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Abstract
Focused electron and laser beams have shown the ability to form nanoscale pores in SiNx

membranes. During the fabrication process, areas beyond the final nanopore location will
inevitably be exposed to the electron beams or the laser beams due to the need for localization,
alignment and focus. It remains unclear how these unintended exposures affect the integrity of
the membrane. In this work, we demonstrate the use of confocal scanning photoluminescence
(PL) for mapping the microscopic changes in SiNx nanopores when exposed to electron and
laser beams. We developed and validated a model for the quantitative interpretation of the
scanned PL result. The model shows that the scanning PL result is insensitive to the nanopore
size. Instead, it is dominated by the product of two microscopic material factors: quantum yield
profile (i.e. variations in electronic structure) and thickness profile (i.e. thinning of the
membrane). We experimentally demonstrated that the electron and laser beams could alter the
material electronic structures (i.e. quantum yield) even when no thinning of the membrane
occurs. Our results suggest that minimizing the unintended e-beam or laser beam to the SiNx

during the fabrication is crucial if one desires the microscopic integrity of the membrane.

Supplementary material for this article is available online
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1. Introduction

Solid-state nanopores have emerged as an increasingly appeal-
ing alternative to biological nanopores in translocation studies
for analyzing nucleic acids [1–4] and proteins [5, 6]. This is

largely attributed to their mechanical and chemically robust-
ness, tunable size, and potential for integration and miniatur-
ization. In general, solid-state nanopores have been formed in
synthetic dielectric materials such as SiNx [7], SiO2 [8], Al2O3

[9], TiO2 [10], HfO2 [11], as well as emerging 2D materials
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(e.g. graphene [12, 13], MoS2 [14–17], BN [18, 19], WS2 [20]
and MXenes [21]). Among these thin-film materials, SiNx is
the most thoroughly studied nanopore material, and has tradi-
tionally been fabricated by a focused electron beam [22–26]
or ion beam [27–29] in vacuum due to their small wavelength.
Nevertheless, recent studies have demonstrated that a focused
laser beam at a visible wavelength can also be used for form-
ing nanoscale holes in SiNx materials (this mostly needs to
be done in aqueous solutions, with additional electric fields
applied, either for monitoring [30, 31] or for electrical stress-
ing [31, 32]). For example, Gilboa et al showed that a focused
488 nm laser beam with an intensity of a few tens ofilliwatts
could irreversibly etch SiNx membranes for nanometer-scale
pores in 1MKCl [30]. They also found that the etching process
is extremely sensitive to the relative content of Si and N atoms
in the SiNx membrane [31]. Yamazaki et al showed that the
SiNx etching rate with similar laser intensity and wavelength
was influenced by the chemical components of the electro-
lyte and suggested that the laser-induced heating effect plays
the dominant role [32]. Ying et al showed that infrared laser
(808 nm)-assisted controlled breakdown [33, 34] can signi-
ficantly reduce the probability of forming multiple nanopores
with the help of laser-induced local heating [35].

It is now clear that both focused electron beams and laser
beams could be used for forming nanopores in SiNx mem-
branes. From the material perspective, the nanopores can be
considered as point defects in the SiNx membranes. In other
words, an ideal nanopore fabrication process should aim to
create a nanoscale vacancy in the thin film. However, areas
beyond the final nanopore spot (nanometer scales) will inevit-
ably be exposed to the electron beams or the laser beams dur-
ing the fabrication process because of the need for localization,
alignment and focus. Although these preparatory exposures
often do not produce observable changes in the morphology
of SiNx, it remains unclear whether they will alter the micro-
scopic structure and affect the integrity of the membrane.

Photoluminescence (PL) spectroscopy is a well-established
technique to probe the material’s microscopic structures. PL
in amorphous SiNx thin films is a well-characterized phe-
nomenon in both air and solutions [10, 36–41]. The back-
ground PL emitted from SiNx was deemed undesirable for
optical sensing of the analyte [10, 41] due to the fluores-
cence interference. The PL of SiNx is most likely due to the
Si dangling bonds (defect states) that promote the recombina-
tion of photogenerated carriers. Previous studies have shown
that the SiNx PL spectra shift toward higher energies as the
nitride content increases [37, 40]. Scanning PL was previously
used for profiling the SiNx nanopores drilled by a transmission
electron microscope (TEM), and it was observed that there
was a pronounced reduction in PL emission in the nanopore
area [30, 41].

