Eta Kappa Nu, HKN
The Pennsylvania State University Epsilon Chapter
Electives Night
Overview

1. Introduction
 http://sites.psu.edu/hkneecs/electives-night/
1. Electrical Engineering
2. Computer Engineering
3. Computer Science
Eta Kappa Nu, HKN
The Pennsylvania State University Epsilon Chapter
Electives Night

Electrical Engineering
What does EE 210 lead to?

- Remote Sensing/Space Science x7x
- Electromagnetics x3x
- Optics x2x
- Micro-Electronics x4x
- Analog and Digital Electronic Circuits x1x
- Control/Power x8x
- Communications/Networking x6x
- Signal & Image Processing x5x
Course Numbering

▪ Electronic Design ... x1x
▪ Optics .. x2x
▪ Electromagnetics ... x3x
▪ Semiconductor Devices ... x4x
▪ Signal and Image Processing ... x5x
▪ Communications ... x6x
▪ Space Systems and Remote Sensing ... x7x
▪ Power Systems and Control Systems .. x8x

Course Descriptions
When/What Course are offered
EE Handbook (2017)
Electronic Design
Course Description
Electronic circuit design with consideration to single and multi-device subcircuits, frequency response characteristics, feedback, stability, efficiency, and IC techniques.

Skills/Prerequisites needed for the course?
- Prerequisites: EE 310 & EE 350/353
- Strong understanding of EE 310 material

What will you learn?
- More advanced microelectronic transistor circuits covering topics like MOSFETS, BJTs, current sources, operational amplifiers, etc
- More advanced analysis techniques like feedback, stability, frequency response characteristics and others

Who teaches it?
Eli Hughes & Swaroop Ghosh

Student Opinions

Class Difficulty?
The test were partially take home but very difficult. The circuits can also be complex and tedious to solve.

What was best about the class?
- Tests were unique and taught you real practical design skills
- Great intro to larger more practical circuits
- The exams were very fair

What was worst about the class?
- The lectures could be hard to follow
- Covers a lot of topics in not enough detail

Out of class hours: 5

Fall/Spring Course
Linear Electronic Design

Course Description
Linear circuit design via integrated circuit processes. Design focused course. Course contains a significant laboratory component.

Skills/Prerequisites needed for the course?
- Prerequisites EE 311
- Strong background in transistor circuits
- EE 340 is not a prerequisite but some knowledge of semiconductor physics is helpful.

What will you learn?
- Analog transistor circuit design done in the context of IC
- Cadence simulation software
- Design of multiple operational amplifiers & basic layout

Who teaches it?
Mehdi Kiani

Student Opinions

Class difficulty?
The biweekly cadence project was challenging and could be very time consuming. The homeworks were typically design questions and could be frustrating.

Out of class hours: 3-10

What was best about the class?
- The lectures were fantastic and very well prepared
- Learning Cadence is a fantastic skill
- Real design experience

What was worst about the class?
- Lab assignments could be very frustrating
Course Description
Switch-mode electrical power converters. Electrical characteristics and thermal limits of semiconductor switches.

Skills/Prerequisites needed for the course?
- Prerequisites EE 310 & EE 350
- Basic knowledge of transformers, transistors & diodes helps

What will you learn?
- Analysis, design & application of switch mode power converters (Buck, Boost, Buck-Boost, CUK)
- Power device characteristics, the design of gate drive and feedback circuits, and the analysis/design of elementary controllers

Who teaches it?
Terrance Lovell

Class difficulty?
The lecture can be incredibly difficult to follow. The homework is more of an extension of the lecture and requires you do problems you have not seen before.

What was best about the class?
- The content is incredibly useful in the field of circuits

What was worst about the class?
- Lecture & homework can be frustrating
- Tests are difficult and ask questions you have not encountered
Digital Integrated Circuits/VLSI Design

Course Description
Design and analysis of digital integrated circuits employed in very large scale integrated (VLSI) chips. **Course contains a significant laboratory component.**

Skills/Prerequisites needed for the course?
- Prerequisites: EE 310 & CMPEN 270
- EE 340 is not a prerequisite but some knowledge of semiconductor physics is helpful.

What will you learn?
- Insight into the design of modern VLSI chips, especially CMOS approaches to design.
- Digital integrated circuit design, layout, simulation, and fabrication.
- Cadence circuit simulation software

Who teaches it?
Sumeet Gupta (Leaving)

Student Opinions

Class difficulty?
The exams are tough. The class’s final project can be both very time consuming and difficult.

