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A B S T R A C T   

Point-of-care testing (POCT) of blood cell count (BCC) is an emerging approach that allows laypersons to identify 
and count whole blood cells through simple manipulation. To date, POCTs for BCC were mainly achieved by 
“stationary” images through blood smears or single-laity arranged cells in the microwell, making it difficult to 
obtain statistically sufficient numbers of cells. In this work, we present a fully integrated POCT device solely 
using “in-flow” imaging of 3 μL fingertip whole blood for improved identification and counting accuracy of BCC 
analysis. A miniaturized magnetic stirring module was integrated to maintain the temporal stability of cell 
concentration. A relatively high throughput (~8000 cells/min) with a 30-fold dilution ratio of whole blood can 
be tested for as long as 1 h to examine sufficient numbers of cells, and the subclass cell concentration keeps 
constant. To improve the identification accuracy, multi-frame “in-flow” imaging was used to track the cell 
motion trails with multi-angle morphology analysis. This proof-of-concept was then validated with healthy 
whole blood samples and 75 cases of clinical patients with abnormal concentrations of red blood cells (RBCs), 
white blood cells (WBCs), and platelets (PLT). The average precision (AP) value of WBCs identification was 
improved from 0.8622 to 0.9934 using the multi-frame analysis method. And the high fitting degrees (>0.98) 
between our POCT device and the commercial clinical equipment indicated good agreement. This POCT device is 
user-friendly and cost-effective, making it a potential tool for diagnosing abnormal blood cell morphology or 
concentration in the field setting.   

1. Introduction 

The quantity of human blood cells, including the counts of red blood 
cells (RBCs), white blood cells (WBCs), and platelets (PLTs) has been 
proven to play important roles in the revelation of various biological 
activities and can serve as promising markers of physiological states 

(Beck, 2009). However, most commonly used clinical detection methods 
depend on elaborate equipment and professional operations, which are 
not available for some cases like bedside or physician’s office testing 
(Yang et al., 2019). The point-of-care testing (POCT) is now common in 
many near-patient and critical care settings. POCT method and system of 
blood cell count (BCC), including subpopulation recognition and 
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counting, is of great significance and strong demand for low-cost, rapid 
detection, and health monitoring in both resource-limited areas and 
developed countries. 

Owing to the unique advantages of microfluidic technology in sam-
ple utilization, cell analysis, and manipulation, as well as the great po-
tential in system miniaturization and integration, a lot of useful research 
on POCT for BCC based on the microfluidic method has been carried out 
in the past decades. For example, according to the physical or chemical 
character difference of blood cells, various methods based on electrical 
impedance (Wang et al., 2022; Zhang et al., 2019), specificity-based 
capture (Kanakasabapathy et al., 2017), fluorescence staining (Zhu 
et al., 2011), and microscopy imaging (Hernandez-Neuta et al., 2019; 
Ilyas et al., 2020; Kheireddine et al., 2019; Merazzo et al., 2021) were 
integrated onto microfluidic chips for BCC. Among them, the micro-
scopic imaging method stands out due to its capability of visualization of 
morphology and thus enhanced specificity (Yang et al., 2019). In 
particular, the widespread popularity of miniaturized high-performance 
imaging devices (smartphones, webcams. etc.) and the development of 
deep learning methods (Balsam et al., 2014; Wu et al., 2013; Zare 
Harofte et al., 2022; Zhu et al., 2013) have tremendously expanded the 
application potential. To facilitate the whole device integration, a lot of 
efforts have been made to miniaturize the microscope system for either 
single-lens or multiple-lens (Skandarajah et al., 2014), for example, the 
field of view (FOV), spatial resolution, and image contrast (Meng et al., 
2016) were analyzed using different lens types (Smith et al., 2011), focal 
length, numerical aperture (NA), image sensor performance (Skandar-
ajah et al., 2014), illumination patterns (Kanakasabapathy et al., 2019; 
Orth et al., 2018), and combined with distortions correction methods 
(Rivenson et al., 2018). Current studies are mostly using high-quality 
morphological images of stationary cells (such as peripheral blood 
smears), as well as the cells set in a fixed imaging region of the micro-
fluidic chip, and realized a variety of applications, including the analysis 
of stained and unstained blood smears, cell migration, sickle cell disease 
(Ilyas et al., 2020), megaloblastic anemia, myelofibrosis, thrombotic 
thrombocytopenic purpura, thalassemia (Chen et al., 2021), natural 
killer cells quantification and subpopulation (Ryan Zenhausern, 2022). 
Etc. However, due to the tradeoff between spatial resolution and FOV, 
these “stationary imaging” methods can hardly get a statistically suffi-
cient number of measured cells for BCC (Go et al., 2018). 

