Fingerpick Blood-Based Nucleic Acid Testing on A USB Interfaced Device towards HIV self-testing

Tianyi Liu a, Gihoon Choi a, Zifan Tang a, Aneesh Kshirsagar a, Anthony J. Politza b, Weihua Guan a, b, *

a Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States
b Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, United States

ARTICLE INFO

Keywords:
HIV
Self-testing
Point-of-care testing
RT-LAMP
Nucleic acid testing

ABSTRACT

HIV self-testing is an emerging innovative approach that allows individuals who want to know their HIV status to collect their own specimen, perform a test, and interpret the results privately. Existing HIV self-testing methods rely on rapid diagnostic tests (RDTs) to detect the presence of HIV-1/2 antibodies, which could miss a significant portion of asymptomatic carriers during the window period. In this work, we present a fully integrated nucleic acid testing (NAT) device towards streamlined HIV self-testing using 100 μL finger-prick whole blood. The device consists of a ready-to-use microfluidic reagent cartridge and an ultra-compact NAT-on-USB analyzer. The test requires simple steps from the user to drop the finger-prick blood sample into a collection tube with lysis buffer and load the lysate onto the microfluidic cartridge, and the testing result can be easily read out by a custom-built graphical user interface (GUI). The microfluidic cartridge and the analyzer automatically handle the complexity of sample preparation, purification, and real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP). With a turnaround time of ~60 min, we achieved a limit of detection (LoD) of 214 viral RNA copies/mL of whole blood at a 95% confidence level. Due to its ease of use and high sensitivity, we anticipate the HIV NAT-on-USB device would be particularly useful for the high-risk populations seeking private self-testing at the early stages of exposure.

1. Introduction

According to the World Health Organization (WHO), HIV continues to be a significant global public health issue, having claimed 36.3 million lives so far (WHO, 2021). Early and accurate HIV diagnosis is a critical step to initiate timely antiretroviral therapy (ART), which could suppress HIV, stop the progression of HIV disease, and reduce the viral load (VL) to undetectable levels (Zolopa, 2010). The Joint United Nations Program on HIV/AIDS (UNAIDS) has thus put forth the ambitious goal to end AIDS as a global public health threat by 2030. This goal will highly depend on the increases in HIV testing, treatment, and viral suppression to prevent the onward transmission of HIV (Iwuji and Newell, 2017). To this end, HIV self-testing is proposed as a new approach where an individual who wants to know HIV status collects a specimen, performs a test, and interprets the result privately (Parekh et al., 2018; Spielberg et al., 2004). In recent years, uptake of HIV self-testing has gained increasing acceptance both in the US and internationally (Frith, 2007; Frye and Koblin, 2017; Johnson and Corbett, 2016; Ng and Tan, 2013; Spielberg et al., 2004).

Existing HIV self-testing methods rely exclusively on widely adopted RDTs to detect the presence of HIV-1/2 antibodies (Fund, 2022). While HIV RDT is very well suited for the primary screening process due to its low cost and fast turnaround time (de la Fuente et al., 2012; Mugo et al., 2017; Ng et al., 2012; Sarkar et al., 2016), it could miss a significant portion of asymptomatic HIV carriers during the 2–4 weeks of the window period (Parekh et al., 2018; Stone et al., 2018). A possible alternative is to use nucleic acid testing (NAT), one of the most sensitive methods available for identifying the presence of HIV RNA and/or DNA (Parekh et al., 2018). NAT devices for HIV testing are readily available in centralized labs. However, a NAT device suitable for HIV self-testing is still lacking. In a recent report (Mazzola and Pérez-Casas, 2015), WHO surveyed a list of HIV detection platforms such as Aptima HIV-1 Quant Assay (Hologic), GeneXpert HIV-1 Viral Load Test (Cepheid), Alere q system (Alere), cobas Liat System (Roche), and EOSCAPE-HIVTM

* Corresponding author. Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, United States.
E-mail address: w.guan@psu.edu (W. Guan).

