible for
charged particles in ‘salt-free’ or low salt concentration solutions. In contrast to DEP traps, an
ACEP trap favors the downscaling of the particle size.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dielectrophoretic (DEP) traps have been successfully imple-
mented for many applications [1–3]. Such traps operate
through the interaction of induced polarization charges with
non-uniform electric fields. According to the classic DEP
theory [4], the sign associated with the real part of the
Clausius–Mossotti (CM) factor (K (ω), figure 1(a)) dictates the
behavior of the particle. For Re[K (ω)] > 0, particles will be
directed towards a local electric field maxima (positive DEP,
pDEP), while for Re[K (ω)] < 0, the particle is attracted to
a local electric field minima (negative DEP, nDEP). Negative
DEP traps offer distinct advantages for many applications
since the particles are trapped away from electrodes, mostly
with a quadrupole geometry [5–9]. The frequency that
produces a change from pDEP to nDEP is referred to as
the crossover frequency fco and is given by (1/2π)[(σp −
σm)(σp + 2σm)/(εm − εp)(εp + 2εm)]1/2 (in Hz, [4]), where σ

and ε are the conductivity and permittivity, respectively, with
p and m denoting the particle and medium. This prediction
is in good agreement with experimental data in salt solutions
for nanoscale to microscale latex beads [8]. However, we
observe in our experiment that the charged polystyrene beads
suspended in ‘salt-free’ deionized (DI) water can be trapped
in the center of a quadrupole electric field for frequencies

significantly below the predicted crossover frequency (figure 1
and experimental details in appendix A). This ‘anomalous’
center trapping behavior in the pDEP region (shaded area
in figure 1) motivates us to investigate other contributions
in the trapping dynamics. The first possible mechanism
for this ‘anomalous’ trapping behavior is AC electro-osmosis
(ACEO), which would play a dominant role in the case of
low frequencies and low conductivities [10]. Indeed, we
observe ACEO in our experiments, but only at frequencies
around 1 kHz, far below the frequency regime of consideration
here (a lower limit around 20 kHz). As a result, ACEO is
not responsible for the anomalous center trapping behavior at
frequencies higher than 20 kHz.

It is well known that most polarizable particles and
molecules suspended in aqueous solutions will develop surface
charges by either dissociation of surface chemical groups
or adsorption of ions from the solution [11]. Therefore,
when placed in a liquid with a spatially non-uniform electric
field, colloidal particles experience not only a dielectrophoretic
(DEP) force but also an electrophoretic (EP) force [12–14].
It is a widely held notion that the EP effect in aqueous
solution will ‘vanish’ upon high frequency AC fields due to
the linearity of EP with electric field [13–15]. As a result,
EP contributions are not taken into account in most of the
high frequency electrokinetic experiments [6–9]. However,
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Figure 1. (a) Real part of CM factor (Re[K (ω)]) as a function of the
frequency. Shaded area denotes the anomalous center trapping in the
theoretical pDEP region. (b) Plot showing the range of the medium
conductivity and frequency over which a homogeneous neutral
particle experiences nDEP or pDEP. The parameters used in the
calculation are εm = 78ε0, σm = 0.1–2 μS cm−1 (measured value),
εp = 2.55ε0, σp = σpbulk + 2Ks/a, σpbulk = 0 S, Ks = 1 nS and
a = 500 nm. The blue box shows the experimental range for
successful trapping of a single polystyrene bead in the center of a
quadrupole trapping device, schematically shown in the inset (2r0 is
the shortest distance between two non-adjacent electrode surfaces).
The range of medium conductivities is due to measured variations
during the course of the experiments.

the assumption that EP effects will vanish is only true for a
spatially homogeneous AC field. A charged particle exposed
to an oscillating inhomogeneous electric field can experience a
cycle-averaged force. This so-called ponderomotive force [16]
plays a significant role in a variety of physical systems such as
Paul traps [17] and laser-based particle acceleration [18].

