Publications
Publications

Molecular Mechanisms Underlying Microtubule Growth Dynamics. Cleary, J. M.; Hancock, W. O.  Curr. Biol. 2021, 31 (10), R560–R573.

Trim9 and Klp61F promote polymerization of new dendritic microtubules along parallel microtubules.  Feng, C.; Cleary, J. M.; Kothe, G. O.; Stone, M. C.; Weiner, A. T.; Hertzler, J. I.; Hancock, W. O.; Rolls, M. M. J. Cell Sci. 2021, 134 (11).

Integrated multi-wavelength microscope combining TIRFM and IRM modalities for imaging cellulases and other processive enzymes. Nong, D.; Haviland, Z. K.; Kuntz, K. V.; Tien, M.; Anderson, C. T.; Hancock, W. O.  Biomed. Opt. Express 2021, 12 (6), 3253.

A Kinetic Dissection of the Fast and Superprocessive Kinesin-3 KIF1A Reveals a Predominant One-Head-Bound State during Its Chemomechanical Cycle. Zaniewski, T. M.; Gicking, A. M.; Fricks, J.; Hancock, W. O.  J. Biol. Chem. 2020, 295 (52), 17889–17903.

Dynactin p150 Promotes Processive Motility of DDB Complexes by Minimizing Diffusional Behavior of Dynein. Feng, Q.; Gicking, A.; Hancock, W. O. Mol. Biol. of the Cell. 2020, 31 (8). https://doi.org/10.1091/mbc.E19-09-0495

Three Beads Are Better Than One. Howard, J.; Hancock, W. O. Biophys. J. 2020, 118 (1), 1–3. https://doi.org/10.1016/j.bpj.2019.12.001.

Microtubule Binding Kinetics of Membrane-Bound Kinesin-1 Predicts High Motor Copy Numbers on Intracellular Cargo. Jiang, R.; Vandal, S.; Park, S.; Majd, S.; Tüzel, E.; Hancock, W. OProc. Natl. Acad. Sci. 2019, 116 (52), 26564–26570. https://doi.org/10.1073/pnas.1916204116.

Insights into Kinesin-1 Stepping from Simulations and Tracking of Gold Nanoparticle-Labeled Motors. Mickolajczyk, K. J.; Cook, A. S. I.; Jevtha, J. P.; Fricks, J.; Hancock, W. OBiophys. J. 2019, 117 (2), 331–345. https://doi.org/10.1016/j.bpj.2019.06.010.

Kinesin-5 Promotes Microtubule Nucleation and Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin. Chen, G. Y.; Cleary, J. M.; Asenjo, A. B.; Chen, Y.; Mascaro, J. A.; Arginteanu, D. F. J.; Sosa, H.; Hancock, W. O. Curr. Biol. 2019, 29 (14), 2259-2269.e4. https://doi.org/10.1016/j.cub.2019.05.075.

Load-dependent detachment kinetics plays a key role in bidirectional cargo transport by kinesin and dynein. Ohashi, K. G.; Han, L.; Mentley, B.; Wang, J.; Fricks, J.; Hancock, W. O.  Traffic 2019, 20 (4), 284–294. https://doi.org/10.1111/tra.12639.

The Orphan Kinesin PAKRP2 Achieves Processive Motility via a Noncanonical Stepping Mechanism. Gicking, A. M.; Wang, P.; Liu, C.; Mickolajczyk, K. J.; Guo, L.; Hancock, W. O.; Qiu, W.  Biophys. J. 2019, 116 (7), 1270–1281. https://doi.org/10.1016/j.bpj.2019.02.019.

Direct Observation of Individual Tubulin Dimers Binding to Growing Microtubules. Mickolajczyk, K. J.; Geyer, E. A.; Kim, T.; Rice, L. M.; Hancock, W. O. Proc. Natl. Acad. Sci. 2019, 201815823. https://doi.org/10.1073/pnas.1815823116.