https://doi.org/10.1016/j.bios.2022.114255
Received 19 January 2022; Received in revised form 25 March 2022; Accepted 4 April 2022
Available online 8 April 2022
HIV Rapid RNA Assay system (Wave 80 Biosciences). Most of these systems rely on relatively complex and expensive analyzers and replace conventional real-time PCR machines with portable thermal cyclers (Mauk et al., 2017). They often require plasma as a testing specimen which is prepared from venipuncture whole blood in laboratory conditions. Thus these NAT devices are not well suited for self-testing, in which a self-obtainable sample type such as finger-prick whole blood which is prepared from venipuncture whole blood in laboratory conditions are used. Among isothermal methods, which rely on the ease of use and the ability to perform testing at the point of care, more than one is developed for HIV detection. ThermoFisher™ Total RNA Cell Kit (CS14010) for extracting RNA were purchased from Sigma-Aldrich. The TaqMan Fast Virus 1-Step Master Mix and the ChargeSwitch™ Total RNA Cell Kit (CS14010) for extracting RNA were purchased from ThermoFisher. The assay was validated in a benchtop real-time PCR instrument (Bio-Rad CFX96). Purified HIV-1 RNAs (Subtype B, USA) were obtained commercially from SeraCare Life Science (cat. 0400–0078). We obtained samples of whole blood collected in potassium EDTA tubes from Innovative Research, Inc (Novi, MI).

2. Methods

2.1. Materials and chemicals

All the electronic and optical components used to build the NAT device (listed in Supplementary Table S1) were purchased from Digikey, unless otherwise stated. All RT-LAMP and RT-PCR primers were synthesized by IDT. Isothermal buffer, MgSO\(_4\), deoxyribonucleotide triphosphates (dNTPs), Bst 2.0 DNA polymerase, WarmStart reverse transcriptase are from NEB (New England Biolabs). Betaine, CaCl\(_2\), MnCl\(_2\), and EDTA-buffer solution (pH 8.0) were purchased from Sigma-Aldrich. The TaqMan Fast Virus 1-Step Master Mix and the ChargeSwitch™ Total RNA Cell Kit (CS14010) for extracting RNA were purchased from ThermoFisher. The assay was validated in a benchtop real-time PCR instrument (Bio-Rad CFX96). Purified HIV-1 RNAs (Subtype B, USA) were obtained commercially from SeraCare Life Science (cat. 0400–0078). We obtained samples of whole blood collected in potassium EDTA tubes from Innovative Research, Inc (Novi, MI).

2.2. NAT-on-USB analyzer and cartridge instrumentation

The overall design of the instrument is completed by FTC Creo software, and the device housing is fabricated by 3D printing (METHOD X, MakerBot). The PCB is designed in Autodesk Eagle software and fabricated by OSH Park. The electronic components and MCU on the PCB are manually soldered in the laboratory. A resistive-heating element (PWR263S-20-2R00J, Digi-Key) was attached to the backside of the custom-designed aluminum heating plate using thermal paste (AATA-5G, Arctic Alumina). A thermistor (950C606, Digi-Key) was embedded in the center of the heating plate for real-time temperature monitoring. Negative thermal feedback control was performed using N-channel power MOSFET (63J7707, Digi-Key) to maintain the desired temperature during NAT. The one-time use cartridge was designed by AutoCAD, and each layer was patterned using a CO\(_2\) laser cutting machine (Universal Laser Systems). All patterned layers were aligned and laminated with adhesive solvent. The control GUI software is written in Python, and the GUI establishes connection and communication with the device through USB serial communication.

2.3. HIV-1 RT-LAMP reaction

The RT-LAMP reaction mix (total volume: 25 μL) contains isothermal buffer (20 mM Tris-HCl, 10 mM (NH\(_4\))\(_2\)SO\(_4\), 50 mM KCl, 2 mM MgSO\(_4\), 0.1% Tween 20, pH 8.8), PCR grade H\(_2\)O, Betaine (0.8 M), MgSO\(_4\) (7 mM), deoxyribonucleotide triphosphates (dNTPs, 1.4 mM), Bst 2.0 DNA polymerase (16U), DNA template, WarmStart reverse transcriptase (2U) and primer sets (0.2 μM F3 and B3c, 1.6 μM FIP and BIP, 0.8 μM LPF and LPB).