Here we show both experimentally and theoretically the
non-vanishing ponderomotive EP effect in high frequency
electric field and its application for trapping charged particles
in aqueous solutions. In contrast to DEP traps [5–9], an AC
electrophoretic (ACEP) would favor the downscaling of the
particle size.

2. Theory

We start our analysis with the one-dimensional EP motion of
a homogeneous spherical particle with mass m, charge Q and
radius a in a high frequency AC electric field. The damping
force due to the viscosity of the liquid is of the form −ξ ẋ ,
where the Stokes drag coefficient ξ can be approximated by
ξ = 6πηa, and η is the dynamic viscosity. Here we assume
that the hydrodynamic memory effect [19] can be neglected for
the dragging force (i.e. the friction force is only dependent on
the current velocity). Without loss of generality, we assume
the particle moves in an electric potential consisting of two
parts: a static part U(x) and a harmonically oscillating part

V (x) cos ωt , where ω is the angular frequency. The magnitude
of V (x) is not assumed small in comparison with U(x). Note
that both potentials have a spatial dependence. This potential
gives a static force F(x) = −Q ∂

∂x U(x) and an oscillating
force f (x, t) = QE0(x) cos ωt , where E0(x) = − ∂

∂x V (x).
Under the conditions considered in this paper, the

dynamics of the particle can be described by a secular motion
S(t) on a timescale typically longer than one oscillating cycle
τ = 2π/ω, which is decoupled from the rapidly oscillating
micromotion R(S, t) (appendix B). Therefore, the particle
motion can be written in the form, X (t) = S(t) + R(S, t),
with the constraint 〈R(S, t)〉 = 0 (bracket denotes time-
averaging). If the amplitude of the rapidly oscillating motion is
much smaller than the characteristic length of the non-uniform
electric field E0/

∂ E0
∂x (i.e. 2Q ∂ E0

∂x � mω2), it is reasonable
to assume |S| � |R| (where the dependence on t and S
are henceforth dropped for brevity). Therefore R can be
considered a small perturbation to S, and thus the equation of
motion, m Ẍ = −ξ Ẋ + F(X) + f (X, t), can be expanded to
the first order in R:

m(S̈ + R̈) = −ξ(Ṡ + Ṙ) + F(S) + f (S, t)

+ R
∂

∂x
(F(x) + f (x, t))|x=S . (1)

The rapidly oscillating terms on each side of equation (1)
must be approximately equal, m R̈ ≈ −ξ Ṙ + f (S, t). The
oscillating term R ∂ F(x)

∂x is neglected by assuming ξω � ∂ F(x)

∂x ,
which is reasonable for highly damped environments such
as water. By integration, we obtain the rapid micromotion
component as

R(S, t) ≈ − f0(S)

mω2[1 + (ξ/mω)2]
(

cos ωt − ξ

mω
sin ωt

)

(2)
where f0(x) = QE0(x). The rapid micromotion R(S, t) is
thus an oscillation at the same frequency as f (x, t). The
oscillating amplitude depends on the position of the secular
motion through f0(S), the driving frequency, the damping
coefficient and the particle mass.

The secular motion S(t) can therefore be found by
averaging equation (1) over one period of the rapid
micromotion, and by replacing f0(x) with QE0(x):

mS̈ = −ξ Ṡ + F(S) − Q2 E0(x) ∂ E0(x)

∂x

∣∣
x=S

2mω2[1 + (ξ/mω)2] . (3)

It should be noted that the above analysis is valid for any

viscosity of the medium when ω �
√

2Q ∂ E0
∂x /m (appendix B).

This inequality is valid for most experiments [6–9] performed
in an aqueous environment around the MHz range.

Let us consider three related cases based on equation (3).