To improve the statistical analysis accuracy, two major directions are 
explored to increase the number of measured cells: enlarging the im-
aging area and “in-flow” imaging. An ultra-wide FOV could be achieved 
with lensless/lens-free imaging (Go et al., 2018; Lee and Yang, 2014; 
Roy et al., 2017) or by mounting the microscope on a motorized stage for 
scanning microscopy (Walzik et al., 2015) of a large number of cells. 
However, the complexity of lensless imaging reconstruction algorithms, 
as well as the ultra-high positioning accuracy requirement of scanning 
microscopy, hinder the wide application of miniaturized systems. On the 
other hand, “in-flow” imaging involves continuous imaging of the cells 
that flow through the sensing area, thereby increasing the number of 
measured cells. Nevertheless, the flowing cells could be imaged with 
clear morphological features at low translocate velocity, while the mo-
tion blur will become an issue as cell velocity increases (Balsam et al., 
2015). In this regard, “in-flow” imaging is usually supplemented with 
fluorescence staining, such as the identification of WBCs (Balsam et al., 
2014; Zhu et al., 2011), MCF7 (Tan et al., 2014), and rare cells (Balsam 
et al., 2015). Moreover, a syringe pump is typically required as a 
sample-driven power source. These additional labeling and equipment 
increased operating costs and inconvenience for POCT. As a result, there 
is a high desire for a yet-to-be-developed, fully integrated label-free 
“in-flow” imaging microscope. There are mainly two challenges in 
realizing the miniaturization of the “in-flow” imaging microscope for the 
POCT of BCC. First, the cell velocity is restricted due to the limited image 
sensor frame rate (usually 30–60 frames per second, fps). This could lead 
to cell sedimentation and deposition in the inlet (cavity, tube, and 
reservoir). The concentration of cells that flow through the imaging area 

is inconsistent with that of the original sample. Second, the liquid flow in 
the microchannel is laminar due to the low Reynolds number, which 
leads to a parabolic velocity field. Non-spherical cells (RBCs) rotate 
randomly under asymmetric shear force (Gu et al., 2014; Jagannadh 
et al., 2015; Yaginuma et al., 2012) and the morphological images at 
some special tilt angles are similar to those of other subpopulations in 
some extent. The traditional recognition method based on a single-frame 
morphological image could hardly be accurate. 

In this paper, we focused on these two challenges and explored a 
novel fully-integrated smartphone-based label-free POCT method and 
system of BCC, with enhanced recognition and counting precision by 
using single-cell rotation and multi-frame morphology analysis. The 
integrated system is assembled based on the principle of a single-lens 
microscope with a smartphone. A miniaturized magnetic stirring 
model is introduced to avoid the cell concentration variation over time 
caused by sedimentation. The rotation of RBCs is realized with a 
shrinkage-expansion structure, where the liquid velocity field is regu-
lated to enlarge the asymmetry of shear force acting on the cells. The 
shrinkage-expansion region is also taken as the imaging area, and the 
cell motion trails are tracked with multi-angle morphology imaged. 
Eventually, the cells are recognized and classified based on multi-frame 
morphological images. Moreover, systematic simulation is carried out to 
validate the functional stability of microstructures at a wide range of 
flow rates (mean velocity of outlet Vo = 50, 100, 500, 1,000, 2000 μm/ 
s). The temporal consistency of cell concentration is experimentally 
verified with whole blood diluted in 1 × PBS at various ratios (1:30, 
1:40, 1:50, 1:200). The results indicate that the throughput is approxi-
mately 8000 cells/min, and the limit time that cell concentration re-
mains consistent is about 1 h. With the multi-frame analysis method, we 
improved the average precision (AP) of single-cell recognition from 
0.8622 to 0.9934. As for the clinical applications, we validate this 
approach with samples and identified all the cell concentration abnor-
malities (RBC 18 cases, WBC 22 cases, PLT 35 cases). A good agreement 
(R2 > 0.98) was observed between our POCT device and the commercial 
clinical equipment, validating the potential application of our device for 
diagnosing abnormal blood cell morphology or concentration in the 
field setting. 

2. Materials and methods 

2.1. Microfluidic chip fabrication 

The microfluidic chip consists of a sample reservoir, a microchannel, 
a waste reservoir, and a metallic capillary. The sample reservoir was 
made of polymethyl methacrylate (PMMA) with a capacity of 300 μL. 
The microchannel and waste reservoir were made of poly-
dimethylsiloxane (PDMS) by casting onto the SU8 casting mold. It 
consists of two layers with different thicknesses: the microchannel with 
~20 μm, and the waste reservoir with 2 mm. The casting mold of the 
microchannel was fabricated by a standard lithography (SU8-2025, 
Microchem) process on a 4-in. Silicon wafer. The PDMS replica was 
permanently bonded to the cover glass (thickness ~ 0.5 mm) through 
oxygen plasma treatment. A pair of aligning marks were fabricated on 
both the PDMS replica and cover glass to ensure that the imaging region 
is in the center of the chip. The sample reservoir was assembled into the 
inlet of the PDMS replica, and the metallic capillary was inserted into the 
waste reservoir. After fabrication and assembly, the microfluidic chip 
was sealed with 1% BSA (Thermo Scientific™) for 30 min to avoid non- 
specific adsorption. 

2.2. Blood samples 

This study was approved by the Institutional Ethical Review Board of 
the First Affiliated Hospital of Zhengzhou University (Zhengzhou, 
China). All methods were performed following ethical guidelines and 
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regulations. 85 peripheral whole blood samples were collected from 
patients with abnormal concentrations of RBC, WBC, and PLT, and 5 
samples were provided by healthy donors undergoing physical exami-
nation in the First Affiliated Hospital of Zhengzhou University. For the 
validation of cell concentration temporal stability, 10 μL of healthy 
blood was diluted in 290 μL, 390 μL, 490 μL, and 1990 μL 1 × PBS, to 
prepare blood cell suspension with dilution rates (blood: PBS) of 30-fold, 
40-fold, 50-fold, and 200-fold, respectively. As for the analysis of patient 
blood samples, 3 μL of blood was transferred into the sample reservoir 
through a well-designed capillary, where 147 μL of 1 × PBS and a micro 
stirring bar were pre-loaded. 