What was best about the class?
- The lectures are very well done
- Learning cadence is a very useful skill
- Real design experience

What was worst about the class?
- The Cadence assignments could be very challenging

Out of class hours: 4-7
EE/CMPEN 417

Digital Design Using Field Prog. Devices

Course Description
Field programmable device architectures and technologies; rapid prototyping using top down design techniques; quick response systems. Course contains a significant laboratory component.

Skills/Prerequisites needed for the course?
• Prerequisites: CMPEN 331
• Strong basics in software/hardware programming

What will you learn?
• Real world applicable knowledge in how to use FPGAs
• Steps in designing a PCB board which has an FPGA, process for selecting the best FPGA for a design
• How to program in System Verilog

Who teaches it?
vijay narayanan

Student Opinions

Class difficulty?
The lab component is difficult

What was best about the class?
• The labs give really useful skills in the world of FPGAs

What was worst about the class?
• N/A

Out of class hours: 3-4
Optics
Introduction to Electro-Optic Engineering

Course Description
An introduction covering several fundamental areas of modern optics, optical processes, and devices.

Skills/Prerequisites needed for the course?
- Prerequisite: EE 330
- Physics 214 is extremely useful

What will you learn?
- Several fundamental areas of modern optics, optical processes, and devices
- Covers lenses, lasers, diffraction, and other types of interference
- The course covers the basics of optical systems, focusing on the interaction of waves with materials

Who teaches it?
Qiming Zhang

Student Opinions

Class difficulty?
Out of Class Hours: 1-2

What was best about the class?
- Class was very easy and required very little out of class work

What was worst about the class?
- N/A
Course Description
Spatially linear system and transform. Diffraction theory, partial coherence theory, optical image detection, storage and display, holography.

Skills/Prerequisites needed for the course?
- Prerequisite: EE 320
- Knowledge of EE 350 is helpful

What will you learn?
- Spatially linear systems and transforms
- Diffraction theory, partial coherence theory
- Optical image detection, storage, and display; holography

Who teaches it?
Xingjie Ni

Student Opinions

Class difficulty?
Math can get very complicated

Out of class hours: N/A

What was best about the class?
- N/A

What was worst about the class?
- N/A
Optical Engineering Laboratory

Course Description
Hands-on experience covering areas of optical transforms, electro-optics devices, signal processing, fiber optics transmission, and holography. Course contains a significant laboratory component.

Skills/Prerequisites needed for the course?
• Prerequisite: EE 320

What will you learn?
• Applications in fiber optics communication, sensing, holography, optical switching and processing
• Optical transforms, electro-optics devices, and signal processing
• Fiber optics transmission and holography
• Learn to replicate theoretical principles in the laboratory

Who teaches it?
Iam-Choon Khoo Shizhuo Yin

Student Opinions

Class difficulty?
The instructor is straightforward and the homeworks & exams are consistent with each other, some material is tricky.

Out of class hours: N/A

What was best about the class?
• Lab experience

What was worst about the class?
• N/A
EE 424

Principles & Applications of Lasers

Course Description
Principles of lasers—generation, propagation, detection and modulation; applications in fiber optics communication, remote sensing, holography, optical switching and processing.

Skills/Prerequisites needed for the course?
• Prerequisite: EE 330
• Maxwell’s equations, wave theory, and complex analysis

What will you learn?
• Basic principles of lasers, how they’re generated, how they propagate, how they’re detected and modulated
• Common applications for lasers, e.g. fiber optics, holographic, optical switching

Who teaches it?
Iam-Choon Khoo

Spring Course

Student Opinions

Class difficulty?
N/A

Out of class hours: N/A

What was best about the class?
• N/A

What was worst about the class?
• N/A
Electromagnetism
EE 430

Principles of Electromagnetic Fields

Course Description
Laws of electrodynamics, boundary value problems, relativistic effects, waves in dielectrics and ferrites, diffraction and equivalence theorems.

Skills/Prerequisites needed for the course?
- Prerequisite: EE 330
- Extends heavily from EE 330 a very strong understanding of the material is recommended

What will you learn?
- Understand sources of electric and magnetic fields and coupling between them.
- Boundary conditions, energy and power associated with electromagnetic fields, understand and design transmission lines and waveguides.
- Understand radiation from antennas.