2.4. HIV-1 RT-PCR reaction

We used a one-step, two-enzyme RT-PCR protocol for HIV-1 assays. The reaction has a total volume of 20 μL, consisting of 5 μL TaqMan Fast Virus 1-Step Master Mix (cat. 4444432, ThermoFisher), forward primer (0.6 μM), reverse primer (0.6 μM), probe (0.25 μM), and 1 μL RNA templates as well as 11 μL PCR grade water. We used a previously validated HIV-1 RT-PCR primer set (Palmer et al., 2003). The RT-PCR was performed by the following thermal cycling sequences: 50 °C for the first 5 min without repeating to reverse transcription reactions which convert HIV-1 RNA into cDNA, then 95 °C for 20 s without repeating to initiate amplification, followed by 40 cycles of amplification stage consisting of 3 s of 95 °C and 30 s of 60 °C thermal-cycling. Primers Forward (5′-CATGTTTTTCAAGTTAATCAGAA-3′) and Reverse (5′-TGGTTATGTTCCCCCAACT-3′) (600 nM) and Probe (5′-FAM-CCACCCCAAGATTTAACCACCATGTCA-3′) (250 nM), where FAM indicates a reporter 6-carboxyfluorescein group and Q indicates a 6-carboxytetramethylrhodamine group quencher conjugated through a linker arm nucleotide.

2.5. Mock whole blood HIV sample

Purified HIV-1 RNAs (Subtype B, USA) were obtained commercially from SeraCare Life Science (cat. 0400–0078). As-received RNAs were serially diluted to form linearity panels with concentrations ranging from 1 to 10\(^6\) copies/μL. Aliquots of the linearity panels were stored at
-80 °C until use. To form the mock whole blood HIV sample, 1 μL of these purified HIV-1 RNAs was spiked into 99 μL of healthy whole blood to generate 100 μL of mock samples at concentrations from 10 to 10⁶ copies/mL immediately before testing. Note that our protocol did not use Proteinase K to inactivate RNases in the whole blood for simplified sample preparation. The volume of the mock sample used in our study is 100 μL unless otherwise indicated.

2.6. Statistical analysis

The fluorescence signals from assays run on the USB device were expressed as the mean of ≥3 independent reactions ± standard deviation (SD). Customized MATLAB code was used to calculate one-way analysis of variance (ANOVA), obtain the optimized threshold for positive/negatives, and calculate linear regression of standard curve.

3. Results and discussion

3.1. Overall instrumentation

As shown in Fig. 1a, the HIV NAT-on-USB device consists of a highly portable palm-sized analyzer (footprint of 10 × 5 × 5 cm², weighing 170 g) and a ready-to-use, disposable reagent cartridge. The inset of Fig. 1a shows the cartridge design with an overall dimension of 9 cm (l) × 1.5 cm (w) × 0.58 cm (h). It consists of three-patterned polymethyl methacrylate (PMMA) layers, laminated with an adhesive solvent. The assembled cartridge has a binding chamber (800 μL), a washing chamber (450 μL), and a reaction chamber (25 μL). Each of these functional chambers was separated by an oil valve chamber (Choi et al., 2016). Reagents were preloaded to the cartridge before use.

Fig. 1b&c shows the exposed view and the assembled view of the analyzer, respectively. The USB-interfaced analyzer integrates the optical modules (excitation/detection), thermal modules (actuation/sensing), and mechanical modules (PCB coil electromagnet driver). These modules are controlled by a microcontroller unit (MCU) to fully automate the sample-to-answer process on the disposable cartridge. The working principle of the optical and thermal modules is similar to those used in our previous AnyMDx instrument (Choi et al., 2016), with modifications in spatial configurations. After assembly, we validated that the optical sensor has a linear response to the Calcein concentration from 0 to 25 μM (Supplementary Fig. S1), confirming its suitability for real-time monitoring of the amplification process. In addition, we validated that the resistive heating module can reach the desired 60 °C within 1.5 min and the root mean squared (RMS) value of the temperature is 0.53 °C after stabilization (Supplementary Fig. S2), which can meet the temperature requirement of the LAMP assay (Rudolph et al., 2015). For actuating the nucleic acid-bearing magnetic beads on the cartridge, we designed a double-sided planar coil array on a printed circuit board (PCB). This PCB coil can be programmed to generate a localized electromagnetic (EM) field for actuating a permanent magnet (Fig. 1d).

Fig. 1e shows the overall workflow of the HIV NAT-on-USB. The user would self-collect ~100 μL of finger-prick blood using an exact volume transfer pipette and drop it into a collecting tube pre-filled with 800 μL lysis buffer, 200 μL binding buffer, and 15 μL charge switchable magnetic beads. After the blood is collected into the lysis tube, the user can shake the tube to promote the mixing and binding. After 1 min, the lysate is loaded onto the cartridge through the extruded inlet, which can be completely sealed with a screw cap by hand tightening. The sealed cartridge is then inserted along a sliding rail into the analyzer through a hinged intake lid. After closing the lid, the analyzer is connected to a personal computer (PC) through a USB port. A customized PC graphical
user interface (GUI) was developed for interfacing the analyzer and interpreting the data in a user-friendly way. The GUI can automatically detect a new analyzer connection, request user information, initiate the nucleic acid test, and report the ‘yes/no’ qualitative result (see Supplementary Fig. S3 for software flowchart). It is noteworthy that the USB-interfaced analyzers can be used in a plug-and-play (PnP) fashion. In addition, multiple USB-interfaced analyzers can be simultaneously and independently connected to a PC through a USB hub for enhanced throughput, if needed. The material cost per test is $3.30 per reagent cartridge and $69.43 per analyzer (Supplementary Table S1 & Table S2).

