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ABSTRACT: While controlled dielectric breakdown (CBD) emerged as a promising method
for accessible solid-state nanopore fabrication, there are still significant challenges in
understanding the fabrication dynamics due to the lack of in situ cross-reference
characterization beyond current monitoring. In this work, we developed a multimodal
method for characterizing the dielectric breakdown-based nanopore formation dynamics.
With this capability, we observed for the first time the redox-induced bubble generation at the
electrolyte—membrane interface. The randomly generated gas bubble would significantly alter
the electric field distribution on the membrane surfaces and is an overlooked factor that can
contribute to the random distribution of the nanopores. Besides, we also studied the impact of
electric field strength on the number and location of nanopore(s) initially formed and after
enlargement. We believe that the direct evidence of redox-induced bubble formation and the
impact of the electric field on nanopore formation dynamics presented in this work would
provide significant experimental insight for further improving the breakdown-based solid-state
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B INTRODUCTION

A solid-state nanopore is typically a nanometer-sized hole
formed in a thin-film membrane (usually SiN,"* or SiO,”).
Due to its superior mechanical and chemical stability and the
potential for integration into devices, a significant amount of
research has been dedicated to this field, including new
membrane materials,” fabrication techniques,” and alternative
sequencing,” sensing,® and diagnostic’ strategies. The solid-
state nanopore was usually fabricated by focused ion'"~"* or
electron beams.'”'* However, the cost and complexity of these
instruments have created hurdles for researchers trying to
access this promising sensor. To address this issue, an
alternative controlled dielectric breakdown (CBD) method
for nanopore fabrication was proposed'> and further
developed.'®~** In this approach, a strong electric field causes
a local material failure that leads to a nanoscale pinhole
formation. The pioneering work by Kwok et al.'> showed a
nanopore down to 2 nm in size could be created by applying a
constant voltage across the membrane until a time-dependent
dielectric breakdown (TDDB) event occurs.””** The nano-
pore formation is signified by the measured membrane current
reaching a predetermined cutoff level.'>"”"® This method has
been demonstrated to be useful for various materials, including
silicon nitride (SiN,) as well as atomically thin two-
dimensional materials such as graphene*”° and MoS,.””*’
While the CBD method offers the potential for simplified
and accessible nanopore fabrication, it is widely acknowledged
that it suffers from the random distribution of numbers and
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locations of pores formed.””***’ One obvious contributing
factor for this randomness stems from the dielectric breakdown
itself, a topic that has been studied in the field of
microelectronics for decades.>”*' However, the CBD-based
nanopore fabrication setup has a distinctive feature of involving
both ionic and electronic transport in the system. The leakage
current in the dielectric material such as SiN, should be carried
by the electrons tunneling through randomly distributed
defects in the membrane,'> while the current in the
surrounding electrolyte should be carried by charged ions.
For the current to go through the whole system, a redox
reaction must occur at the electrolyte—membrane interface.
However, the impact of this redox reaction to the nanopore
generation dynamics remains yet to be explored.

The stochastic nature of CBD-based nanopore fabrication
critically calls for multimodal characterization in situ. The
typical CBD fabrication is often a black box experiment since
the whole process is often only monitored by the current
signal.zg"”2 However, a simple current measurement cannot
distinguish between a single nanopore and multiple nanopores
having the same total conductance. Although offline trans-
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Figure 1. (a) Schematic of the setup for breakdown-based nanopore fabrication and multimodal characterization (DM: dichroic mirror, ND:
neutral-density filter). (b) Result from TEM-drilled model samples containing a single nanopore. (c) Result from TEM-drilled model samples
containing two nanopores. In (b) and (c), left panel: microscope image showing the location of the nanopore on the SiN, membrane (inset: TEM
image of the nanopore); middle panel: PL result obtained under 2 mW laser and 2 ms integration time; and right panel: laser-enhanced ionic

current mapping obtained under 6 mW laser and 200 mV voltage bias.

mission electron microscopy (TEM)-based imaging could
provide significant detail about the nanopore size and shape, it
is incredibly tedious to perform without knowing the rough
location of the nanopore(s). Zrehen et al. adopted the wide-
field fluorescence microscopy and calcium indicators for
visualizing the number and the location of nanopores
formed.>® However, introducing the Ca”* chelator such as
EGTA and indicator dye such as Fluo-4 may potentially lead to
nanopore contamination that precludes further sensing experi-
ments. It is preferred to characterize the formed nanopore in
its native buffer conditions.