Who teaches it?
Victor Pasko Ram Narayanan

Student Opinions

Class difficulty?
Changes in notation from EE 330 made things challenging. A lot of heavy math and derivations.

Out of class hours: 5

What was best about the class?
- Homeworks provide really good MATLAB experience. It’s a great way to see theory in practice

What was worst about the class?
- Theory based course can make for a dry lecture
UHF & Microwave Engineering

Course Description
Transmission line and wave guide characteristics and components; design of UHF-microwave amplifiers, oscillators, and filters; measurement techniques; design projects. Course contains a significant laboratory component.

Skills/Prerequisites needed for the course?
- Prerequisites: EE 330 & EE 310
- Strong background in EE 330 recommended

What will you learn?
- ADS software
- Real practical skills with microwave equipment and microstrip circuit design
- Design of UHF-microwave circuits

Who teaches it?
Julio Urbina

Student Opinions

Class difficulty?
Content can be very challenging to approach. The lab is very independent and difficult. The range of content covered in this class is huge and the workload can feel like a lot.

Out of class hours: 8-15

What was best about the class?
- The lab teaches you a ton of practical skills
- You will receive a lot of useable skills from ADS software, theory and hands on experience.
- Exams are extremely fair

What was worst about the class?
- Class work load can feel like too much
- So much material is covered it can feel unfocused
Antenna Engineering

Course Description
Radiation from small antennas, linear antenna characteristics, arrays of antennas, impedance concepts and measurements, multifrequency antennas, and aperture antennas

Skills/Prerequisites needed for the course?
• Prerequisite: EE 330

What will you learn?
• How and why antennas radiate
• How to produce radiation patterns of various antennas
• Parameters of antennas: input impedance, directivity gain, beam width, polarization and efficiency

Who teaches it?
James Breakall

Student Opinions

Class difficulty?
Out of class hours: 0-1

What was best about the class?
• Learning FEKO

What was worst about the class?
• Lectures are dry and not much material is covered
Semiconductor Devices
Semiconductor IC Technology

Course Description
The fundamentals of device technology, including oxidation, diffusion, photoresist, metallization, epitaxy, and material preparation. Course contains a significant laboratory component.

Skills/Prerequisites needed for the course?
- Prerequisites: EE 310, E SC 314 or EE 340

What will you learn?
- Lots of important processing techniques, and the various advantages and disadvantages
- Hands-on experience in the cleanroom—handling wafers, spinning photo-resist, operating the mask aligner and performing lithography

Who teaches it?
Jerzy Ruzylko

Student Opinions

Class difficulty?
Writing lab reports. The course is memorization and clean room experience; calculations are typically minimal.

Out of class hours: 2-3

What was best about the class?
- If you are interested in nanofabrication it is good lab experience
- The course engages students unlike a traditional lecture setting.

What was worst about the class?
- Sometimes there’s a waiting period during lab sessions.
Semiconductor IC Technology

Course Description
The physics of semiconductors as related to the characteristics and design of solid state electronic devices.

Skills/Prerequisites needed for the course?
- Prerequisites: EE 310, E SC 314 or EE 340

What will you learn?
- Solid state physics, with a particular focus on devices (MOSFETs, diodes, LEDs, solar cells, etc.)
- Device characterization (band diagrams, p-n junction, MS-junction, MOS capacitor, I-V curves, etc.)

Who teaches it?
Weihua Guan Qiming Zhang

Class difficulty?
The concepts could be difficult to grasp.

Out of class hours: 4

What was best about the class?
The instructor is explaining every detail very straightforward and some concepts in EE 340 became clearer.

What was worst about the class?
- Roll-call is not taken consistently every lecture, but the instructor picks unexpected times to check attendance (Friday lectures or when people are missing).
Semiconductor IC Technology

Course Description
The physics of semiconductors as related to the characteristics and design of solid state electronic devices.

Skills/Prerequisites needed for the course?
- Prerequisites: EE 310, ESC 314 or EE 340

What will you learn?
- Solid state physics, with a particular focus on devices (MOSFETs, diodes, LEDs, solar cells, etc.)
- Device characterization (band diagrams, p-n junction, MS-junction, MOS capacitor, I-V curves, etc.)