Case I, uniform AC electric field with no DC compo-
nent ( ∂

∂x E0(x) = 0, and F(S) = 0). Under this circumstance,
the averaged secular motion is described by mS̈ = −ξ Ṡ.
By integration, we obtain S = A1e−ξ t/m + A2, where A1

and A2 are constants depending on initial conditions. This
is simply a transient response and will not contribute to a
long timescale drift motion. Since the amplitude of the
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superimposed rapid micromotion R(S, t) is usually negligible
at high frequency (∼1/ω2, equation (2)), high frequency ACEP
effects vanish in this case. This is consistent with O’Brien’s
results with a parallel plate geometry [20]. Note that O’Brien
assumed a uniform electric field. It is thus invalid to apply
O’Brien’s result directly for the cases of non-uniform electric
fields [21, 22].

Case II, non-uniform AC electric field with no DC
component ( ∂

∂x E0(x) �= 0, and F(S) = 0). The third term on
the right-hand side of equation (3) provides a ponderomotive
EP force for the secular motion due to the non-uniformity
of the electric field. The particle is directed towards a point
with a weaker electric field. Moreover, due to the squared
dependence on charge Q in equation (3), the repelling of the
particle from regions of high electric field intensity holds true
for both positive and negative charges. We need to emphasize
that, even though the time average over one period of both
f (S, t) and R(S, t) is zero at a fixed point, averaging over the
micromotion in the non-uniform electric field is the essential
mechanism that causes the movement of charged particles.

Case III, non-uniform AC electric field with DC compo-
nent ( ∂

∂x E0(x) �= 0, and F(S) �= 0). In this case, it
is convenient to express F(x) and E0(x) in equation (3)
by potential energy derivatives and the motion equation is
obtained as mS̈ = −ξ Ṡ − Q ∂

∂x (U(x) + �sp(x))|x=S , where
�sp(x) defines an AC pseudopotential, which is given by

�sp(x) = QE2
0(x)

4mω2[1 + (ξ/mω)2] . (4)

As a consequence, the particles will move towards a point
where ∂

∂x (U(x) + �sp(x)) = 0 and oscillate there, which is
described by equation (2). In other words, under this situation
the charged particle will oscillate at the bottom of the effective
pseudopotential. Since f0(S) is a complex function of time,
the motion towards and around the bottom of the effective
pseudopotential depends on the detailed form of E0(x), and
other parameters of the system (frequency ω, viscosity ξ , etc).

To this end, we have investigated in detail the EP behavior

of a charged particle in a high frequency (ω �
√

2Q ∂ E0
∂x /m)

AC electric field. A translational motion is unarguably possible
for charged particles in a non-uniform AC field. As a result,
simply ignoring the EP effect in the AC trapping field may not
be correct.

3. Relative contributions of DEP and EP effects

Taking the EP effect into consideration for the quadrupole
trapping field shown in the inset to figure 1(b), the total
instantaneous force on the particle will be mr̈ − ξ ṙ + Fep +
Fdep = 0, where Fep and Fdep are the instantaneous EP
force and instantaneous DEP force, respectively. Although
analytical solutions for a general case cannot be obtained,
information about the relative contribution of EP and DEP to
the trapping dynamics can be obtained from a ponderomotive
force point of view, which could give a more intuitive insight.
The ponderomotive force for DEP effect is well studied [4, 11]

and has the form 〈Fdep〉 = πεma3 Re[K (ω)]∇E2
0(
r) in the

point dipole approximation. We note that this point dipole
approximation gives an upper bound to the DEP force [23].
The ponderomotive force for the EP effect can be expressed as
〈Fep〉 = −Q2∇E2

0(
r)/[4mω2(1 + (ξ/mω)2)] for the AC-only
case. As a result, spatial non-uniformity of the electric field
(aforementioned cases II and III) is critical for both DEP and
EP ponderomotive forces.