In this work, we developed a multimodal method for
characterizing the nanopore formation dynamics in dielectric
breakdown. With this capability, we directly observed for the
first time the redox-induced bubble generation at the
electrolyte—membrane interface. The randomly generated
bubble would significantly alter the electric field distribution
and is an overlooked factor that contributes to the random
distribution of the nanopores. With this capability, we also
studied the impact of electric field strength on the number and
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location of nanopore(s) initially formed and after enlargement.
We believe that the direct evidence of redox-induced bubble
formation and the impact of the electric field on nanopore
formation dynamics presented in this work offer significant
experimental insight for nanopore breakdown fabrication.

B RESULTS AND DISCUSSION

Experimental Setup. Figure 1a shows the schematic of the
experimental setup with multiple capabilities (see Methods for
a detailed description). The SiN, membrane was assembled in
a flow cell with cis and trans reservoirs filled with 1 M KCl
buffered by Tris-EDTA. The flow cell was mounted onto and
controlled by a nanopositioner. A collimated 488 nm laser was
focused on the SiN, membrane. A pair of Ag/AgCl electrodes
was placed in the reservoirs to apply the voltage bias and
collect the current signal. The photoluminescence (PL) signal
was collected by single-photon counting modules (SPCM).
The CMOS camera was used to monitor the microscopic
environment changes during the fabrication process (e.g.,
redox-induced bubble generation). With this integrated setup,
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Figure 2. Multimodal characterization of nanopore formation dynamics in the fabrication process. The first row is IV characterization (between
+0.1 V), current, and Z-score traces for nanopore formation monitoring. The second row is laser-enhanced ionic current mapping obtained under
200 mV voltage and 6 mW. The third row is the microscopic image of the membrane.

we could concurrently perform both the dielectric breakdown-
based nanopore fabrication and multimodal characterization in
situ, including monitoring the conductance (IV), micro-
environment variations (microscope), material variations
(PL), and laser-enhanced ionic current mapping for locating
the nanopores.”* ™’

To validate the laser-enhanced ionic current mapping in our
setup for determining the nanopore numbers and locations, we
used the TEM-drilled nanopore samples as testing models.
These TEM prepared samples have predefined numbers of the
nanopore in known locations on the SiN, membrane. Figure
1b,c shows the results from representative samples containing a
single nanopore and two nanopores, respectively. The
nanopore location is annotated in the microscope images
(left panel). The TEM characterizations of these nanopores are
shown in the insets of the microscope images. For both
samples, the corresponding PL (middle panel) and laser-
enhanced ionic current mapping results (right panel) both
showed distinguishable features in the nanopore location. It is
noteworthy that the PL reduction in SiN, is very sensitive to
the electronic structure change and does not necessarily
indicate the location of a physical nanopore.”®*” In this work,
we mostly used the laser-enhanced ionic current mapping for
determining the nanopore numbers and locations, while the
complementary PL result was only used for reference. It is also
worth mentioning that while increasing the laser power can
help to improve the signal-to-noise ratios in laser-induced ionic
current enhancement (Supporting Figure S1), high laser power
is detrimental to the material integrity of SiN, membrane.”***’
In this work, we used 6 mW laser for the laser-enhanced ionic
current mapping, unless otherwise noted.

