13
Jul 22

Obesity and accelerated epigenetic aging in a high-risk cohort of children

New insights into mechanisms linking obesity to poor health outcomes suggest a role for cellular aging pathways, casting obesity as a disease of accelerated biological aging. Although obesity has been linked to accelerated epigenetic aging in middle-aged adults, the impact during childhood remains unclear. We tested the association between body mass index (BMI) and accelerated epigenetic aging in a cohort of high-risk children. Participants were children (N = 273, aged 8 to 14 years, 82% investigated for maltreatment) recruited to the Child Health Study, an ongoing prospective study of youth investigated for maltreatment and a comparison youth. BMI was measured as a continuous variable. Accelerated epigenetic aging of blood leukocytes was defined as the age-adjusted residuals of several established epigenetic aging clocks (Horvath, Hannum, GrimAge, PhenoAge) along with a newer algorithm, the DunedinPoAm, developed to quantify the pace-of-aging. Hypotheses were tested with generalized linear models. Higher age-and sex- adjusted z-scored BMI was significantly correlated with household income, blood cell counts, and three of the accelerated epigenetic aging measures: GrimAge (r = 0.31, P < .0001), PhenoAge (r = 0.24, P < .0001), and DunedinPoAm (r = 0.38, P < .0001). In fully adjusted models, GrimAge (β = 0.07; P = .0009) and DunedinPoAm (β = 0.0017; P < .0001) remained significantly associated with higher age- and sex-adjusted z-scored BMI. Maltreatment-status was not associated with accelerated epigenetic aging. In a high-risk cohort of children, higher BMI predicted epigenetic aging as assessed by two epigenetic aging clocks. These results suggest the association between obesity and accelerated epigenetic aging begins in early life, with implications for future morbidity and mortality risk.

CITATION: Etzel, L., Hastings, W. J., Hall, M. A., Heim, C. M., Meaney, M., Noll, J. G., Rose, E. J., Schreier, H. M. C., Shenk, C., & Shalev, I., (in press). Obesity and accelerated epigenetic aging in a high-risk cohort of children.


13
Jul 22

Comparing qPCR and DNA-Methylation-based Measurements of Telomere Length in a High-Risk Pediatric Cohort

Various approaches exist to assess population differences in biological aging. Telomere length (TL) is one such measure, and is associated with disease, disability and early mortality. Yet, issues surrounding precision and reproducibility are a concern for TL measurement. An alternative method to estimate TL using DNA methylation (DNAmTL) was recently developed. Although DNAmTL has been characterized in adult and elderly cohorts, its utility in pediatric populations remains unknown. We examined the comparability of leukocyte TL measurements generated using qPCR (absolute TL; aTL) to those estimated using DNAmTL in a high-risk pediatric cohort (N = 269; age: 8-13 years, 83% investigated for maltreatment). aTL and DNAmTL measurements were correlated with one another (r = 0.20, p = 0.001), but exhibited poor measurement agreement and were significantly different in paired-sample t-tests (Cohen’s d = 0.77, p < 0.001). Shorter DNAmTL was associated with older age (r = -0.25, p < 0.001), male sex (β = -0.27, p = 0.029), and White race (β = -0.74, p = 0.008). By contrast, aTL was less strongly associated with age (r = -0.13, p = 0.040), was longer in males (β = 0.31, p = 0.012), and was not associated with race (p = 0.820). These findings highlight strengths and limitations of high-throughput measures of TL; although DNAmTL replicated hypothesized associations, aTL measurements were positively skewed and did not replicate associations with external validity measures. These results also extend previous research in adults and suggest that DNAmTL is a sensitive TL measure for use in pediatric populations.

CITATION: Hastings, W. J., Etzel, L., Heim, C. M., Noll, J. G., Rose, E. J., Schreier, H. M. C., Shenk, C. E., Tang, X.& Shalev, I. (in press). Comparing qPCR and DNA-Methylation-based Measurements of Telomere Length in a High-Risk Pediatric Cohort. Aging.


Skip to toolbar