The ratio of the EP versus the DEP ponderomotive force
will determine the dominant mechanism. For arbitrarily
complex trap geometries or potentials, this requires a
case-by-case numerical calculation. We here choose a
symmetric geometry for illustrative purposes, which is a good
approximation to many experimentally realized traps [5–9].
Assuming a quadrupole AC electric potential ϕ(x, y, t) =
V cos(ωt)(x2 − y2)/2r 2

0 (note that we have considered the
one-dimensional motion without loss of generality. Namely,
in the case of a quadrupole trap the motions of a particle are
independent in each dimension), the ponderomotive force for
both DEP and EP can be written as 〈Fdep〉 = −kdep
r and
〈Fep〉 = −kep
r , where kdep and kep (defined as the trap stiffness
for EP and DEP effect) are of the forms

kdep = − Re[K (ω)]2πεma3V 2

r 4
0

(5)

kep = Q2V 2

2mω2r 4
0 [1 + (ξ/mω)2] . (6)

In order to hold the particle in the center of the trap,
the ponderomotive force for both EP and DEP should be a
restoring force (i.e. kep and kdep should be positive). For DEP
trapping, this means a negative value of Re[K (ω)] is needed
(nDEP).

From the above analysis we see that both EP and DEP
effects are able to trap the particle in the center of the
device. Since the trap stiffness can be experimentally estimated
through the equipartition theorem as k = κBT/δ2, where κB is
Boltzmann’s constant, T the absolute temperature and δ the
thermal fluctuations due to Brownian noise, experiments on
extracting the position fluctuations of a trapped particle in ‘salt-
free’ water are performed to examine the dominant mechanism.
Figure 2 shows the trap stiffness in both x and y directions as
a function of V 2. According to equations (5) and (6), both
kep and kdep have a linear dependence on V 2. We attempted a
linear fit with the experimental data for both the EP and DEP
cases. Since the real part of the CM factor is bounded within
(−0.5, 1) [11], the maximum slope for DEP falls very short of
the experimental data (dashed blue line). This indicates that the
trapping in our ‘salt-free’ situation cannot be due to the DEP
mechanism. In contrast, a fitting by the EP effect (red line)
is achievable and estimates the net charge Q as 8.4 × 104e.
We note that a significant amount of charge is critical for EP
trapping to dominate over DEP trapping, as will be shown
below.

To compare the relative strengths of the EP and DEP in
trapping behavior, a dimensionless parameter γ is defined as

γ ≡
∣∣∣∣ kep

kdep

∣∣∣∣ = Q2

4| Re[K (ω)]|πεma3mω2[1 + (ξ/mω)2] . (7)
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Figure 2. Trap stiffness as a function of the applied AC voltage
amplitude squared (V 2) at 3 MHz. The experiment was performed on
a = 240 nm polystyrene bead in a device with r0 = 4 μm. The
squares are the experimental trap stiffness extracted from the position
fluctuations in both x and y directions. The dashed blue line is a
linear fit with DEP effect by using Re[K (ω)] as −0.5 (maximum
negative value), while the red line is a linear fit with EP effect.

In order for the EP effect to dominate in trapping
dynamics, it requires γ � 1. This will happen at a large net
charge Q, a small particle size a or a low working frequency ω.
Figure 3(a) plots the γ value as a function of Q and a at a fixed
frequency (1 MHz), while figure 3(b) shows the γ dependence
on Q and ω at a fixed particle size (0.5 μm). It should be
emphasized that, even though the γ parameter derived here
is based on a quadrupole electric field, the general conclusion
holds true for other geometries: the EP effect can dominate the
trapping dynamics in the case of a sufficiently high charge in a
non-uniform electric field.

4. Discussion

Based on this γ parameter, we are then able to make a
consistent explanation for our experiment and other DEP

trapping experiments with a quadrupole electric field [6–9].
The key parameter involved is the amount of net charge.
Notice that the charge we used in the derivations above is the
effective net charge rather than the bare charge [24]. A charged
surface in contact with a highly conductive liquid creates an
induced electric double layer (EDL). A significant fraction of
the particle’s charge is neutralized by the strongly bounded
counterions in the Stern layer. The charged particle plus the
thin Stern layer is further screened by diffusive counterions
within a characteristic Debye length λD. To determine the
effective charge Qeff, we look at the motion of charged
particles, which is induced by electrostatic forces, friction
and electrophoretic retardation forces. Among them, the
electrophoretic retardation force originates from the delayed
response of the surrounding ionic atmosphere to the motion of
a charged particle. The electrophoretic mobility including this
retardation effect can be described by Henry’s formula [25]:

μE = 2

3

εζ

η
f (α) (8)

where α = a/λD is the ratio of particle radius to the Debye
length of the electrolyte solution, ε is the dielectric constant of
the electrolyte, ζ is the zeta potential and η is the viscosity
of the solution. Ohshima et al [26] showed that f (α) is a
monotonic increasing function that varies from 1 to 3/2. Since
ζ potential can be expressed in Debye–Hückel form [27]:

ζ = Qbare

4πεa(1 + a/λD)
(9)

where Qbare is the bare charge of a particle. The electrophoretic
mobility μE can be rewritten as

μE = Qbare

6πηa(1 + a/λD)
f

(
a

λD

)
. (10)

The effective charge of a particle can thus be estimated as

Qeff = f (a/λD)

(1 + a/λD)
Qbare. (11)

At a high ionic concentration c, the Debye length (λD ∼
c−1/2) becomes very small, as a result, a/λD � 1 and

Figure 3. Theoretical plot showing the range of effective net charge Q, particle radius a and working frequency ω/2π over which EP and
DEP effects dominate over each other. Note that the color scale is based on log(γ ). (a) The γ parameter as a function of Q and a at a fixed
frequency (1 MHz). (b) The γ parameter as a function of Q and ω/2π at a fixed particle radius (0.5 μm).
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f (a/λD) → 3/2. Therefore, Qeff ≈ 3
2

λD
a Qbare � Qbare.

The effective charge is greatly reduced in salt solutions. This
reduced effective charge in high salt concentrations pushes
the γ parameter in figure 3 into the DEP dominating region
(γ � 1). For most nDEP trapping experiments reported,
high salt concentrations were intentionally added to adjust the
conductivity of the suspension medium [1, 6–9]. Therefore EP
effects in trapping dynamics could be safely neglected for those
experiments.

In contrast, it is easy to see from equation (11) that Qeff →
Qbare when a → 0 and/or λD → ∞. This happens for
ultrasmall particles or very low ionic concentrations. For our
experiment solutions, a = 0.5 μm, λD ∼ 1 μm, Qeff ∼ Qbare.
This unscreened large amount of effective charge will direct
the γ parameter in figure 3 towards the EP dominating region
(γ � 1). An estimation for our 0.5 μm radius beads which
showed the ‘anomalous’ DEP trapping behavior at 20 kHz
gives the γ value ∼10. Under this circumstance, the EP effect
is the dominant mechanism for the center trapping behavior
and therefore the predicted pDEP/nDEP boundary becomes
invalid (figure 1).

Finally, we briefly comment on the scaling performance
of both DEP and EP trap stiffness in the quadrupole trapping
device. As shown in equations (5) and (6), reducing the device
size r0 helps to enhance the trapping strength for both EP and
DEP in the same fashion (∼1/r 4

0 ). Secondly, increasing the
applied voltage has the same impact on the trap stiffness (∼V 2)
and the maximum voltage that can apply is limited by the
breakdown field and other electrokinetic effects (e.g. electro-
thermal flow [28]). Most importantly, the DEP trap strength
decreases with the volume of the particle. Conversely, EP traps
prefer smaller particles since the trap stiffness increases with
decreasing the mass of the charged particle, which makes the
ACEP effect very attractive for single-molecule trapping.