In this work, we demonstrate the use of confocal scan-
ning PL for mapping microscopic changes in SiNx nanopores
exposed to electron and laser beams. A quantitative model
was developed to interpret the scanning PL results. Our model
revealed that the PL reduction has nothing to do with the nano-
pore size. The observed PL reduction results from the product
of two microscopic factors: variations in quantum yield (i.e.

electronic structure) and variations in thickness (i.e. thinning
of the membrane) due to the exposure to the radiation beams.
We have unambiguously shown that unintended electron and
laser beam exposure would significantly change the electronic
structures in the SiNx membrane, even when there is no vis-
ible thinning of the membrane. We anticipate that this work
will provide experimental insights into beam-based SiNx nan-
opore fabrication and characterization.

2. Results and discussion

2.1. Quantitative modeling of confocal scanning PL

Figure 1(a) is a diagram of our custom-built confocal scanning
PL setup (see section 4 for details) for profiling the SiNx nan-
opores (figures 1(b)–(d)). For any point r on the SiNx mem-
brane, the number of emitted photons can be described by
[42, 43]

E(r) =
Iex (r)
hν

αd(r)ΦF (r) (1)

where Iex (r) = (2P/πw2
laser)exp

(
−2r2/w2

laser

)
is the excita-

tion intensity at point r, in which P is the incident laser power,
wlaser is the laser spot size (distance from the beam axis where
the intensity drops to 1/e2 of the maximum value). hv is the
incident photon energy. α is the absorption coefficient. d(r)
and ΦF (r) are the thickness and the fluorescence quantum
yield at point r on the SiNx membrane, respectively. Note that
the profile of d(r) and ΦF (r) can be varied by the exposure
to the electron and laser beams through either thinning of the
membrane or alteration of the electronic structure, depending
on the incident energy.

For the confocal setup, a pinhole was used to achieve max-
imal background rejection [44]. The transmission function
tp (r) for the pinhole with image radius R can be written as

tp (r) =

{
1, |r|< R
0, |r|> R.

(2)

The probability of an emitted photon being transmitted
through the pinhole and getting detected is given by the con-
volution of tp (r) and the detection function Idet (r),

cp (r)= tp (r) ∗ Idet (r) =
R
∫
0
r′dr′

2π
∫
0
exp

(
−2

r2 − 2r′rcosΦ+ r′2

w2
det

)
dΦ.

(3)
Note that the half-width at half-maximum (HWHM) of

the confocal acceptance function (CAF), which defines the
confocal resolution is calculated romy caf(r) = Iex (r)cp (r).
The HWHM of the CAF as a function of pinhole size
is analyzed in supplementary figure S1 (available at
stacks.iop.org/NANO/31/395202/mmedia). It was found that
while decreasing the pinhole size can indeed enhance the
resolution, the enhancement is saturated when the pinhole
diameter is around 25 µm (the size we used in our setup).

When the excitation laser is focused at point r on the mem-
brane, the total number of photons counted per unit time is

2

https://stacks.iop.org/NANO/31/395202/mmedia


Nanotechnology 31 (2020) 395202 X He et al

Camera

b)

1
2

3
4

1

4

TEM

c) 2

3

cpms/mW
d)

CMOS 
camera

488 nm
laser

Pinhole SPCM 1

DM1

ND

ND

SPCM 2

ND

Nano
positioner

Flow cellLED

40X

SiNx

a)

BE

1

2

3

4

DM2

10 µm

Figure 1. (a) Experimental setup of the confocal scanning PL system. (b) Microscope image of the entire SiNx membrane (50 × 50 µm2) in
which four nanopores were drilled with a highly focused e-beam near the four corners. (c) TEM images of the as-drilled nanopores; the
scale bar for all TEM images is 10 nm. (d) PL map of the SiNx sample (10 mW, 488 nm excitation, 2 ms photon counter integration time,
300 nm scan step). The counted emission photons were normalized to the integration time and the incident laser power (cpms: counts per
millisecond).