Breakdown and In Situ Characterization. We previously
reported a moving Z-score-based breakdown method™® for
nanopore fabrication. Briefly, each abnormal current jump
event (defined by a moving Z-score > 6) during the high-
voltage stressing is cross-verified by repetitive IV character-
izations at low voltages. A physical formation of nanopores in
the membrane (true positive) would require all IV measure-
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ments to have conductance larger than 1 nS and coefficient of
determination (R*) higher than 0.85. While this method
significantly reduced false positives, the conductance measure-
ment alone lacks the capability to determine the nanopore
locations and numbers. With the multimodal characterization
setup shown in Figure 1, we were able to address this issue.
Figure 2 shows a representative breakdown fabrication and
in situ characterization process. First, the pristine SiN,
membrane was examined by IV characterization between
+0.1 V (top row), laser-enhanced ionic current mapping
(middle row), and microscope (bottom row). Second, a bias of
12 V was applied and the current trace as well as the moving Z-
score values was recorded in real time. Once an abnormal
event was detected, the 12 V bias was removed immediately. A
cross-verify process was then performed. As shown in the third
column in Figure 2, both IV and laser-enhanced ionic current
mapping confirmed there was no physical nanopore formation.
As a result, a second trial under 12 V bias was performed
(fourth column in Figure 2) until another abnormal event was
detected. The subsequent cross-verify process (fifth column in
Figure 2) showed that physical breakdown indeed occurred
(conductance and R? values fall into the shaded area), and
there was a single nanopore in the SiN, membrane (confirmed
by laser-enhanced ionic current mapping). In this case, since
we now have confirmation that a single nanopore was formed,
its diameter could be estimated as 3.1 nm using

-1
G = 6(7’%2 + %) , in which 6, h, and D represent the

electrolyte conductivity, membrane thickness, and the nano-
pore diameter, respectively."’ Another representative case
involving more rounds of breakdown trials can be found in
Supporting Figure S2. These results showed that the
multimodal characterization could provide the much-needed
information about the nanopore location and number for
interpreting the conductance results.

Direct Observation of Redox-Induced Bubble Gen-
eration. Surprisingly, we observed the bubble formation
around the SiN, membrane during the breakdown trial when
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the membrane was subject to high-voltage stress. As shown in
the microscope image in the second column of Figure 2, a gas
bubble (annotated by an arrow) was clearly visible under 12 V
bias. It is noteworthy that the bubble formation is universal for
all of the 15 samples we tested (Supporting Figure S3). As
shown in the second column in Figure 2, the ionic current was
not obviously affected by the bubble generation, and this may
because the initially formed bubble covered only a small region
of the SiN, membrane. This intriguing bubble formation
phenomenon in nanopore breakdown fabrication was directly
observed for the first time. Supporting Video S1 aggregates the
bubble formation dynamics in 8 of these 15 samples. These
bubbles showed random morphology and spatial distribution
on the SiN, membrane. Moreover, these bubbles do not
necessarily disappear after the biasing voltage was removed.
These randomly generated bubbles by redox reactions would
significantly alter the electric field distribution. The bubbles
could also prevent further redox reactions at the bubble
covered locations, which prevents nanopore formation at that
location since fewer charges can be transferred to the areas
beneath the bubble. As shown in Figure 2 and Supporting
Figure S3, the locations of bubbles were different from the
locations of nanopores. The bubble generation during the
breakdown is thus a previously overlooked factor that can
contribute to the random location of the nanopores.

To understand this phenomenon, we hypothesized that a
redox reaction must occur at the electrolyte—membrane
interface such that the ionic transport in the electrolyte and
the electronic transport in the SiN, membrane can
continuously flow throughout the system. Since a typical
breakdown voltage in the order of 10 V and the standard
electrochemical potential for KCl and H,O at 25 °C and pH 8
is 1.396 and 1.228 V, respectively, we hypothesized that the
bubbles formed during the breakdown fabrication are most
likely due to the following redox reactions at the interface
(Figure 3). The oxidation of chloride ions at the interface
generates chlorine gas (2C1~ — Cl, (g) + 2e7) and provides
electrons. These electrons travel through the SiN, membrane
via trap-assisted tunneling.'"> When they arrived at the other
interface of the membrane, these electrons contributed to the
generation of H, gas by the reduction of hydrogen ions (2H" +
2e” — H,(g)). Interestingly, Briggs et al. previously found that
the time-to-pore formation was significantly reduced when the
positively biased reservoir is filled with a highly acidic
solution.”” This observation is in excellent agreement with
our hypothesized redox process. When reducing the pH value,
the available hydrogen ions for the reduction reaction is
increased. This would help increase the rate of electron transfer
at the lower interface (Figure 3) and increase the rate of defect
formation. As a result, shorter time-to-pore could be expected
when adding acidic solutions.”” Besides, the traps formed by
possible hydrogen ions penetration into membrane could
promote trap-assisted tunneling, and thus shorten the time-to-
pore.30 In principle, a higher bubble generation rate would be
expected if increasing the concentration of the species
participated in redox reactions. However, based on the random
morphology of the bubbles observed, the nucleation and
evolution of bubbles on the SiN, membrane is indeed complex,
and it is challenging to precisely quantify the bubble number
and size.