2.3. Testing protocol 

The 3 μL of finger-prick blood was collected using a homemade 
capillary tube and transferred into the sample reservoir. The quantita-
tive tube is integrated with a 20 μL disposable glass capillary tube and a 
0.2 mL disposable plastic transfer pipette. The inner diameter of the 
capillary tube is about 0.68 mm. Therefore, 3 μL of a blood sample could 
be quantitatively collected due to capillary force with the tube cut to a 
fixed length of 8.3 mm. After the sample is collected, plug the reserved 
opening with the fingers and press the top of the plastic transfer pipette, 
the blood could be transferred into the sample reservoir, where 147 μL of 
1 × PBS and a micro stirring bar were pre-loaded. The microfluidic chip 
was inserted into the IOM and then pushed along the guideway into the 
analyzer. The IOM could be locked by the spring clasp and remain stable. 
The smartphone was set on the analyzer with the imaging camera 
aligned with the imaging area on the chip. The IMO could be released by 
pushing it again when the testing was finished. Finally, the cells are 
recognized and classified based on the YOLO-V4 model. 

2.4. YOLO-V4 model related data sets and morphology analysis 

A neural network of YOLO-V4 was used to make a preliminary 
evaluation of the separability of the images and the actual decision of 
the cell types (WBC, RBC, PLT), respectively. About 2900 RBC images, 
2350 WBCs images, and 2350 PLTs images were collected and divided as 
the training set, the validation set, and the test set. The total set contains 
4000 training images (2000 RBCs, 1000 WBCs, and 1000 PLTs), 1100 
validation images (400 RBCs, 350 WBCs, and 350 PLTs), and 2500 test 

images (500 RBCs, 1000 WBCs, and 1000 PLTs, more specifically, the 
ground truth of these 3 types of cells in the test set images were 1,000, 
1,000, and 1,000, respectively). (See Supplementary for detailed 
information). 

3. Results and discussion 

3.1. Working principle 

The working principle of the label-free “in-flow” imaging microscope 
is shown in Fig. 1A. The system is mainly integrated based on the single- 
lens microscopy imaging principle. The schematic of the smartphone- 
based single-lens microscope is shown in Fig. S1, with the optical 
magnification k = f1/f0 ≈ 45.45. A microfluidic chip is used to regulate 
the spatial distribution and flow patterns of single cells (Fig. 1B). The 
initial 3D random distribution (Fig. 1B (i)) of blood cells could be single- 
layer arranged (Fig. 1B (ii)) by limiting the height of the microchannel to 
be similar to the cell size. And then, the cells are arranged in a straight- 
line pattern (Fig. 1B (iii)), to reduce aggregation and interaction with 
adjacent cells in the rotation region. A series of morphological images 
are captured as a single-cell flows through the imaging region with 
rotation (Fig. 1B (iv)). After that, the images are uploaded and the 
motion trajectories (Fig. 1C (i)) of single cells are tracked, as well as the 
morphological images (Fig. 1C (ii)) of successive frames. The single cell 
could be imaged at various angles while rotating, and the multi-angle 
morphological images are used for subpopulation recognition. Finally, 
the identification results are counted (Fig. 1C (iii)) and the statistical 
results are returned. The misidentification will be markedly decreased in 
comparison to the traditional single-frame or “stationary” identification 
method. In the end, the statistic counting results are obtained with 
improved accuracy. 

3.2. Microfluidic chip design and instrumentation 

In this work, the microfluidic chip was assembled with a sample 
reservoir, a waste reservoir, and a metallic capillary (Fig. 2A). The chip 
was designed with two major functions: cell arrangement in line-pattern 
and rotation. An interlaced pinching structure was applied to implement 
a line-patterned arrangement, making the cells pinched in succession by 
the protruding blocks at the top and bottom. And the rotation was 

Fig. 1. (A) The principle of smartphone-based “in- 
flow” imaging for an improved blood cell count. (B) 
Schematic of cells manipulation process. (i) Cells in 
the initial state are randomly distributed in 3 di-
mensions; (ii) Cells are focused into a plane with 
limited height; (iii) Cells are arranged in a straight- 
line pattern; (iv) Single-cell flows through with 
rotation. This region is also taken as an imaging area 
to capture a series of morphological images. (C) 
Detection flow of multi-frame analysis of a single-cell. 
The images are uploaded and analyzed, and then the 
results are returned to the smartphone. (i) Trajectory 
tracking of a single-cell; (ii) Multi-frame analysis for 
reducing false identification; (iii) Count and perform 
statical analysis.   
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realized with a shrinkage-expansion structure. A pair of symmetric 
shrinkage-expansion structures were used to increase analysis 
throughput. 

The fully integrated portable platform was designed in SolidWorks 
and prototyped by a 3D printer. The device has a small footprint of 15.5 
× 8 × 5 cm3 and consists of optical, electromechanical, and image 
subsystems. A detailed bill of material to replicate our device is listed in 
Supplementary Table S1. 