Motor Dynamics Underlying Cargo Transport by Pairs of Kinesin-1 and Kinesin-3 Motors. Arpağ, G.; Norris, S. R.; Mousavi, S. I.; Soppina, V.; Verhey, K. J.; Hancock, W. O.; Tüzel, E. Biophys. J. 2019, 116 (6), 1115–1126. https://doi.org/10.1016/j.bpj.2019.01.036.

High-Resolution Single-Molecule Kinesin Assays at kHz Frame Rates. Mickolajczyk KJ, Hancock WO. Methods Mol Biol. 2018;1805:123-138. doi: 10.1007/978-1-4939-8556-2_7

The S6 Gate in Regulatory Kv6 Subunits Restricts Heteromeric K+ Channel Stoichiometry. Pisupati, A.; Mickolajczyk, K. J.; Horton, W.; van Rossum, D. B.; Anishkin, A.; Chintapalli, S. V.; Li, X.; Chu-Luo, J.; Busey, G.; Hancock, W. O.; et al.  J. Gen. Physiol. 2018, 150 (12), 1702–1721. https://doi.org/10.1085/jgp.201812121.

Mitotic kinesins in action: diffusive searching, directional switching, and ensemble coordination. Gicking AM, Qiu W, Hancock WO. Mol Biol Cell. 2018 May 15;29(10):1153-1156. doi: 10.1091/mbc.E17-10-0612.

Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport. Feng Q, Mickolajczyk KJ, Chen GY, Hancock WO. Biophys J. 2018 Jan 23;114(2):400-409. doi: 10.1016/j.bpj.2017.11.016.

Kinesin Processivity Is Determined by a Kinetic Race from a Vulnerable One-Head-Bound State. Mickolajczyk KJ, Hancock WO. Biophys J. 2017 Jun 20;112(12):2615-2623. doi: 10.1016/j.bpj.2017.05.007.

Crystal structure of Zen4 in the apo state reveals a missing conformation of kinesin. Guan R, Zhang L, Su QP, Mickolajczyk KJ, Chen GY, Hancock WO, Sun Y, Zhao Y, Chen Z. Nat Commun. 2017 Apr 10;8:14951. doi: 10.1038/ncomms14951

The axonal transport motor kinesin-2 navigates microtubule obstacles via protofilament switching. Hoeprich GJ, Mickolajczyk KJ, Nelson SR, Hancock WO, Berger CL. Traffic. 2017 May; 18(5):304-314. doi: 10.1111/tra.12478.

Eg5 Inhibitors Have Contrasting Effects on Microtubule Stability and Metaphase Spindle Integrity. Chen GY, Kang YJ, Gayek AS, Youyen W, Tüzel E, Ohi R, Hancock WO. ACS Chem Biol. 2017 Apr 21;12(4):1038-1046. doi: 10.1021/acschembio.6b01040.

Interferometric Scattering Microscopy for the Study of Molecular Motors. Andrecka J, Takagi Y, Mickolajczyk KJ, Lippert LG, Sellers JR, Hancock WO, Goldman YE, Kukura P. Methods Enzymol. 2016; 581:517-539. doi: 10.1016/bs.mie.2016.08.016.

Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel. Upadhyay A, Pisupati A, Jegla T, Crook M, Mickolajczyk KJ, Shorey M, Rohan LE, Billings KA, Rolls MM, Hancock WO, Hanna-Rose W. Nat Commun. 2016 Oct 12;7:13135. doi: 10.1038/ncomms13135.

The Kinesin-5 Chemomechanical Cycle Is Dominated by a Two-heads-bound State. Chen GY, Mickolajczyk KJ, Hancock WO. J Biol Chem. 2016 Sep 23;291(39):20283-20294. doi: 10.1074/jbc.M116.730697.

The Kinesin-1 Chemomechanical Cycle: Stepping Toward a Consensus. W.O. Hancock. 2016. Biophysical Journal. 110: 1216-25.

Kinesin-2 and Apc Function at Dendrite Branch Points to Resolve Microtubule Collisions. A.T. Weiner, M.C. Lanz, D.J. Goetschius, W.O. Hancock, M.M. Rolls. 2016. Cytoskeleton. 35-44.