5. Conclusion

In summary, we have elucidated the importance of EP effects
in a non-uniform AC electric field. The relative contributions
of both DEP and EP effects in a quadrupole trapping field
are studied and an important dimensionless parameter γ is
obtained, which presents a consistent explanation for both
the anomalous trapping behavior in ‘salt-free’ deionized water
and most other DEP trapping experiments with salt solution.
EP traps prefer smaller particles, as long as the particles are
sufficiently charged. Therefore, it might be feasible to trap
single molecules by the EP effect.
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Appendix A. Experimental methods

Our planar quadrupole trapping device was fabricated on an
SiO2/Si wafer. The insulating SiO2 layer has a thickness of

Table A.1. Bead properties.

Diameters (μm)

Parking area

(Å
2
/group)

Number of
−COOH groupsa

Net charges
Q(e)b

0.481 ± 0.004 158.2 4.59 × 105 8.4 × 104

0.982 ± 0.013 7.9 3.83 × 107 1.8 × 105

a By titration method. b By fitting method described in main text.

3 μm. Four Au/Cr (∼400/50 nm) electrodes were formed on
top of this insulating substrate by UV-lithography and a double
layer liftoff process. The tip to tip distance (2r0) for each
electrode pair ranges from 2 to 8 μm. The microfluidic channel
was formed by poly(dimethylsiloxane) (PDMS) using SU -8 as
a molding master [29]. Oxygen plasma treatment was used to
permanently bond the PDMS to the device surface and form an
anti-evaporation microfluidic channel. An inlet and an outlet
were punched through before assembling. Once the device was
assembled, it could be repeatedly used for a long time.

The particles used in the experiments are polystyrene
beads (Polysciences, Warrington, PA) of two diameters
(0.481 ± 0.004 μm and 0.982 ± 0.013 μm). The surface
of these particles is functionalized with carboxylate groups
(−COOH). The parking area for each group is around
320 Å

2
/group. Table A.1 summarizes the properties for

these two kinds of beads. These COOH surface groups
are the origin of the negative charges (COO−). Scanning
electron microscopy (SEM) revealed that all the particles had
a pronounced spherical shape.

The solution used in the experiment was prepared by the
following steps: (i) the beads were firstly diluted to a density
of ∼106 particle ml−1 by deionized (DI) water (milli-Q grade,
resistivity 18 M� cm), in order to eliminate the particle–
particle interactions during the experiment. (ii) In order to
thoroughly remove the residual ions from the stock solution,
the beads prepared in step 1 were washed five times in DI water
by centrifuging the beads in a 10 ml tube at 13 500g for 10 min,
re-suspending in DI water each time. Salt solutions with 0.1×,
1× and 10× phosphate buffered saline (PBS) (Sigma, St Louis,
MO) were also prepared, following the same steps (i) and (ii).
The final conductivity of the ‘salt-free’ solution was measured
as 0.1 μS cm−1 (EC 215 Multi-range Conductivity Meter,
Hanna Instruments) and this slowly goes up to maximum of
2.0 μS cm−1 during the course of an experiment (mostly due
to the gas absorption).

The particle conductivity is estimated as σp = σpbulk +
2Ks/a, where σpbulk = 0 S and Ks = 1 nS is the surface
conductance, which was confirmed for polystyrene beads from
various techniques [30, 31].

The crossover frequency for salt solutions (PBS solutions)
obeys the classic DEP theory very well. In contrast, the
crossover frequency for ‘salt-free’ solution is abnormally low
(down to around 20 kHz). This abnormal trapping behavior
for ‘salt-free’ solution was repeated for at least five separate
experiments with more than one single particle trapping
observations per experiment.

The device was wire-bonded and mounted onto a printed
circuit board (PCB). Potentials in the form of U − V cos ωt ,
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produced by a function generator (Tektronix AFG3252)
together with a voltage amplifier (Tabor Electronics, Model
9250), were delivered to the device through 50 � BNC cables
and monitored by an oscilloscope (Tektronix DPO 4104).