3.2.1. Optical subsystem 
Based on the single-lens microscopy imaging principle, the optical 

subsystem was assembled with an aspherical lens (C392TME-A, f0 =

2.75 mm, Thorlabs), a LED (λ = 510–530 nm, divergence angle = 120◦, 
Jlotu) light source, and a smartphone (P30 pro, f1 = 125 mm, Huawei). 
There is a relatively obvious difference between cells and water in the 
absorbance at the green spectral waveband, and the green light has the 
highest transmittance with the Bayer filter of RGGB array architecture. 
Therefore, we used the green LED to acquire images with high contrast 
and spatial resolution. The LED and aspherical lens were mounted on a 
3D printed chip clamp, to maintain the distances between the LED, 
aspherical lens, and microfluidic chip constant. Especially, the lens was 
equipped with a lens sleeve for longitudinal position adjustment. The 
assembled optical subsystem was termed the integrated optical module 
(IOM) (Fig. 2B). 

3.2.2. Electromechanical subsystem 
The entire system was powered by a rechargeable 3.3 V portable 

Lithium-ion battery and could last for >30 h before recharging. Three 
customized printed circuit boards (PCBs) with multi-voltage converters 
were used for driving the micro vacuum pump, the magnetic stirring DC 
motor, and the LED. The DC motor aligned with the center of the sample 
reservoir was embedded in the IOM and electrically connected by the 
spring contact pins. The micro-stirring bar pre-loaded in the sample 
reservoir moves in a circle with the rotation of the magnets assembled on 
the DC motor (Fig. 2B). Finally, the IOM was integrated with a guideway 
and housed inside a 3D-printed base case. As for the sample driving, the 
vacuum pump was connected to a housed conversion, which was sealed 

by a replaceable headspace crimp cap and PTFE septa. The sub- 
atmospheric pressure could be regulated by adjusting the supply 
voltage of the vacuum pump, to verify the cell flow velocity. The IMO 
could be pushed into the base case along the guideway, and be locked 
with the spring clap. Meanwhile, the septa could be pricked by the 
metallic capillary of the microfluidic chip, and then the LED, magnetic 
stirrer, and pump were powered. 

3.2.3. Image subsystem 
The microfluidic chip can be observed by the assembled optical 

subsystem IOM. The microscopic images were acquired by the smart-
phone at 30 fps and transformed to grayscale. The gray image was 
preprocessed by a built-in algorithm with background noise removed 
and contrast-enhanced. A custom-built program was developed to track 
the trajectory of a single cell when it flowed through the imaging region. 
Meanwhile, the multi-angle morphology of single-cell in the multi-frame 
images was collected for recognition with YOLO-V4. 

The fully integrated POCT device of BCC was shown in Fig. 2C. The 
diagrams and microscopics of cell arrangement in line-pattern and 
rotation are listed in Fig. 2D (i - iv). Finally, the chip was fabricated and 
assembled into the fully integrated analyzer (Fig. 2E). And the four steps 
of the workflow are illustrated in Fig. 2F. With the integrated device and 
single-use microfluidic chip, the material cost is about 0.857 $/test 
(Supplementary Table S2). 

3.3. Simulation of cell rotation structures 

As is well known, it is very difficult to integrate complex and so-
phisticated sample pump systems into a portable device. We should 
make sure the microchannel structure designs of the microfluidic chip 
maintain stability, even if the pump pressure varies dramatically. We 
conducted a systematic simulation with COMSOL Multiphysics 5.6, to 
evaluate the stability and robustness. The flow field of laminar flow in 
the microchannel is axisymmetric, therefore, we simplified the simula-
tion with a 2D model. The average liquid velocity at the outlet Vo was 
used to represent the flow rate. The non-spherical RBCs were modeled as 
rectangles (2 μm × 8 μm). (See Supplementary and Fig. S2 for the key 

Fig. 2. (A) Structure chart of the integrated micro-
fluidic chip. The chip consists of a sample reservoir, a 
microchannel, a waste reservoir, and a metallic 
capillary. (B) Exploded view of the IOM. (C) Exploded 
view of the fully integrated POCT device of BCC. (D) 
i) - ii) Schematic of an interlaced pinching structure 
for line-patterned arrangement and shrinkage- 
expansion structure for the rotation. iii) Microscopic 
of the interlaced pinching structure. A total length of 
5 cm was used to handle high-cell-concentration 
samples. iv) Microscopic of shrinkage-expansion 
structure. The dimensions of the shrinkage area are 
40 μm (length) × 30 μm (width), and these of 
expansion area is 60 μm (width) × 90 μm (length). 
The scale bar is 100 μm. (E) Image of a microfluidic 
chip and the “in-flow” imaging POCT device. The 
footprint is 15.5 × 8 × 5 cm3. (F) Overall workflow. 
Step 1: Collect blood in a tube. Step 2: Transfer the 
collected blood to the sample reservoir on the chip. 
Step 3: Insert the chip into IOM and push IOM into 
the analyzer. Step 4: Align the smartphone camera 
with sing-lens and record the videos of the cell flow.   
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parameters of the simulation). 
Assuming that, RBCs are randomly distributed on the sample plane in 

the spacious open area, where the width is 60 μm. A cell-arrangement 
microchannel with a total length of 500 μm was involved in the simu-
lation. Simulations were carried out at different flow rates, Vo = 50, 100, 
500, 1,000, 2000 μm/s respectively. Fig. 3A shows the steady state of 
velocity field distribution and the arrangement results when Vo is 50 and 
2000 μm/s (See Supplementary Fig. S3 and Movie 1 