given by the convolution of E(r) and cp (r), multiplied by the
system collection efficiency η, which is related to the object-
ive, bandpass filters and lens. The noise sources would consist
of the Poisson noise, the background signal and the dark counts
[42, 43]. Therefore, the total photons counted during a time T
(integration time) would be given by

S(r′) = ηTE(r) ∗ cp (r)︸ ︷︷ ︸
signal

+
√
ηTE(r) ∗ cp (r)+CbPT+NdT︸ ︷︷ ︸

noise
(4)

in which Nd is the dark count rate and Cb is the background
count rate per watt of excitation power. Equation (4) essen-
tially describes the total measured PL as a function of the laser
location.

2.2. Interpretation of scanning PL results

With the confocal scanning PL model (equation (4)) and the
experimentally determined setup parameters listed in supple-
mentary table S1, we calculated the PL map as a function of
various combinations of nanopore size, the material’s micro-
scopic profiles (defined as d(r)ΦF (r)) and the excitation laser
profiles Iex (r). Figure 2(a) shows the results for a fixed excita-
tion laser spot size (1.2 µm). Each column and row represents

a specific nanopore size and microscopic profile, respectively.
The first row shows the result with a uniform material pro-
file across the SiNx membrane (i.e. no variations in the elec-
tronic structures and thickness; the only thickness variation is
at the nanopore spot). In this case, no clear PL reduction can be
observedwhen the nanopore size varies from 10 nm to 100 nm.
This is not surprising since the nanopores, with sizes of tens of
nanometers, were below the spatial resolution of the confocal
scanning PL (509 nm). This result shows that the contribution
of the nanopore itself to the PL reduction is too small to be
observed (easily overwhelmed by the noise).

If the nanopore size alone cannot reproduce the experi-
mental observation of the reduced PL [30, 41], the product
d(r)ΦF (r) (i.e. microscopic profiles of the material) must
be taken into consideration for interpreting the scanning PL
results. For the electron beam, although it is highly focused
into a few nanometers in the final drilling process, the pre-
paratory steps such as zooming in during the fabrication
can result in exposed areas spreading several microns. For
the laser beam, the exposed area is limited by the spot size
(~1.2 µm). These exposures can result in possible microscopic
variations spread over several microns. The second to the
fourth rows in figure 2(a) show the results with various micro-
scopic profiles. As shown, the obtained scanning PL result

3
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Figure 2. (a) Simulated PL maps for various nanopore sizes columns and microscopic profiles of the material (defined as the product of the
quantum yield and the thickness: rows). The excitation laser spot size is fixed at 1.2 µm. Note that the material’s microscopic profiles from
the second to fourth row spread over several microns, much larger than typical nanopore dimensions. The resulting PL map is highly
correlated to the microscopic profiles and is independent of the nanopore size. (b) Simulated PL maps for various laser spot sizes columns
and microscopic profiles of the material rows. The nanopore size is fixed at 10 nm. A tightly focused laser can improve the resolution of the
scanned PL. All of the simulations were carried out at laser power 1 mW, integration time 2 ms and scanning step 100 nm. The thickness
and the quantum yield in the intact membrane are 30 nm and 1%, respectively.

is strongly correlated to the microscopic profile and is inde-
pendent of the nanopore size. These results indicate that the
spatial distribution of the scanning PL map is a measurement
of the microscopic profile and has nothing to do with the
nanopore size due to the fact the most nanopores (as point
defects) are well below the spatial resolution of the optical
setup.

We also studied the impact of the laser spot size on
the scanned PL result. Figure 2(b) shows the results for a
fixed 10 nm nanopore and various laser spot sizes. Again,
the scanned PL result is strongly correlated to the micro-
scopic profile and is weakly dependent on the laser spot
size. However, it is clear from the results shown in figure
2(b) that a highly focused laser can indeed improve the res-
olution of the scanned PL. This suggests that one should
always try to get the best focus when performing the scanning
PL experiment.