Explore the Impact of Breakdown Electric Field on
Nanopore Locations and Numbers. With the multimodal
characterization setup, we explored the impact of the
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Figure 3. Schematic of ionic transport in the electrolyte and the
electronic transport in the SiN, membrane. The reduction reaction at
the Ag/AgCl cathode generates chloride ions, and these ions move
toward the top surface of the SiN, membrane by electrophoresis. The
oxidation of chloride ions at the interface will generate chlorine gas
and provide electrons. The electrons could travel through the SiN,
membrane via trap-assisted tunneling (White squares indicate the
traps). When electrons arrive at the other interface, they can
contribute to the generation of hydrogen gas by the reduction of
hydrogen ions.

breakdown electric field on nanopore locations and numbers.
A total of nine samples were fabricated by the moving Z-score
method™® under three different voltages. Figure 4a shows the
laser-enhanced ionic current mapping of formed nanopores
after the initial breakdown, from which we were able to
determine the formed nanopore locations and numbers for
each sample. Figure 4b shows the initially formed nanopore
numbers as a function of the breakdown electric field. For all
three samples fabricated at 0.8 V/nm, only a single nanopore
was observed. When the breakdown electric field increased to
1.0 V/nm, we started to see one of the samples showed three
pores after the breakdown. In the case of 1.2 V/nm, the initial
breakdown can lead to as many as five pores. While a larger
sample size would be required to establish meaningful
statistics, it is generally observed that a low electric field
should be preferred to avoid forming multiple pores.”**** This
is intuitively reasonable since the high electric field can
generate defects faster, thus increasing the possibility of
producing multiple nanopores.””*> We also examined the
locations of the formed nanopores in all samples we tested. As
shown in Figure 4c, the spatial distribution of initially formed
nanopores showed no tendency to a specific area and can be
regarded as random. While this is expected due to the
stochastic nature of the dielectric breakdown,"* we believe that
the redox-induced bubble formation before the breakdown
occurring is another factor that contributed to the location
randomness (Supporting Video S1).

Explore the Nanopore Enlargement Dynamics. The
initially formed nanopore was often enlarged to a specific size
by an electric field to meet the requirement for different
analytes, or to get a more stabilized ionic current
signal.'">*%*"** Tt was hypothesized that extra nanopores
might form during the enlargement process.zo’33 However,
direct evidence of this hypothesis is limited. With the capacity
to determine the nanopore locations and numbers in our
multimodal setup, we were able to observe the nanopore
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enlargement dynamics directly. For each of the initially
fabricated samples containing a single nanopore, we performed
the sequential enlargement process at three different electric
fields (0.2, 0.4, and 0.6 V/nm). After each enlargement
process, laser-enhanced ionic current mapping was performed
to determine if extra nanopores were formed (Figure Sa).
Figure Sb shows the extra nanopore numbers as a function of
the enlargement electric field. No extra nanopore was formed
for all seven samples enlarged under 0.2 V/nm (first row in
Figure Sa). When increasing the enlargement electric field to
0.4 V/nm (second row in Figure 5a), two out of seven samples
(#S and #8) showed extra pores were formed after enlarge-
ment. When the enlargement electric field was increased
further to 0.6 V/nm (third row in Figures Sa), five out of seven
samples showed extra pores. As can be clearly seen from Figure
Sb, enlargement at higher electric field indeed increased the
chance to form extra pores instead of enlarging the existing
single nanopore.”” The results shown in Figure Sb suggested
that a low electric field was favorable for the enlargement
process if the single nanopore is desirable. Nevertheless, due to
the experimental and material variations, the possibility of

forming additional pores during the enlargement process
cannot be simply ruled out.