Supplementary data related to this article can be found online at htt 
ps://doi.org/10.1016/j.bios.2022.115012 

For complete simulation results at different flow rates). It is clear 
that, as the laminar flow was alternately regulated, cells in liquid were 
gradually transferred to the central axis of the microchannel. Moreover, 
compared to the initial 2D distribution, the distance between line- 
patterned cells was enlarged due to the velocity difference induced by 
the positional deviation. As illustrated, the first RBC reached the outlet 
at 11.3 s and the distance between the first and last RBCs was about 316 
μm when Vo was 50 μm/s, while the distance was enlarged to 319 μm at 
0.294 s when Vo was 2000 μm/s. 

As for the cell rotation, We designed the microstructure mainly based 
on two factors: 1) Try to make the best use of the area in the field of view, 
to increase the detection throughput; 2) To meet the demand that the 
velocity of the POCT system could hardly remain stable, a simple 
structure is needed to achieve stable performance. We analyzed the in-
fluence of the width ratios between shrinkage/expansion regions and 
the radius of corner chamfers on laminar flow distribution (See Sup-
plementary and Fig. S4 for detailed information). And then, we analyzed 
the steady state of velocity field distribution (Fig. 3B), the flow trajec-
tories and rotation postures of single-cell (Fig. 3C and D), and the con-
sistency of trajectories (Fig. 3E) (See Supplementary Fig. S5 and Movie 
2. 

Supplementary data related to this article can be found online at htt 
ps://doi.org/10.1016/j.bios.2022.115012 

For complete simulation results at different flow rates and initial 
positions). The single-cell rotation was realized using a shrinkage- 
expansion structure in this work (Fig. 3B). We set single cells with 

different pose positions and orientations at the entrance of the 
shrinkage-expansion structure and analyzed the rotation angles while 
cells flowed through. Three RBCs are positioned at the upper, middle, 
and lower of the entrance with tile angles of 45◦, 0◦, and 315◦, respec-
tively. With the flow rate varying from 50 to 2000 μm/s, the normalized 
flow field maintains much the same, resulting in the rotation of all the 
RBCs (Fig. 3C and D). Moreover, the rotation patterns are much different 
due to the asymmetric shear forces resulting from the absolute value of 
velocity contrast, the rotations of upper and lower RBCs are much more 
drastic than those of the middle RBCs. On the other hand, the centroids 
of cell trajectories were manually tracked (Fig. 3E). As illustrated, due to 
the constant flow field distribution, RBCs with the same pose positions 
and orientations followed the defined trajectories at different flow rates 
(50, 100, 500, 1,000, 2000 μm/s). The consistency and certainty of 
motion trajectories indicated the feasibility of cell tracking in the 
following processing, even using high cell concentration samples. 

3.4. Single-cell rotation and trajectory tracking 

Based on the above analysis and simulation, experiments using 
healthy blood samples for evaluating single-cell rotation and trajectory 
tracking were carried out. The whole blood sample was diluted in 1 ×
PBS with a dilution rate of 50-fold. 

Fig. 4A shows a single frame of the videos recorded by a smartphone. 
The FOV is approximately 487.5 × 225.5 μm2, and the physical size of 
the imaged object corresponding to a single pixel is about 0.21 × 0.21 
μm2. An area that contained a shrinkage-expansion structure was 
selected as identify region for cell trajectory tracking and multi-frame 
morphology imaging. We first analyzed the motion trajectories of a 
mass of single cells that flowed through within 20 min to evaluate the 
definiteness of single-cell trajectories, and the scattering plot of cell lo-
cations was drawn (Fig. 4B). As illustrated, cells are most likely to 
appear at the intermediate locations, where the flow rate is relatively 
high. Particularly, the scattering plot is consistent with the steady-state 
simulation result of velocity field distribution in Fig. 3B, which means 
that cells transfer through the imaging area in laminar flow and the 

Fig. 3. Simulation results of straight-line pattern 
arrangement and rotation structures. (A) Steady-state 
velocity field distribution and the straight-line 
pattern arrangement results when Vo is 50 and 
2000 μm/s. (B) The steady state of velocity field 
distribution of the shrinkage-expansion structure. 
(C)–(D) The trajectory and rotation pose of RBCs 
entering the microstructure from different positions 
at different tilt angles. The tile angles of the upper, 
middle, and lower RBCs are 45◦, 0◦, and 315◦, 
respectively. The Vo in (C) is 50 μm/s and 2000 μm/s 
in (D). (E) The trajectory synthesis results when Vo is 
50, 100, 500, 1,000, and 2000 μm/s, respectively. 
The initial positions and tilt angles of RBCs are the 
same as (C) and (D).   

W. Zhang et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.bios.2022.115012
https://doi.org/10.1016/j.bios.2022.115012
https://doi.org/10.1016/j.bios.2022.115012
https://doi.org/10.1016/j.bios.2022.115012


Biosensors and Bioelectronics 223 (2023) 115012

6

trajectories are definite. Moreover, the single cell could be accurately 
tracked according to the location, even if the sequence of adjacent cells 
has changed. 