Engineered kinesin motor proteins amenable to small-molecular inhibition. M.F. Engelke, W. Winding, Y. Yue, S. Shastry, F. Teloni, S. Reddy, T.L. Blasius, P. Soppina, W.O. Hancock, V.I. Gelfand, K.J. Verhey. Nature Communications. 1-12. DOI: 10.1038.

Aging Gracefully: A New Model of Microtubule Growth and Catastrophe. W.O. Hancock. 2015. Biophysical Journal. 109(12): 2449 – 2451.

Kinesin-5 is a microtubule polymerase. Y. Chen, W.O. Hancock. 2015. Nature Communications 1 – 10. DOI: 10.1038.

Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle. K.J. Mickolajczyk, N.C. Deffenbaugh, J. Ortega Arroyo, J. Andrecka, P. Kukura, W.O. Hancock. (2015) Proceedings of the National Academy of Sciences. 10.1073: E7186-E7193.

Processivity of the kinesin-2 KIF3A/B results from rear head gating and not front head gating.  G.Y. Chen, D.F. Arginteanu and W.O. Hancock. 2015. J. Biol Chem. 290(16):10274-94.  PMID: 25657001

The mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load. Andreasson, J.O., S. Shastry, W.O. Hancock, and S.M. Block. 2015.  Current Biology. 25(9):1166-1179.  PMID: 25866395

Examining kinesin processivity within a general gating framework. Andreasson, J.O., B. Milic, W.O. Hancock, and S.M. Block. 2015.  Elife.  PMID: 25902401

Mitotic kinesins: a reason to delve into kinesin-12W.O. Hancock. 2014. Current Biology 24(19):R968-70.  PMID:  25291641

Transport by Populations of Fast and Slow Kinesins Uncovers Novel Family-Dependent Motor Characteristics Important for In Vivo Function. G. Arpag, S. Shastry, W.O. Hancock and E. Tuzel. 2014. Biophysical Journal. 107(8):1896-904. PMID: 25418170

Bidirectional cargo transport: moving beyond tug of war. Hancock W.O. 2014. Nat Rev Mol Cell Biol. 15(9):615-28. PMID: 25118718

Kinesin processivity is gated by phosphate release. Milic B., Andreasson J.O., Hancock W.O., Block S.M. 2014. Proc Natl Acad Sci USA. 111(39):14136-40. PMID: 25197045

Molecular Counting by Photobleaching in Protein Complexes with Many Subunits: Best Practices and Application to the Cellulose Synthesis Complex. Chen Y., Deffenbaugh N.C., Anderson C.T., Hancock W.O. 2014. Mol Biol Cell. 25(22):2630-42. PMID: 25232006

Kinesin’s neck-linker domain determines its ability to navigate obstacles on the microtubule surface. G.J. Hoeprich, A.R. Thompson, D.P. McVicker, W.O. Hancock and C.L. Berger. (2014) Biophysical Journal. 106(8): 1691-700.

An EB1-kinesin complex is sufficient to steer microtubule growth in vitro. Chen, Y., Rolls, M.M., Hancock, W.O. 2014. Current Biology. 24(3):316-21.

Estimating Velocity for Processive Motor Proteins with Random Detachment. Hughes, J., Shastry, S., Hancock, W.O., Fricks, J. 2013. Journal of Agricultural, Biological, and Environmental Statistics. 18(2):204-217.

Microtubule asters as templates for nanomaterials assembly. Verma V., Catchmark J.M., Brown N.R., Hancock W.O. 2012. Journal of Biological Engineering. 6(1):23.

Kinesins with Extended Neck Linkers: A Chemomechanical Model for Variable-Length Stepping. J. Hughes, W.O. Hancock, J. Fricks. 2012. Bulletin of Mathematical Biology. 74(5):1066-97.