It is noteworthy that the microfluidic cartridge is an enclosed system after the sample is loaded. It is disposable after each test. Therefore, cross-contamination between tests is not a concern. The overall HIV NAT-on-USB workflow requires minimal user intervention and is simple enough for the laypersons to perform HIV self-testing. Supplementary Video S1 shows the overall workflow of the test.

Supplementary data related to this article can be found at https://doi.org/10.1016/j.bios.2022.114255.

3.2. Programmable electromagnetic pulse for sample preparation on cartridge

We have previously demonstrated the use of charge-switchable magnetic beads for streamlining nucleic acid binding, purification, and elution by rotating a microfluidic disc against a stationary magnet (Choi et al., 2016). To completely remove the bulky moving parts for actuating the magnetic beads in the NAT-on-USB device, we here further developed a programmable electromagnetic method using double-sided planar coil arrays (Fig. 2a). The planar coil is designed into two layers in a single PCB. There are 12 coils on the top layer and 11 coils on the

Fig. 2. (a) The PCB design of the double-sided planar coil array. The planar coil is designed as two layers in a single PCB with a vertical distance of 0.78 mm. Each rectangular coil has a winding width of 170 μm, a spiral pitch of 170 μm, a thickness of 35 μm, and nine turns (enlarged inset). The coils on the top and bottom layers are offset by 3.6 mm horizontally, yielding an effective motion step of 3.6 mm. (b) The operation diagram of the permanent magnet being moved from an initial position to a new adjacent position by turning on a specific coil (coil 2 in this case). (c) Calculated force on the permanent magnet as a function of the relative displacement of the permanent magnet to the coil center. (d) COMSOL simulation of the electromagnetic field generated by the planar coil. (e) The sequence of the current pulse to move the permanent magnet from position 1 to position 3. Each pulse is 100 ms in duration. (f) The corresponding permanent magnet position at each time spot during the pulsed operation. (g) Joule heating evaluation for the programmable electromagnetic pulse. The current pulse waveform with 0.1 Hz–1 Hz operating frequencies. The duration of each pulse is fixed at 100 ms. (h) The time course of the temperature measured on the planar coil surface at different operating frequencies (color corresponding to these in (g)). The current pulse amplitude is 450 mA. With 0.1–1 Hz operation frequencies, the measured temperature does not exceed 30 °C for 5 min of operation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
bottom layer (1 × 23 array). The permanent magnet can be programmed to the center of any of these 23 coils. This is because a deviation from the ‘ON’ coil will result in a restoring force to bring the permanent magnet to its equilibrium position (center of the ‘ON’ coil) (Fig. 2b–d).

It is noteworthy that several previous studies (Beyzavi and Nguyen, 2009; Chiou et al., 2013; Rida et al., 2003) had tried to use planar coils to generate electromagnets for direct manipulation of the magnetic beads. However, due to the small size and weak relative magnetic susceptibility of magnetic beads ($\chi_r < 1$), the magnetic beads must be significantly polarized by strong permanent magnets. Moreover, a strong electromagnet field with ~1 A DC current is required, in which excessive heat can be generated due to the Joule heating (Chiou et al., 2013). Our approach here uses the programmable pulsed EM field to actuate a permanent magnet that further controls the magnetic beads on the cartridge (Fig. 2e&f). Since the permanent magnet itself has a substantial susceptibility, a small electromagnet field (i.e., a reduced power consumption) is sufficient to drive its motion. In addition, the actuation of the permanent magnet only requires 100 ms of ‘ON’ time on the desired coil. With this pulsed operation, we found that a minimum of 450 mA is sufficient to actuate the permanent magnet in our device. The temperature generated by the Joule heating was found to be operation frequency-dependent. At the normal 1 Hz operation, the measured max temperature did not exceed 30 °C for 5 min operation (Fig. 2g&h), suggesting that the reagents and assays in the cartridge would not be affected by the electromagnetic actuation, alleviating the overheating problems in previous methods (Chiou et al., 2013).