Results in figures 2(a) and (b) clearly show that the scanned
PL result is a mapping of the thin membrane material’s micro-
scopic profile, rather than the nanopore geometry or size. This
explains why Assad et al observed a significant PL reduc-
tion even when there is no nanopore formed [41]. The micro-
scopic profile is correlated to the material’s electronic struc-
ture (e.g. compositional variations, defects) as well as its mor-
phology (e.g. thickness variations). Therefore, the scanned
PL approach can be a suitable technique for probing the
microscopic changes in silicon nitride nanopores exposed
to electron and laser beams, independent of the nanopore
size.

2.3. Enhancing the SNR of scanning PL

According to equation (4), the PL signal depends on the
laser power P and integration time T linearly, while the noise
depends on the laser power and integration time as P1/2 and
T1/2. To test whether this is consistent with experiments, we
measured a plain 30 nm thick free-standing SiNx membrane
(without any nanopores). Figure 3(a) shows the signal and
rms noise of the counted PL value at different laser powers
with 2 ms integration time. Each data point results from the
10measurements. The average value and standard deviation of
the PL counts were considered as the signal and noise, respect-
ively. We observed that the signal indeed increases linearly
with laser power (P), while the noise increases with the square
root with laser power (P1/2). Figure 3(b) shows the PL signal
and rms noise as a function of photocounter integration time
at a constant laser power of 1 mW. Again, the signal and noise
showed the expected dependence on T and T1/2, respectively.
It is noteworthy that the results in figures 3(a) and (b) enabled
us to experimentally determine the model parameters for our
customized confocal PL setup (supplementary table S1).

The PL signal-to-noise ratio (SNR) depends on the laser
power and integration time as P1/2 and T1/2. As expected,
increasing the laser power and integration time is favorable for
obtaining the PL map with improved SNR. To verify this, we
scanned a 10 × 10 µm2 region of the SiNx membrane with a
TEM-drilled nanopore of ~10 nm diameter in the center. Fig-
ure 3(c) shows the PL maps at five different laser powers ran-
ging from 100 µWto 5mW.Note that the obtained PLmap is a
measurement of the microscopic profile around the nanopore,
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Figure 3. (a) The PL signal and noise from a 30 nm thick SiNx membrane at different laser powers (2 ms integration time). (b) The PL
signal and noise at different integration times (constant 1 mW laser power). The open circles and squares are experimental data. Lines are
linear and square-root fitting. Each data point was from 10 measurements. (c) PL maps of a 10 nm nanopore in the center of the SiNx

membrane for various laser powers (2 ms integration time) with the corresponding line profiles. (d) PL maps of the same sample at various
integration times (constant 0.5 mW laser power), with the corresponding line profiles plotted underneath.

rather than the nanopore itself. As expected, increasing the
laser power indeed improved the SNR of the PL map, which
was evident from the corresponding line profile (bottom plots
in figure 3(c)). Although higher laser power is preferred for an
improved SNR, it is noteworthy that higher power itself can
impact (or damage) the sample under test, as we will discuss
later. Figure 3(d) shows the PL maps for five different integra-
tion times (1–20 ms) at a constant laser power of 0.5 mW, with
the corresponding line profile shown underneath. It was clear
that increasing the integration time can effectively improve the
SNR of the PL mapping, consistent with the model predic-
tions.

2.4. Impact of electron beams on membrane integrity

It was reported that the high-dose electron-beam irradi-
ation at 200 kV (common for TEM nanopore drilling)
could cause fast damage to thin-film material with modific-
ations to both the morphology (e.g. thinning of the mem-
brane [45]) and the chemical composition (e.g. oxidized
surfaces [46], the formation of bubble-like defects [47],
electrostatic charging [48], and the creation of a locally
enriched silicon area by preferential depletion of nitro-
gen atoms [49]). The e-beam radiation-induced modifica-
tion to the chemical composition would change the local
band structure as well as the local quantum yield of SiNx