Who teaches it?
Weihua Guan Qiming Zhang

Student Opinions

Class difficulty?
The concepts could be difficult to grasp.

What was best about the class?
- The instructor is explaining every detail very straightforward and some concepts in EE 340 became clearer.

What was worst about the class?
- Roll-call is not taken consistently every lecture, but the instructor picks unexpected times to check attendance (Friday lectures or when people are missing).
Signal & Image Processing
Discrete Time Linear Systems

Course Description
Introduction to discrete-time signal processing: sampling, linear time-invariant systems, discrete time fourier transform and discrete fourier transform, Z transform.

Skills/Prerequisites needed for the course?
• Prerequisites: EE 350

What will you learn?
• Discrete Time Fourier Transform (DTFT)
• Discrete Time Fourier Series (DTFS)
• Z-transform and its region of convergence

Who teaches it?
Minghui Zhu Vishal Monga John Doherty

Student Opinions

Class difficulty?
The tests were challenging. Putting all of the material together in your head could be challenging.

What was best about the class?
• The homeworks could be really insightful

What was worst about the class?
• Information is more focused on theory than practice

Fall/Spring Course

Out of class hours: 2-7
Course Description
Design of FIR and IIR filters; DFT and its computation via FFT; applications of DFT; filter implementation, finite arithmetic effects.

Occasional Lab

Skills/Prerequisites needed for the course?
- Prerequisites: EE 351
- Basic MATLAB knowledge

What will you learn?
- Learn how to design and implement actual finite impulse response (FIR) and infinite impulse response (IIR) filters analytically and in practice using MATLAB
- Computation of DTFS via the Fast Fourier Transform (FFT)

Who teaches it?
Kenneth Jenkins Vishal Monga

Student Opinions

Class difficulty?
The concepts can be fairly difficult to grasp conceptually. A lot of derivations are not shown which can make the material confusing.

Out of class hours: 5

What was best about the class?
- Finally applying digital signals processing knowledge

What was worst about the class?
- The labs are not great. The equipment is old and they become redundant
Fundamentals of Computer Vision

Course Description
Introduction to topics such as image formation, segmentation, feature extraction, shape recovery, object recognition, and dynamic scene analysis. **Course contains a significant programming component.**

Skills/Prerequisites needed for the course?
- Prerequisites: MATH 230, CMPSC 201 or CMPSC 121
- Basic MATLAB knowledge

What will you learn?
- Binary vision systems: Identify basic objects based on segmentation, contours, and physical dimensions
- Depth from vision: Emphasis on stereo imaging, algorithms based on distances from points on the object
- Computer vision: Sequence of images over time, based on spatial or temporal changes in an image
- 3D object recognition: Object identification and localization

Who teaches it?
Robert Collins

Student Opinions

Class difficulty?
The class projects can be very challenging and keeping up with the content can require some extra time.

What was best about the class?
- The material is appealing for ones that interested in computer vision and using neural networks

What was worst about the class?
- Programming component requires significant time, but the instructor gives 2 weeks to finish.

Out of class hours: 10
Introduction to Digital Image Processing

Course Description
Overview of digital image processing techniques and their applications; image sampling, enhancement, restoration, and analysis; computer projects. **Course contains a significant programming component.**

Skills/Prerequisites needed for the course?
- Prerequisites: EE 350, CMPSC 201 or CMPSC 121
- Basic MATLAB knowledge

What will you learn?
- Digital image processing techniques: Applications, image sampling, enhancement, and analyses
- One/Two Dimensional Fourier Transform analyses
- Discrete Cosine Transform: Used in JPEG and MPEG
- Techniques for image encoding and decoding

Who teaches it?
William Higgins

Student Opinions

Class difficulty?
Understanding how to do the projects can be challenging, but overall the class is not difficult

What was best about the class?
- Teacher is very reasonable with workload and exams

What was worst about the class?
- Heavy math, strong knowledge of Fourier transforms needed.

Out of class hours: 3
Communications
Course Description
Generic communication system; signal transmission; digital communication systems; amplitude modulation; angle modulation.

Skills/Prerequisites needed for the course?
- Prerequisite: EE 350 or EE 353
- Strong understanding of Fourier Transform
- Basic MATLAB

What will you learn?
- Analog Communications: AM (amplitude modulation), FM/PM (angle modulation)
- Types of digital/analog communication systems, and their schematic drawings
- Understanding the sampling theorem, quantization, and bit rates associated with digital communication

Class difficulty?
The lectures can be difficult to follow and the homeworks/exams were hard.
Without attendance, homework questions and exams may be hard.