The typical morphological images of the blood cell subpopulation 
were shown in Fig. 4C. The WBC (circled in blue) appears to be solid and 
highlighted with irregular dark boundaries. The PLT (circled in red) 
exhibits a sphere of a smaller size. Meanwhile, the gray values of PLTs 
are related to the longitudinal position in the microchannel. The RBCs 
(not circled) show visible morphology changes when rotating in the 
channel flow, including double circular rings, dumbbells, and other 
irregular forms. Furthermore, the complete trajectory of a single cell was 
illustrated, as well as the multi-angle morphology (Fig. 4D). With 
analysis of numbers rotation images of RBCs, various morphologies 
could be acquired (See Supplementary Movie 3. 

Supplementary data related to this article can be found online at htt 
ps://doi.org/10.1016/j.bios.2022.115012 

Fig. 4E shows 3 examples of typical RBC rotation image sequences. It 
is clear that the morphologies of RBCs are much more complex and 
different, meaning that it is difficult to identify the cell as an RBC or a 
WBC when it is orientated at some special degrees, such as in the images 
marked with blue squares. Based on the analysis of RBC morphology, we 
found that the double-circular-ring pattern is the most representative 
feature of RBCs and could be used as the criteria for identification. 

Except for the situation of single-cell transporting, there is still the 
opportunity that multi-cells to pass through together as a cluster (the 
RBC cluster, WBCs included in the RBC cluster, and PLTs included in the 
RBC cluster) (Fig. 4F–H and Supplementary Movie 4. 

Supplementary data related to this article can be found online at htt 
ps://doi.org/10.1016/j.bios.2022.115012 

Due to the trajectory deviation caused by interaction between adja-
cent cells and the morphological change introduced by rotation, it is 
difficult to track every single cell within a cluster. Worse still, the 
probability of cell cluster occurrence and the overlap rate of cells in-
creases with the decrease in dilution ratio for blood samples. In this 
work, we mainly took the cell cluster as one unit and the RBCs as 
background cells. The number of cells within the cell cluster could be 

easily counted, and then, we just need to verify the existence or number 
of WBCs and PLTs within the cluster. Fig. 4F shows an example of the 
RBC cluster, just as the 4 frames illustrated, there are 6 target cells in the 
RBC cluster, and no “suspected WBCs or PLTs” appear in the consecutive 
frames. Therefore, we could exclude the presence of WBCs or PLTs and 
identify all cells as RBCs. On the other hand, the WBC is approximately 
spherical, while the PLT is relatively small, and the morphologies of 
WBC and PLT remain stable when flowing through the microchannel. As 
for the example of one WBC included within the cell cluster (Fig. 4G), 
the cells are heavily overlapped in frames 1 and 3, and the number and 
type cannot be identified. However, with the cluster flowing through, 
the distances between the cells are enlarged. Meanwhile, there is one 
“suspected WBC” in each frame (frames 1, 3, 5, 8, 11). Therefore, the cell 
cluster could be identified as 1 WBC and 5 RBCs. Similarly, the cell 
cluster includes one PLT (Fig. 4H) could be easily distinguished as 1 PLT 
and 4 RBCs, even though the PLT is missing in frame 1 resulting from cell 
overlap. In summary, the cell posture and relative position varied due to 
cell cluster flow, and the overlap between multiple cells could be 
effectively improved, and the accuracy of identification and counting is 
enhanced in turn. 

We checked all the videos acquired with blood samples at different 
dilution ratios and found that the clusters are incidental, even for the 
RBCs (the highest subclass content). In our opinion, the effective sup-
pression of cell clusters mainly benefited from our whole in-flow pro-
cess, especially the appropriate dilution and well-designed single-cell 
arrangement structure equipped with a micro-magnetic stirring. 

3.5. Performance evaluation with the healthy sample 

After validating all of the subsystems and system integration, we 
tested the performance of the “in-flow” imaging analyzer. The perfor-
mance of the cell recognition and counting algorithm, the effectiveness 
of the multi-frame analysis method, and the cell concentration temporal 
stability were evaluated respectively. Here, healthy blood samples were 
used. 

Fig. 4. (A) A single frame of the videos recorded by a 
smartphone. The FOV is approximately 487.5 ×
225.5 μm2. The scale bar is 20 μm. The region in the 
white dashed box is selected as identify region. (B) A 
scattered plot of locations that a mass of single cells 
flowed through within 20 min. (C) Typical morpho-
logical images of the WBC (blue circle), PLT (red 
circle), and RBCs (the rest cells). (D) The complete 
trajectory and multi-angle morphology of a single 
RBC at a low flow rate. Images (frames 1, 5, 11, and 
16) with distinct morphological differences are 
marked with green squares. (E) 3 examples of typical 
RBC rotation image sequences. The images marked 
with blue squares are more likely to be identified as 
WBCs. (F) The trajectory tracking and identification 
of an RBC cluster with discontinuous frames. (G) The 
trajectory tracking and identification of an RBC 
cluster including one WBC with discontinuous frames. 
(H) The trajectory tracking and identification of an 
RBC cluster including one PLT with discontinuous 
frames. The scale bar in (C), and (D–H) is 10 μm.   
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3.5.1. Cell recognition and counting 
The learning history from the model training during iterations is 