Inter-head Tension Determines Processivity Across Diverse N-Terminal Kinesins.  S. Shastry and W.O. Hancock.  2011.  Proc. Natl. Acad. Sci., 108(29):16253-8

Engineering Tubulin:  Microtubule Functionalization Approaches for Nanoscale Device Applications. J.L. Malcos and W.O. Hancock.  2011. Applied Microbiology and Biotechnology90:1-10.

A matrix computational approach to kinesin neck linker extension.  J. Hughes, W.O. Hancock, J. Fricks. 2011.  Journal of Theoretical Biology 269(1):181-194.

“Artificial Mitotic Spindle” generated by dielectrophoresis and protein micropatterning supports bidirectional transport of kinesin-coated beads.  M. Uppalapati, Y.-M. Huang, V. Aravamuthan, T.N. Jackson and W.O. Hancock. 2011.  Integrative Biology 3:57-64.

Monte Carlo analysis of neck linker extension in kinesin molecular motors.  M..L Kutys, J. Fricks and W.O. Hancock.  2010.  PLoS Computational Biology 6(11): e1000980. doi:10.1371/journal.pcbi.1000980.

Neck linker length determines the degree of processivity in Kinesin-1 and Kinesin-2 motors. S. Shastry and W.O. Hancock.  2010.  Current Biology 20: 939-943. Supplemental Data.

Likelihood Inference for Fluorescence Microscopy Images.  J. Hughes, J. Fricks, and W.O. Hancock. 2010.   Annals of Applied Statistics 4: 830-848.

Insights into the mechanical properties of the kinesin neck linker domain from sequence analysis and molecular dynamics simulations.  V. Hariharan and W.O. Hancock.  2009.  Cellular and Molecular Bioengineering 2(2):177-89.

Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells.  A.D. Bicek, E. Tüzel, A. Demtchouk, M. Uppalapati, W.O. Hancock, D.M. Kroll, D.J. Odde. 2009.  Molecular Biology of the Cell 20(12):2943-53.

The Processivity of Kinesin-2 Motors Suggests Diminished Front-Head Gating.  G. Muthukrishnan, Y. Zhang, S. Shastry and W.O. Hancock.  2009.  Current Biology 19(5):442-7. Supplemental Data.

Surface-bound casein modulates the adsorption and activity of kinesin on SiO­2 surfaces.  T. Ozeki, V. Verma, M. Uppalapati, Y. Suzuki, M. Nakamura, J.M. Catchmark and W.O. Hancock.  2009.  Biophysical Journal 96(8):3305-18.

Uppalapati, M., Y-M Huang, S. Shastry, T.N. Jackson and W.O. Hancock, (2009).  Microtubule Motors in Microfluidics.  Methods in Bioengineering: Microfabrication and Microfluidics, J.D. Zahn and L.P. Lee, Eds.  Artech House Publishers, Boston, MA.  2009.

Nanoscale patterning of kinesin motor proteins and its role in guiding microtubule motility.  V. Verma, W.O. Hancock, and J.M. Catchmark. 2009. Biomedical Microdevices 11(2):213-22.

Neutravidin micropatterning by deep UV irradiation. Y.M. Huang, M. Uppalapati, W.O. Hancock and T.N. Jackson. 2008.  Lab on a Chip 8(10): 1745-7.

The role of casein in supporting the operation of surface bound kinesin.  V. Verma, W.O. Hancock, and J.M. Catchmark. 2008. Journal of Biological Engineering 2:14.

Intracellular transport: kinesins working together.  W.O. Hancock.  2008. Current Biology 18(16): R715-7.

Microtubule alignment and manipulation using AC electrokinetics. M. Uppalapati, Y. M. Huang, T.N. Jackson and W.O. Hancock.  2008. Small 4(9): 1371-81.

Transport and detection of unlabeled nucleotide targets by microtubules functionalized with molecular beacons.  M. Raab and W.O. Hancock. 2008. Biotechnology and Bioengineering,  99(4): 764-773.

Enhancing the stability of kinesin motors for microscale transport applications.  M. Uppalapati, Y.-M. Huang, T.N. Jackson and W.O. Hancock.  2008.  Lab on a Chip 8:358-361.