Who teaches it?
Jin Yang, Viveck Cadambe

Out of class hours: 3-5
Course Description
Data transmission, encoding, link control techniques; communication network architecture, design; computer communication system architecture, protocols.

Skills/Prerequisites needed for the course?
- Prerequisite: CMPEN 270, STAT 401 or 418

What will you learn?
- Protocol stack for communication networks; particularly the internet
- Detailed understanding of the different layers of Communication Networks

Who teaches it?
Mark Mahon

Class difficulty?
Attendance is important for pop quizzes, for those that don’t have experience with computer networking, weekly review is needed.

What was best about the class
- The instructor makes sure you understand the material, no coding required and the course content is more theory based.

What was worst about the class?
- Quizzes play a huge role on the overall grade.
Communication Systems II

Course Description
Probability fundamentals, digital/analog modulation/demodulation, system noise analysis, SSNR and BER calculations, optimal receiver design concepts, introductory information theory.

Skills/Prerequisites needed for the course?
- Prerequisite: EE 360
- Highly recommended that you take a stat class prior

What will you learn?
- Brief introduction to probability (2-3 weeks)
- Types of communication schemes, and the probability associated with transmitting signals
- How to treat “white-noise” as a Gaussian distribution, and introduces Information Theory

Who teaches it?
Viveck Cadambe

Fall Course

Student Opinions

Class difficulty?
N/A

Out of class hours: N/A

What was best about the class
- N/A

What was worst about the class?
- N/A
Space Systems & Remote Sensing
Introduction to Plasma Physics and Cold Fusion

Course Description
Plasma oscillations; collisional phenomena; transport properties; orbit theory, typical electric discharge phenomena.

Skills/Prerequisites needed for the course?
- Prerequisite: EE 330
- Basic MATLAB
- Strong understanding of electromagnetism

What will you learn?
- Plasma Oscillations
- Collision Phenomena
- Transport Properties
- Orbit Theory
- Typical Electric Discharge Phenomena

Who teaches it?
John Mathews

Student Opinions

Class difficulty?
Although class material is interesting, homework assignments are very creative that require time to do.

Out of class hours: 4

What was best about the class
- Overall the material is interesting if the students wants to learn about plasma.
- Easy quizzes, no midterms; projects made on Mathematica play huge role on grade.

What was worst about the class?
- Homework assignments.
Space Astronomy & Intro to Space Science

Course Description
The physical nature of the objects in the solar system; the earth’s atmosphere, ionosphere, radiation belts, magnetosphere, and orbital mechanics.

Skills/Prerequisites needed for the course?
• Prerequisite: EE 330
• Basic Mathematica
• Strong understanding of maxwell’s equations

What will you learn?
• How the Sun produces large currents in space
• Physics involved in earth orbits
• Particle motion, plasma physics, and ionosphere topics

Who teaches it?
John Mathews

Student Opinions

Class difficulty?
N/A

Out of class hours:
N/A

What was best about the class
• Learning to use Mathematica

What was worst about the class?
• Grading was done by class ranking so an A could actually end up a B
Satellite Communications

Course Description
Overview of satellite communications systems, principles, space platforms, orbital mechanics, up/down links and link budgets, modulation techniques.

Skills/Prerequisites needed for the course?
- Prerequisite: EE 330, EE 360

What will you learn?
- How to use STK. (program that models satellites)
- Digital and analog transmission properties.
- Satellites, antennas and transmitting schemes.

Who teaches it?
James Breakall Julio Urbina

Student Opinions

Class difficulty?
N/A

What was best about the class
- N/A

What was worst about the class?
- N/A
Fundamentals of Remote Sensing

Course Description
The review of fundamental physical properties leads into discussions of various techniques, including imaging, spectroscopy, radiometry, and active sensing.

Skills/Prerequisites needed for the course?
• Prerequisite: EE 330

What will you learn?
• General Remote Sensing Applications
• Involves optics, space science, geography, and meteorology

Who teaches it?
Tim Kane

Student Opinions

Class difficulty?
The homework is very time consuming and hard.