shown in Fig. 5A. As illustrated, when the training iterations reach about 
10,000 iterations, the final loss value is stable at approximately 0.55 and 
the final mean Average Precision (mAP) value of the validation set 
reaches 98.48%, which indicates that the training converges as expected 
and works well. The statistical confusion matrix of the test set is shown 
in Fig. 5B. There are 12 RBCs misrecognized as WBCs, and 9 WBCs 
misrecognized as RBCs. Moreover, 0.3% of RBCs and 1.6% of PLTs are 
missed due to the overlap or agglomeration of adjacent cells. Fig. 5C 
shows the Precision-Recall (PR) curves of the test set. The average 
precision (APs) of all three types of cells reach 0.9819 or higher, which 
indicates a very high detection accuracy. (See Supplementary for 
detailed information). 

3.5.2. Multi-frame analysis 
To quantitatively compare the single-frame-based detection and 

multi-frame analysis method in terms of recognition effect, here we took 
WBCs as an example and analyzed the consecutive 5 frame images of 
500 WBCs. The WBCs are tracked with the algorithm we propose before 
(Du et al., 2022). 

For single-frame analysis, one of the 5 consecutive frames of every 
single cell (500 WBCs and 500 RBCs) is selected randomly as single- 
frame images. We calculated the AP values of the 1000 random im-
ages, and plotted the statistical distribution (violin plot) on the left side 
of Fig. 5D. As shown, the AP values range from 0.7837 to 0.9807 with a 
mean value (Mean) of 0.8622 and a standard deviation (σ) of 0.0449. 

The interval of numerical dispersion (Mean ± σ, 0.8173–0.9071) is 
marked with blue dotted lines. 

With the multi-frame analysis method, the number of frames that a 
cell was identified as WBC was recorded as n (1 ≤ n ≤ 5). N values were 
used as the threshold to make a secondary classification decision on the 
target cells. Based on the obtained detection results, we calculated these 
corresponding AP values, as shown (red dots) on the right side of 
Fig. 5D. The AP of multi-frame analysis is significantly improved when n 
= 2, 3, 4, 5, and reaches the highest value of 0.9934 when n = 3. As 
illustrated in Fig. 5D, the misidentification caused by RBC rotation is 
greatly reduced, while n values increased from 1 to 3, resulting in 
increasing AP values. However, as the n value increases, the cells are not 
allowed to be missed at each frame, which is reflected in the decline of 
recall and AP values. Therefore, the AP values appear to earlier increase 
and later decrease trend. 

3.5.3. Cell concentration temporal stability 
During the cell flow testing, limited by the flow rate, cell sedimen-

tation and deposition in the inlet would cause the concentration 
inconsistent between the tested sample and the original sample. We 
integrated a mini magnetic stirring structure in the IOM, to disturb the 
monodisperse cell in the reservoir to prevent cell sedimentation. The 
length of the stirrer is about 5 mm, and the rotation speed is 30 rpm. 
Healthy blood samples with different dilution rates of 200-fold, 50-fold, 
40-fold, and 30-fold were tested. Fig. 5E shows the detected number of 
RBCs within 20 min. As illustrated, there is a good linear relationship 
between RBC counts and the test duration. Meanwhile, a lower dilution 

Fig. 5. (A) Training and validation process of the 
YOLO-V4 model. When the training iterations 
reached about 10,000 iterations, the model gradually 
saturated with a stable AvgLoss value of 0.55 and a 
mAP value of 98.48%. (B) Confusion matrix of the 
test set. The false identification of RBCs, WBCs, and 
PLTs is 1.4%, 1.0%, and 0.2% respectively. And the 
probability of RBCs and PLTs loss is 0.3% and 1.6%. 
(C) PR curves of the test set. The area under the PR 
curve is AP, which represents the average detection 
accuracy. (D) AP distribution of WBC identification 
with random single-frame and multiple-frame 
methods. The violin plot is the distribution of the 
single-frame analysis method, where, the AP value 
mainly ranges from 0.8173 to 0.9071 (Mean ± σ). 
With multi-frame analysis, the AP (red dots) is 
significantly improved and reaches the largest value 
of 0.9934 when n = 3. (E) The RBC counts within 20 
min at a different dilution rate of 30-fold, 40-fold, 50- 
fold, and 200-fold, respectively. (E) The cell counts 
ratios between PLTs, WBCs, and RBCs at a dilution 
rate of 30-fold within 20 min. The coefficients (PLT vs 
RBC, 0.9944; WBC vs RBC, 0.9815) indicate good 
temporal stability of cell concentrations.   
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rate indicates higher throughput and a higher probability of cell over-
lapping and clustering. Finally, we found that a sample diluted at 30-fold 
with a throughput of about 8000 cells/min is the limitation that could be 
handled, and the limit time that cell concentration remains consistent is 
about 1 h. After that, the relative proportionality relation between 
WBCs, PLTs, and RBCs are analyzed (Fig. 5F). The coefficients (WBCs vs 
RBCs, 0.9815; PLTs vs RBCs, 0.9944) indicate a good agreement be-
tween the cell concentrations of each subclass. 