[40, 50–55].
To investigate the impact of e-beam irradiation on mem-

brane integrity, after drilling the nanopore, we purposefully
reduced the TEM magnification to 15k such that the non-
drilling e-beam irradiation area is ~14 µm in diameter (figure
4(a)). Figure 4(b) shows the resulting PL map. It was found
that the PL reduction area was consistent with the e-beam irra-
diation area (~14 µm diameter), although the nanopore was

only 7 nm in diameter (inset of figure 4(a)). To quantify the
relationship between the PL reduction and e-beam dose, we
examined six membranes with different irradiation times at
15k magnification (figure 4(c)). Figure 4(d) shows the changes
in PL reduction percentage as a function of e-beam irradiation
time. The PL reduction percentage was calculated by com-
paring the average PL intensity in the e-beam exposed area
and that in the non-exposed area. The PL reduction shows a
nonlinear dependence on the e-beam irradiation time. The PL
reduction becomes saturated after 6 min. These observations
are in excellent agreement with previous studies [41]. This res-
ult suggests that the low-intensity e-beam exposure did not
etch the membrane (otherwise PL reduction would vary lin-
early with time and would decay asymptotically to zero when
it is fully etched). The saturation of PL reduction is most likely
due to the saturated electron trapping in the irradiation area
[48, 55].

During the TEM based nanopore fabrication process, the
final nanopore area receives the most energy when the electron
beam is highly focused, while areas beyond the final nanopore
spot will inevitably be exposed to the electron beams when
performing localization, alignment and focus. In an attempt to
fabricate a single nanopore in the center of a 50 × 50 µm2

free-standing SiNx membrane (figure 5(a)), we firstly focused
the e-beam to the window edges to determine the coordinates
before moving to the membrane center, where the nanopore
was drilled (figure 5(b)). The PL map of this sample is shown
in figure 5(c). While we indeed observed the most pronounced
PL reduction around the 20 nm nanopore, the PL map of this
sample surprisingly showed a clear trace from the lower right
corner to the membrane center that was not reported before. In
another attempt to drill three nanopores on the SiNx membrane
(figures 5(d) and (e)), the PL map also showed clear traces that
followed the e-beam path during the fabrication (figure 5(f)).
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cpms/mW
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)

Figure 4. (a) The image of a 50 × 50 µm2 SiNx membrane showing a 14 µm diameter area (dashed circles) that was irradiated with the
non-etching e-beam (beam current 158 µA). The inset shows the nanopore in the center of this irradiation area (scale bar, 10 nm). (b) The
resulting PL map with 8 min e-beam irradiation. (c) PL maps for various e-beam irradiation times (0 min means no additional exposure after
drilling the nanopore). (d) The PL reduction percentage as a function of e-beam irradiation time. The solid line is an exponential fit to the
experiment data (blue dots). The PL maps were obtained for laser power 1 mW, integration time 2 ms and scanning step 300 nm.

Since there was no observable etching occurring along the
path traversed by the e-beam (verified by TEM), the signific-
ant PL reduction along the path is mainly contributed by the
change in quantum yield (i.e. the e-beam-induced change in
electronic structure). The microscopic nature of this change
in electronic structure would require further detailed compos-
itional analysis of the local material, which is beyond the scope
of this work. Nevertheless, it can be hypothesized that the
change in electronic structure of the membrane caused by the
e-beam will likely impact the noise performance of nanopore
sensors [56–58], which needs to be examined systematically in
future studies. Practically, in order to minimize the impact of
the e-beam on the membrane integrity during the fabrication,
the e-beam should be quickly moved to the desired nanopore
location and be turned off immediately after drilling the nan-
opore.

2.5. Impact of laser beams on membrane integrity

While increasing the laser power can help improve the SNR of
the PL mapping (figure 3(c)), high laser power itself can res-
ult in changing the microstructure and chemical composition
of the material. To investigate the impact of the incident laser
beams on SiNx membrane, we sequentially irradiated differ-
ent locations on a single membrane with a focused 488 nm
laser at various laser powers and exposure times in air with
humidity ~60% (figure 6(a)). The sample was then examined
by the scanned PL method at 1 mW intensity, the result of
which is shown in figure 6(b). It was clear that the incident
laser alone will induce the reduction in PL, giving enough

exposure energy. In general, increasing the laser power and
irradiation time will produce a more pronounced reduction in
PL.