B CONCLUSIONS

In summary, we developed a multimodal method for in situ
characterizing the nanopore formation dynamics in dielectric
breakdown. With the capability of monitoring microscopic
environment changes during the fabrication process, we
directly observed for the first time the redox-induced bubble
generation at the electrolyte—membrane interface. The
randomly generated bubble is an overlooked factor that
contributes to the random location of the nanopores since the
electric field distribution could be significantly altered. The
impact of the electric field on CBD nanopore locations and
numbers was also explored. For the initially formed pores, their
spatial distribution is random, which stems not only from the
stochastic nature of the SiN, membrane breakdown but also
from the redox-induced bubbles at the interface. In addition,
multiple nanopores can be simultaneously formed at high
breakdown electric fields due to fast defect generation. Further,
the formation of extra pores during the electric-field-based
enlargement of a single pore was verified by our setup. It was
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found that a low electric field is favorable for forming single
nanopore during initial formation and enlargement. These
findings offered critical experimental insight for performing
breakdown-based solid-state nanopore fabrication.

B METHODS

Materials and Chemicals. Fifteen nanometers thick SiN,
membranes were used in our experiments (Norcada, Canada). The
square membrane with a 50 X 50 um?” window is at the center of a
200 um thick silicon frame. Samples with TEM (JEOL JEM-2100F,
operated at 200 kV)-drilled nanopore(s) were provided by our
collaborator. The SiN, membranes were mounted into a PMMA-
based flow cell with Ecoflex-5S (Smooth-On). Ag/AgCl electrodes
were house made with 0.37S mm Ag wires (Warner Instruments,
Hamden). Potassium chloride and 1X EDTA Tris buffer solution (pH
8.0) were purchased from Sigma-Aldrich. The solution was filtered
with a 0.2 ym Anotop filter (Whatman) and degassed in a vacuum
chamber prior to use.

Instrumentation. The SiN, membrane was mounted into a flow
cell with a transparent quartz coverslip bottom. The cis and trans
chambers were filled with 1 M KCl in 1X EDTA Tris buffer. The flow
cell was mounted on a nanopositioner (Physik Instrumente, P-611.3S
NanoCube). The Keithley 2636 was used to apply voltage bias and
collect current signals through Ag/AgCl electrodes. The 488 nm laser
(Coherent OBIS 488 LS) was first expanded to completely fill the
back aperture before focusing at the SiN, membrane through the
microscope objective lens (magnification 40X, numerical aperture
0.75) to form a diffraction-limited spot for confocal illumination. The
laser spot radius is around 1.2 gm. The emitted light was collected by
the same objective lens and focused on a pinhole with 25 um
diameter (1-25+B-1+M-0.5, National Aperture) for improved spatial
resolution. The emission light was filtered by a band pass filter before
detected by the single-photon counting module (SPCM-AQRH-13).
A neutral-density (ND) filter was mounted in the front of the photon
counter to expand the dynamic range. A CMOS camera
(DCC1545M, Thorlabs) was also equipped for monitoring the
microscopic environment changes during the fabrication process. The
whole setup was shielded by a Faraday cage to minimize
electromagnetic interferences.

Nanopore Fabrication and Characterization. The moving Z-
score method was adopted for the nanopore fabrication, and details
about this method can be found in our previous work.”® The
abnormal events were checked by IV characterization between +0.1 V
and laser-enhanced ionic current mapping. With a customized
LabVIEW program (National Instruments) that controls the motion
of nanopositioner and thus the laser irradiation region, the laser-
enhanced ionic current mapping could be performed to collect the
current intensity distribution of the whole membrane. The typical
mapping parameters in our experiments are 500 nm step size, 6 mW
laser power, 200 mV voltage bias, and 2 ms integration time.
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