Microtubule transport, concentration and alignment in enclosed microfluidic channels.  Y.-M. Huang, M. Uppalapati, W.O. Hancock and T.N. Jackson.  2007.  Biomedical Microdevices  9:175-184.

Directing transport of CoFe2O4-functionalized microtubules with magnetic fields B.M. Hutchins, M. Platt, W.O. Hancock and M.E. Williams. 2007. Small 3(1): 126-131.

Motility of CoFe2O4 nanoparticle-labelled microtubules in magnetic fields.  B.M. Hutchins, W.O. Hancock and M.E. Williams. 2006. Micro and Nano Letters. 1(1): 47-52.

Magnet assisted fabrication of microtubule arrays.  B.M. Hutchins, W.O. Hancock and M.E. Williams. 2006. Phys. Chem. Chem. Phys.  8(30):3507-3509.

Transport of semiconductor nanocrystals by kinesin molecular motors.  G. Muthukrishnan, B.M. Hutchins, M.E. Williams, and W.O. Hancock. 2006  Small, 2(5):626-630.

Hancock, W.O. “Protein-Based Nanotechnology:  Kinesin-Microtubule Driven Systems for Bioanalytical Applications.”  In Nanotechnology for Life Sciences Volume 4:  Nanodevices for Life Sciences.  C. Kumar, Editor, Wiley-VCH, Winheim, Gerrmany. 2006.

Microfabricated capped channels for biomolecular motor-based transport.  Y.M. Huang, M. Uppalapati, W.O. Hancock, and T.N. Jackson. 2005.  IEEE Transactions on Advanced Packaging, 28(4):564-570.

Micro- and nanofabrication processes for hybrid synthetic and biological system fabrication.  V. Verma, W.O. Hancock, and J.M. Catchmark. 2005.  IEEE Transactions on Advanced Packaging, 28(4):584-593.

Millimeter scale alignment of magnetic nanoparticle functionalized microtubules in magnetic fields. M. Platt, G. Muthukrishnan, W.O. Hancock, and M.E. Williams. 2005.  Journal of the American Chemical Society, 127(45):15686-15687.

Patterning surface-bound microtubules through reversible DNA hybridization.  G. Muthukrishnan, C.A. Roberts, Y.C. Chen, J.D. Zahn and W.O. HancockNanoLetters 4:2127-2132.

Microscale transport and sorting by kinesin molecular motors,  L. Jia, S.G. Moorjani, T.N. Jackson and W.O. Hancock. Biomedical Microdevices 6(1): 67-74 (2004).

Lithographically patterned channels spatially segregate kinesin motor activity and effectively guide microtubule movements. S.G. Moorjani, L. Jia, T.N. Jackson and W.O. Hancock.   NanoLetters 3:633-637 (2003).

The Kinesin-Related Protein MCAK Is a Microtubule Depolymerase that Forms an ATP-Hydrolyzing Complex at Microtubule Ends.  A.W. Hunter, M. Caplow, D.L. Coy, W.O. Hancock, S. Diez, L. Wordeman, and J. Howard. Molecular Cell 11: 445-457.  (2003)

A polarized microtubule array for kinesin-powered nanoscale assembly and force generation, T.B. Brown and W.O. Hancock, NanoLetters 2:1131-1135 (2002).

The Arabidopsis thaliana protein, ATK1, is a minus-end directed kinesin that exhibits non-processive movement, A.I. Marcus, J.C. Ambrose, L. Blickley, W.O. Hancock and R.J. Cyr.  Cell Motility and the Cytoskeleton  52:144-50 (2002).

Hancock, W.O. and J. Howard. 2002. “Kinesin: Processivity and Chemomechanical Coupling.”  Molecular Motors. M. Schliwa, editor, Wiley-VCH, Winheim, Germany, 10:243-269.

Reconstitution and characterization of budding yeast gamma-tubulin complex, D. B. Vinh, J. W. Kern, W. O. Hancock, J. Howard, and T. N. Davis, Mol Biol Cell 13:1144-57 (2002).