Fig. 3 illustrates the automated sample preparation and amplification on cartridges enabled by the EM actuation of charge-switchable magnetic beads (Choi et al., 2016). In the first step, the negatively charged RNAs in the lysate bind to the positively charged magnetic beads at pH 5 in the binding chamber. During the binding process, the permanent magnetic under the cartridge was actuated back and forth at a frequency of 1/3 Hz to ensure thorough mixing. In the second step, the RNA binding beads were transferred to the washing chamber (buffered at pH 7) by the EM array. The beads were horizontally agitated by the programmed EM sequence at 1/3 Hz. In the third step, the washed beads were transferred to the reaction chamber with the master mix buffered at pH 8.8. The RNAs were directly eluted to the master mix due to the positive charge on the magnetic bead surface. After elution, these magnetic beads were moved away from the reaction chamber (step 4) before starting the RT-LAMP reaction (step 5). The entire sample preparation could be completed in less than 15 min with minimum user interaction. Supplementary Video S2 presents a typical workflow of the EM array-enabled automated sample preparation and amplification on the cartridge.

Supplementary data related to this article can be found at https://doi.org/10.1016/j.bios.2022.114255.

3.3. Copy number sensitivity of HIV-1 RT-LAMP

We used a previously validated HIV-1 LAMP primer set against the highly conserved region of the integrase gene within subtype B (Curtis et al., 2012) with a modified fluorescent reporter of Calcein (Tomita et al., 2008). We first validated the intrinsic copy number sensitivity of the HIV-1 RT-LAMP assay by performing the RT-LAMP reaction against the quantitative panel of HIV-1 RNAs at concentrations ranging from 10^5 copies/µL down to 1 copy/µL. Fig. 4 summarized the RT-LAMP primers, the reaction setup, and the real-time RT-LAMP results. As shown in Fig. 4c–f, the copy number sensitivity of the HIV-1 RT-LAMP was determined to be four copies. Changes in temperature or storage time
can affect the performance of LMAP. The prepared LAMP should be kept in a refrigerated environment, and it is best to use it immediately.

3.4. Whole blood HIV-1 RT-LAMP assay

To further test the impact of the whole blood matrix and the reagent on the HIV-1 RT-LAMP assay, we formed mock HIV-1 positive samples by spiking the HIV-1 RNA into healthy whole blood. The 100 μL of mock samples at concentrations from 10 to 10⁶ copies/mL were mixed with 500 μL lysis buffer, 200 μL binding buffer, and 15 μL charge switchable magnetic beads for lysis and binding. The beads were then washed with 450 μL of washing buffer. The RNAs were directly eluted into a 25 μL master mix for RT-LAMP reaction. Fig. 5a presents the real-time RT-LAMP results (each concentration was repeated six times). Fig. 5b shows the fluorescent image of the reaction tubes under the ultraviolet (UV) light. Fig. 5c shows the gel electrophoresis results in 2% agarose gel, in which clear ladder-like patterns with multiple bands of different molecular sizes were observed due to the stem-loop DNA structures with several inverted repeats within LAMP amplicons (Notomi et al., 2000; Tomita et al., 2008). The fluorescent image and the gel images agreed well with each other.

To estimate the LoD of whole blood HIV-1 RT-LAMP assay, we examined the hit rates at different RNA concentrations (Holstein et al., 2015). The hit rate is defined as the number of amplified samples over all samples. As shown in Fig. 5d, linear fit produced the R² with 0.89, similar to those obtained with the HIV-1 quantitative panels (Fig. 4d).

3.5. Intra- and inter-device performance test

After validating the automated sample preparation and the HIV-1 RT-LAMP assay, we went out to test the intra- and inter-device performances. It is noteworthy that the multiple USB-interfaced analyzers can be used simultaneously and independently in a plug-and-play (PnP) fashion (Fig. 6a and Supplementary Video S1).

For the intra-device verification, we tested a series of mock samples with different HIV-1 RNA concentrations. Fig. 6b shows the real-time data obtained from testing a triplicate panel of these samples with a single USB interfaced analyzer. As shown, HIV-1 RNA concentrations at 500 copies per mL of whole blood were all amplified successfully (in parallel with these obtained in the tube, Fig. 5d). A linear fit produced the R² with 0.85, indicating the feasibility of using the USB-interfaced analyzer for a semi-quantitative test on the whole blood (i.e., differentiating between high, medium, and low viral load).