To understand the nature of this laser-induced PL reduc-
tion in the air, the same sample was further characterized by
atomic force microscopy (AFM). As shown in figure 6(c), at
relatively low laser energy (less than 10 mW for up to 20 min
exposure), no significant change in morphology was observed
within the resolution of the AFM, although the PL reduction is
evident (figure 6(b)). This suggests the PL reduction is likely
due to the altered electronic structures at low laser energy. On
the other hand, at relatively high laser power (e.g. 15 mW
for > 10 min exposure), we surprisingly found that the area
exposed to the laser was larger (instead of smaller) than the
intact area of the membrane. For example, 20 min exposure at
15 mW laser power will result in about 8 nm greater exposed
area. This seems counterintuitive since we would expect laser
exposure to be an ‘etching’ process [30–32, 35], and therefore
the membrane thickness would be reduced, if not remain the
same. We hypothesized that this counterintuitive behavior is
due to the fact that our experiment was performed in air of
0% humidity, rather than in salt solutions [30–32, 35]. The
increase in thickness in our experiment is most likely due to
the photo-oxidation of SiNx by reaction with oxygen in the
air [59]. Further material analysis would be required to test
this hypothesis. This result, together with previous results of
laser etching in salt solutions [30–32, 35], clearly demon-
strated that the laser-SiNx reactivity is a complex photochem-
ical and photothermal process, where the surrounding envir-
onment (e.g. dry/wet, electrolyte concentration) would play a
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Figure 5. (a) Microscope image of an SiNx membrane in which a single nanopore was drilled in the center, the e-beam was moved from the
bottom right corner to the center of the membrane before drilling; scale bar, 10 µm. (b) Corresponding TEM image of the nanopore; scale
bar, 20 nm. (c) The resulting PL map showing that a trace followed the e-beam path. (d) Microscope image with three nanopore locations
annotated; the e-beam was successively moved to the next position after the preceding nanopore was created; scale bar, 10 µm. (e)
Corresponding nanopores TEM images; scale bars, 20 nm. (f) The resulting PL map, which shows clear traces. PL scanning was performed
at laser power 1 mW, integration time 2 ms and scanning step 300 nm.

significant role due to differing heat dissipation and chemical
background.

Figure 6(d) quantifies the PL reduction as a function of laser
exposure time for various laser powers in air. The PL intens-
ity decreases linearly with the exposure time even when the
laser power is small. This strongly suggests that great caution
needs to be taken in producing and interpreting the PL map for
SiNx nanopore characterization. For example, probing the PL
map around a nanopore at high laser power would itself change
the intrinsic PL profile (supplementary figure S2). Figure 6(e)
shows the percentage reduction in PL as a function of cumulat-
ive laser energy. We found that a cumulative laser energy less
than 300 mJ would result in less than 3% of the PL reduction,
while a cumulative laser energy larger than 5000 mJ would
induce more than 10% of PL reduction (figure 6(e)). In most
of our scanning PLmeasurements, 1 mW laser power and 2ms
integration time (total energy ~ 2 µJ) were used to minimize
the impact of the probing laser on the material’s intrinsic PL
properties.

Lastly, as an interesting demonstration of laser-induced
change in PL, we converted the letters ‘PSU’ into a binary
image with 12 × 34 pixels. Each pixel represents a laser scan
step of 1 µm (i.e. the letters were written into the 12× 34 µm2

area on the SiNx membrane). All pixels with a binary value of
‘1’ were exposed to a 20 mW, 488 nm laser for 10 s (i.e. total

energy of 200 mJ, which is sufficient to cause PL reduction as
shown in figure 6(e)). After this writing process, we examined
the PLmap under 1mW laser power and 2ms integration time.
As shown in figure 6(f), the ‘PSU’ pattern is visible in the PL
map, which confirms that the laser energy of 200 mJ indeed
significantly changed the local microscopic properties of the
material.