The motion of the charged particle was monitored by an
optical microscope (Olympus BX51) and the video was taken
by a high-sensitivity digital CCD camera (Olympus DP70)
with the highest shutter speed, as fast as 1/44 000 s. We use a
particle tracking algorithm which has been described in detail
elsewhere [32] to extract the motion fluctuations. The videos
were decomposed into frame sequences using the software
VirtualDub (http://www.virtualdub.org). The particle tracking
was then carried out using the NIH ImageJ platform (http://
rsbweb.nih.gov/ij/) with a particle tracking algorithm (https://
weeman.inf.ethz.ch/ParticleTracker).

It should be noted that the video-based position extraction
method does not measure the instantaneous particle position
and has a problem of ‘motion blur’, which results from time-
averaging a signal over a finite integration time (shuttle time
or acquisition time) [33]. This will lead to the underestimation
of the real variance and overestimation of the trap stiffness for
each data point in figure 2 (main text). However, for a fixed
optical set-up, the relative relations between each measured
variance (the slope) remain unchanged.

Appendix B. Validation of rapid/secular motion
separation

Considering a particle of charge Q and mass m and in a
quadrupole linear (2D) trap of characteristic radius r0 and
electric potential, ϕ(x, y, t) = U−V cos ωt

2r2
0

(x2 − y2), which by

definition provides a spatially non-uniform electric field, with
DC and AC components in the x dimension:

�(x, t) = −Q
∂

∂x
ϕ(x, y, t) = −F(x) + f (x, t) (B.1)

where
F(x) = −mω2 a

4
x (B.2)

f (x, t) = mω2 q

2
x cos ωt (B.3)

and the trap dimensionless parameters are defined as

a = 4QU

mr 2
0 ω2

q = 2QV

mr 2
0 ω2

. (B.4)

The equation of motion in the x direction is

mẍ = −ξ ẋ + F(x) + f (x, t). (B.5)

Introducing a dimensionless viscosity b and a dimensionless
time τ :

b = 2ξ

mω
τ = ωt (B.6)

and replacing
x = exp(−bτ/4)P (B.7)

then equation (B.5) takes the form

P̈ = h P + 1
2 q P cos τ (B.8)

where

h = b2

16
− a

4
. (B.9)

Without loss of generality, the solution of equation (B.8)
can be written in the form of the Floquet expansion:

P(t) = exp

(
−i

∫ τ

0
σ(τ) dτ

) ∞∑
n=−∞

Pn(τ ) exp(inτ ) (B.10)

where Pn(τ ) and σ(τ) are slowly varying functions on the
timescale such that the external electric field is switched ‘on’
adiabatically. By equating the same Floquet components
and neglecting time derivatives of Pn and σ , the infinite,
homogeneous system of equations follows:

− n2 Pn − σ 2 Pn + 2nσ Pn = h Pn + q

4
(Pn+1 + Pn−1) (B.11)

where the dependence on τ is henceforth dropped for brevity
and n takes all integers. To secure a nontrivial solution, one
equates the infinite tridiagonal determinant of the system with
zero. This yields the equation for the infinite number of
Floquet–Lyapunov (FL) exponents σ , which define an infinite
number of solutions for the system. We will seek the solution
for the case of particular experimental interest, q � 1, under
arbitrary dragging parameter b and DC parameter a. Looking
for the non-oscillating (P0) and oscillating terms to the lowest
non-vanishing powers in q (P±1), equation (B.11) simplifies to

− σ 2 P0 = h P0 + q

4
(P1 + P−1) (B.12)

− P±1 − σ 2 P±1 ± 2σ P±1 = h P±1 + q

4
P0 (B.13)

reducing the infinite homogeneous system into the finite one of
order three. Thus

P1 + P−1 = −A
q

2
P0 + O(q2) (B.14)

which, when replaced in equation (B.12), gives the FL
exponents

σ1,2 = ±i

√
h − A

8
q2 = ±iσ0 (B.15)

where

A ≈ 1

1 + 4h
+ O(q2). (B.16)

Note that the above analysis is valid for an arbitrary drag
parameter b and arbitrary DC parameter a. Equation (B.13)
yields

P1 = − q/4

1 ∓ 2i
√

h
P0 P−1 = − q/4

1 ± 2i
√

h
P0. (B.17)