For the inter-device verification, we tested four independent devices with multiple triplicated mock samples. Supplementary Fig. S4 summarizes the real-time data obtained from these tests. We benchmarked
the time to positive between any two devices and examined their Pearson correlation coefficient. As shown in Fig. 6d, the device to device showed Pearson correlation coefficients ranging from 0.79 to 0.92, suggesting a good quantitative agreement between these devices.

To determine the diagnostic ability of the HIV NAT-on-USB, we tested a total of 104 whole blood samples (52 negatives and 52 positives) with four different analyzers. The 52 positive samples were constructed by spiking the HIV-1 RNA into 100 μL human whole blood to form a concentration of 1000 copies/mL, a clinically relevant viral load threshold used for routine monitoring of HIV in resource-limited settings (Ellman et al., 2017; Manoto et al., 2018). We examined the fluorescence values for all samples at 60 min (Fig. 6e). As shown, the RFU values of positives were significantly higher than that of the healthy controls. To find the optimal fluorescence threshold to differentiate the positives and negatives, we analyzed the receiver operating characteristic (ROC) curve (Bewick et al., 2004; Zweig and Campbell, 1993) by varying the threshold from 1 to 500 RFU. In general, increasing the threshold will improve the specificity but deteriorate the sensitivity. The optimal RFU threshold from ROC analysis is 43 (dashed line in Fig. 6e). The inset of Fig. 6e summarized the diagnostic performance with this optimized threshold. 50 out of 52 positives were detected as true positives, and 46 out of 52 negatives were detected as true negatives. The sensitivity, and specificity of the test was 96.2% (95% CI = 90.9%-100%) and 88.5% (95% CI = 79.8%-97.1%). The tests performed with all four different devices showed excellent accuracy (93%) in differentiating the clinically relevant viral load threshold at 1000 copies/mL.

4. Conclusions

In summary, we developed an integrated ‘finger-prick blood sample in, answer out’ full auto sample preparation and detection HIV NAT device towards HIV self-testing using 100 μL of a self-obtained finger-prick blood sample. The device consists of an ultra-compact NAT-on-USB analyzer and a ready-to-use microfluidic cartridge. The test requires simple steps from the user to drop the finger-prick blood sample into a collection tube with lysis buffer and load the lysate onto the microfluidic cartridge, and the testing result can be easily interpreted by the user through a GUI. We fully automated the process of on-chip RNA extraction, purification, and isothermal amplification from a whole blood sample and achieved an LoD of 214 copies per mL of whole blood at the 95% confidence level. Although the HIV NAT-on-USB device is designed for self-testing, the test can be easily scaled up to conduct multiple tests simultaneously through a USB hub. This makes the device also suitable for use in primary care settings as well. To further develop this technology for self-testing, there are several outstanding issues we need to address, including validation with clinical HIV-positive samples, evaluating performance across different subtypes of HIV-1, incorporating an internal control, and the lyophilization of the LAMP reagents to allow ambient storage at room temperature. With these efforts, we anticipate the rapid, low-cost, easy-to-use HIV NAT-on-USB device could enable laypersons to perform highly sensitive self-testing at home.

CRediT authorship contribution statement

Fig. 6. Intra- and inter-device performance. (a) Photo image showing multiple analyzers being used simultaneously through a single USB hub. (b) The real-time RT-LAMP data in the intra-device test with a serially diluted mock blood sample. Each concentration was tested in triplicates. (c) Extracted time to positive value for the intra-device test. (d) The scattering plot of the time to positive value between two devices. (e) The end-point fluorescence values for a total of 104 whole blood samples (52 negatives and 52 positives) were tested with four different analyzers. The dashed line of the value 43 is the receiver operating characteristics (ROC)- optimized fluorescence threshold. The inset table shows the summarization of the results.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: A provisional patent related to the technology described herein is filed.

Acknowledgments

This work was supported by the National Institutes of Health (R61AI147419), and National Science Foundation (1912410 & 1902503). Any opinions, findings, and conclusions or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the National Science Foundation and National Institutes of Health.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bios.2022.114255.

References

Cho, G., Song, D., Shrestha, S., Miao, J., Cui, L.W., Guan, W.H., 2016. A field-deployable mobile molecular diagnostic system for malaria at the point of need. Lab Chip 16 (22), 4341–4349.