3. Conclusions

In summary, we demonstrated the use of confocal scanning PL
for mapping microscopic changes in SiNx nanopores exposed
to electron and laser beams. We developed and validated
a numerical model for the quantitative interpretation of the
scanned PL result. We showed that the scanning PL result is
independent of the nanopore size. The significant reduction in
PL is contributed by the product of two microscopic mater-
ial factors: quantum yield profile (i.e. variations in electronic
structure) and thickness profile (i.e. thinning of the mem-
brane). With this understanding, we experimentally demon-
strated that unintentional electron and laser beam exposure
would significantly change the electronic structures in the SiNx

membrane even when there is no visible thinning of the mem-
brane. Our results unambiguously showed that it is critical to
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Figure 6. (a) Image of the SiNx membrane showing the locations exposed to the focused 488 nm laser. (b) Resulting PL map after laser
exposure (laser power 1 mW, integration time 2 ms, scanning step 100 nm). (c) AFM image from the same sample; the scale bar is 5 µm.
The obvious change in morphology (increase in thickness) was observed at high laser powers. (d) PL reduction as a function of laser
exposure time at various powers. Each data point was the average PL value of the area exposed to the laser (dashed circle in (b)). (e)
Percentage reduction in PL as a function of cumulative laser energy. (f) PL map showing a laser-written pattern of letters ‘PSU’.

minimize the unintended electron or laser beams to the SiNx

during the fabrication if one desires the microscopic integ-
rity of the membrane. We anticipate this study can provide
experimental insights into properly using and interpreting the
scanned PL map to characterize beam-fabricated SiNx nano-
pores.

4. Methods

4.1. Optical setup

The 488 nm Gaussian-profile laser (Coherent) was firstly
expanded to completely fill the back aperture before focus-
ing at the SiNx membrane through the microscope objective
lens (magnification 40×, numerical aperture 0.75) to form a
diffraction-limited spot for confocal illumination. The radius
of the laser spot is ~1.2 µm. The emitted light was collec-
ted by the same objective lens and focused on a pinhole of
25 µm diameter (National Aperture) for improved spatial res-
olution. The setup was also equipped with a CMOS camera
(Thorlabs) for monitoring the positions of the membrane and
laser spots. The emission light was filtered by a bandpass filter
before being detected by the single-photon counting module
(SPCM-AQRH-13). A neutral-density (ND) filter was moun-
ted in the front of the photon counter to expand the dynamic
range.

4.2. Scanning setup

The SiNx nanopore chip was sealed on to a custom-built
PMMA cell. The cell was mounted on a nanopositioner
(Physik Instrumente, P-611.3 S NanoCube). The scanned
PL map was obtained by a customized LabVIEW program
(National Instruments) that controls the motion of the nano-
positioner as well as acquiring the photon counting signals.
Note that the spatial resolution is limited by the laser spot size
and point spread function of the pinhole, which can be calcu-
lated from the HWHM of the CAF; too fine a scanning step
would not necessarily increase the resolution (supplement-
ary figure S3) and can lead to excessive laser energy being
delivered to the membrane, which itself can impact the PL
reduction. The typical parameters for obtaining the scanned
PL results in our experiments are 100 nm step size, 1 mW
laser power and 2 ms integration time. These parameters were
used to ensure that the probing laser is non-destructive to the
intrinsic properties of the sample under test. The PL results
obtained in this study were from measurements in air unless
otherwise noted.

4.3. TEM SiNx nanopore fabrication

The 30 nm thick SiNx membranes with 50 × 50 µm2 window
(NT005X) were purchased from Norcada. The nanopore was

8
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drilled with a field-emission TEM (JEOL JEM-2100 F, oper-
ated at 200 kV). Amediummagnification (120k) was first used
to locate the window area before changing to high magnifica-
tion (1000k) to tightly focus the electron beam onto the SiNx

membranes. Different nanopore sizes could be drilled by con-
trolling the exposure time. TEM characterization of the nano-
pore was performed immediately after the drilling.

4.4. Numerical simulations

The model parameters (absorption coefficient, quantum yield,
background count rate, dark count rate and system collection
efficiency) were experimentally determined (figure 3 and sup-
plementary table S1). With these parameters, equation (4) was
numerically solved using a custom-built MATLAB code to
obtain the scanned PL map.
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