3.6. Clinical blood sample test 

Based on the above analysis and performance evaluation, we tested 
clinical samples to best evaluate the performance of the “in-flow imag-
ing” analyzer. For the special touch, to avoid the detection error caused 
by the inaccurate liquid volume quantification, we characterized the cell 
concentration with count ratios (RR/W, RP/W) between cell subclasses, 
rather than the number of cells within the unit volume of liquid. Here, 
RR/W is the ratio between RBC count and WBC count, and RR/W is the 
ratio between PLT count and WBC count. For the same reason, in this 
work, we just analyzed the abnormal concentration of a single subclass. 
The BCC assay performed the initial diagnosis with commercial bench-
top device LH750 (Beckman Coulter, USA) as the reference method to 
benchmark our analyzer. All the clinical blood samples were tested with 
dilution rates of 50-fold. 

Firstly, 10 clinical samples (No: S1 - S10) were tested in the double- 

blind trial, and the results of both analyzers are shown in Fig. 6A. 
Fig. 6B shows the relative errors (ER/W, EP/W) between the “in-flow 
imaging” analyzer and LH750, where, ER/W =

RR/W(in flow)− RR/W(LH750)
RR/W(LH750) ×

100%; EP/W =
RP/W(in flow)− RP/W(LH750)

RP/W(LH750) × 100%. The results of “in-flow” 

imaging agree well with these of LH750, even if RR/W (LH750) ranges 
from 207.55 to 1273.63 and RP/W (LH750) varies from 1.99 to 56.72. 
Most of the relative errors ER/W and EP/W distribute in the region of 
(− 10%, 10%). The detailed values of RR/W, RP/W, ER/W, and EP/W are 
listed in Table S3. Based on the above results, we could conclude that the 
relative concentration ratio between RBC, PLT, and WBC in a wide 
fluctuating region could be detected accurately. 

And then, to further evaluate the diagnostic sensitivity and speci-
ficity of the device, a scaled-up test of 75 clinical samples (RBC con-
centration abnormity, 18 cases; WBC concentration abnormity, 22 cases; 
PLT concentration abnormity, 35 cases) is carried out. The concentra-
tion abnormal of RBC and WBC could be characterized by RR/W in a 
union, therefore, the results of 40 cases test including RBC and WBC 
abnormity are drawn indiscriminately in Fig. 6C. The RR/W of “in-flow” 
imaging varies from 113.68 to 3007.94. A degree of fitting (R2 =

0.9848) indicates a good agreement between the “in-flow” imaging 
device and clinical methods. The results of PLT concentration abnormity 
are shown in Fig. 6D. RP/W of “in-flow” imaging ranges from 1.70 to 
244.98 with a coefficient of 0.9912 compared to LH750. Finally, the 
detection errors were statistically analyzed and shown in form of violin 

Fig. 6. The results of clinical samples. The cell concentration is characterized by count ratios (RR/W, RP/W) between cell subclasses. (A) The results of 10 samples in 
the double-blind trial. RR/W ranges from 207.55 to 1273.63, and the axis is plotted in logarithmic form. The results of “in-flow” imaging are close to these of LH750, 
and the relative errors (ER/W, EP/W) are scatted in (B). All the errors distribute in the region of (− 10%, 10%), indicating a good agreement between “in-flow” imaging 
and LH750. The detailed data of (A) and (B) are listed in Table S3. (C) The comparison results of RR/W with the “in-flow” imaging method and LH750. Totally, 40 
cases of patient samples with RBC or WBC concentration abnormal are tested. The degree of fitting is 0.9848. (D) The comparison results of RP/W with the “in-flow” 
imaging method and LH750. Finally, 35 cases of patient samples with PLT concentration abnormal are tested with a degree of fitting of 0.9912. The results where RP/ 

W < 20 are enlarged in the embedded box. The error distribution of ER/W and EP/W are shown in (E) with violin plots. The small Mean values (− 0.66, − 1.72) and 
standard deviations (9.59%, 8.84%) certify the sensitivity and specificity of the “in-flow” imaging method. 
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plots in Fig. 6E. The ER/W ranges from − 19.83% to 17.09% with a mean 
value of − 0.66%, and a standard deviation σ 9.59%. The EP/W ranges 
from − 16.13% to 15.78% with a mean value of − 1.72%, and a standard 
deviation σ 8.84%. Eventually, based on the results of LH750, the con-
centration abnormity of all samples is accurately identified with an “in- 
flow” imaging analyzer. 

4. Conclusion 

In summary, we demonstrated an “in-flow” imaging method with cell 
rotation and multi-frame analysis for improved identification and 
counting accuracy of BCC, and present a fully integrated POCT device. 
With the integration of mini magnetic stirring, we can handle whole 
blood samples at a dilution ratio of 30-fold for as long as 1 h with a 
throughput of about 8000 cells/min, without subclass cell concentration 
variation. Moreover, the misrecognition due to rotation during cell flow 
is effectively inhibited with multi-frame analysis. The AP value of WBCs 
identification is improved from 0.8622 to 0.9934. We have successfully 
demonstrated this concept by testing healthy and 75 cases of clinical 
whole blood samples with cell concentration abnormalities. The iden-
tification and count results agree well (RR/W, R2 = 0.9848; RP/W, R2 =

0.9912) with these of routine clinical BCC equipment LH750. With these 
efforts, we anticipate that the portable, easy-to-use device could enable 
individuals to perform highly accurate BCC testing at home. 
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