Notice that it is easy to show that P±2 are proportional to
q2, P±3 to q3. Therefore P±1 are the leading coefficients
in expansion of small q of the rapid oscillating part of the
Floquet expansion in equation (B.10), oscillating with the
driving frequency ω. Since in P0(t) ∼ exp(± ∫

σ0 dτ ), σ0

can be either real or imaginary, the latter case producing
secular oscillations of the frequency ωσ0 which is in the limit
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b = 0, a = 0 equal to ωq/2
√

2, obviously much smaller
than ω when q � 1. However, when b > 1 (typical
for aqueous environments), ωσ0 is real, and when combined
with the exponent in equation (B.7) yields −(b/4 ∓ σ0) <

0 when q � 1. This means that x(t) is proportional to
an exponentially decreasing function of time, exp[−(b/4 ∓
σ0)ωt]. It is interesting to note that the two exponent factors
are quite different in size. Thus, (b/4 − σ0) ≈ q2/16√

h(1+4h)
� 1,

while (b/4 + σ0) ≈ b/4 + √
h −→

a→0
b/2 ∼ 1. This means only

the solution corresponding to σ1 will define long-time motion
in water, the other being a short-time transient.

By neglecting high-order terms in q , we can now write
P(τ ) in equation (B.10) as

P(i)(τ ) ≈ P(i)
0 + (P(i)

1 exp(iτ ) + P(i)
−1 exp(−iτ )) (B.18)

where i = 1, 2 correspond to two eigensolutions in
equation (B.15):

P(1,2) =
[

1 − q/2

1 + 4h
(cos ωt ∓ 2

√
h sin ωt)

]

× exp

(
±ω

∫ t

0
σ0 dt

)
. (B.19)

The full solution for x(t) is then

x(t) = exp

(
−b

4
ωt

)
(A1 P(1) + A2 P(2)) (B.20)

where A1 and A2 are the integration constants, depending on
the initial conditions. If one assumes zero initial velocity at
an initial position x0, as well as adiabatic switching on of the
external potential, then for b � q , the solution takes the form

x(t) = exp[−(b/4 − σ0)ωt]P(1)x0. (B.21)

When only an AC field is applied (a = 0), it follows

x(t) = exp

(
− q2/b2

1 + b2/4
ωt

)[
1 − q/2

1 + b2/4

×
(

cos ωt − b

2
sin ωt

)]
x0. (B.22)

However, when also b = 0 (vacuum case)

P(1,2) =
(

1 − q

2
cos ωt

)
exp

(
± ω

2
√

2

∫ t

0
q dt

)
(B.23)

which yields

x(t) = x0

(
1 − q

2
cos ωt

)
cos

(
ω

2
√

2

∫ t

0
q dt

)
(B.24)

defining the secular angular frequency q
2
√

2
ω.

To make a connection of these results with the more
general case of non-uniform electric field in the main text,
it can be seen from equations (B.3) and (B.4) that q =
2Q ∂ E0(x)

∂x /(mω2), where in the case of a quadrupole field,
E0(x) = V x/r 2

0 . By the same token, f0(S)/(mω2) in

equation (2) in the main text takes the form q S/2 in the case of
a quadrupole field. Equation (3) in the main text takes the form

mS̈ = −mω
b

2
Ṡ − mω2 a

4
S − mω2 q2/8

1 + 4h
S (B.25)

where the last term at the right-hand side of equation (B.25)
defines the ponderomotive potential for the case of a
quadrupole AC potential, yielding the ‘simplest’ spatially
inhomogeneous potential, linear in x .

The harmonic EP pseudopotential of equation (4) in the
main text can be written as

�sp(x) ≈ q/8

1 + 4h

V

r 2
0

x2. (B.26)

Finally, the EP ‘trap stiffness’ for a linear quadrupole trap has
the form

kep = mω2 q2/8

1 + 4h
. (B.27)
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