What was best about the class
• Class is very unstructured and content is geared towards class interests / professors whims
• Open ended project allows you to learn something you have an interest in

What was worst about the class?
• Class is very unstructured and content is geared towards class interests / professors whims
Power Systems & Control Systems
Linear Control Systems

Course Description
State variables; time-domain and frequency-domain design and analysis; design of feedback control systems; root locus. Course contains a significant laboratory component.

Skills/Prerequisites needed for the course?
- Prerequisite: MATH 220, EE 350
- Strong understanding of Fourier and Laplace analyses
- Basic MATLAB

What will you learn?
- State space representation of transfer systems
- Uses and Implementation of feedback for systems
- Stability and performance analysis using Bode plots and the Nyquist criterion

Who teaches it?
Jeffrey Schiano

Student Opinions

Class difficulty?
N/A

What was best about the class
- Exams are fair

What was worst about the class?
- N/A

Out of class hours: N/A
Course Description
Electromechanical energy conversion; magnetic circuits; transformers; transducers; commutators; synchronous, induction, and D.C. machines.

Skills/Prerequisites needed for the course?
- Prerequisite: EE 350
- Basic MATLAB

What will you learn?
- Methods of determining electromagnetic forces and torques using quasi-static electromagnetics
- Development of models for electromagnetic and electromechanical systems
- Fundamental concepts of inductors, transformers, and rotating machines.

Who teaches it?
Bregar (ARL) Nilanjan Chaudhuri

Student Opinions

Class difficulty?
Test could be challenging but overall very reasonable.

Out of class hours: 4-7

What was best about the class
- Notes are available, easy to follow and consistent

What was worst about the class?
- N/A
Introduction to Digital Control Systems

Course Description
Sampling and hold operations; A/D and D/A conversions; modeling of digital systems; response evaluation; stability; basis of digital control; examples. **Course contains a significant laboratory component.**

Skills/Prerequisites needed for the course?
- Prerequisite: EE 380, EE 351

What will you learn?
- Discrete-time analysis in frequency domain
- Sampling and hold operations; general A/D and D/A conversion techniques
- Stability and performance analysis

Who teaches it?
Minghui Zhu Constantino Lagoa

Student Opinions

Class difficulty?
N/A

What was best about the class?
N/A

What was worst about the class?
N/A

Out of class hours: N/A

Spring Course
Electric Machinery & Drives

Course Description
Analysis of variable-speed drives comprised of AC electric machines, power converters, and control systems. **Course contains a significant laboratory component.**

Skills/Prerequisites needed for the course?
- Prerequisite: EE 387
- Basic MATLAB

What will you learn?
- Inverter implementation and design
- Induction Machine under V/Hz and Fielded-Oriented Control
- Permanent Magnet Synchronous Machine under “Brushless dc Machine” and Field Oriented Control
- Field-Oriented Control & Stator Current Regulation

Who teaches it?
Weichel (ARL) Austin (ARL)

Student Opinions

Class difficulty?
- Out of class hours: N/A
- N/A

What was best about the class?
- N/A

What was worst about the class?
- N/A

Spring Course
EE 488

Power Systems Analysis I

Course Description
Fundamentals, power transformers, transmission lines, power flow, fault calculations, power system controls.

Skills/Prerequisites needed for the course?
• Prerequisite: EE 387
• Basic MATLAB

What will you learn?
• Poly-phase Networks – Unbalanced Operation
• Transmission Line Parameters and Steady State Operation
• Power Flow, Symmetrical Faults, and Unsymmetrical Faults
• System Protection and Controls

Who teaches it?
Nilanjan Chaudhuri

Student Opinions

Class difficulty?
N/A

Out of class hours:
N/A

What was best about the class
• N/A

What was worst about the class?
• N/A
Computer Organization and Design

Course Description
Introduction to major components of a computer system, how they function together in executing a program, how they are designed

Skills/Prerequisites needed for the course?
- Prerequisites CMPEN 270, CMPSC 121 or 201

What will you learn?
- How to program in Verilog and assembly language.
- Design MIPS pipeline
- Memory layout

Who teaches it?
- Mohamed Almekkawy

Class Difficulty?
The labs were very difficult and built off each other. Previous lab solutions were not given, which made completing the next lab very difficult. E.g. if you didn't understand lab 3, you were in a terrible position for lab 4.

What was best about the class?
- Content

What was worst about the class?
- Labs
EE/CMPEN 362

Communication Networks

Course Description
Data transmission, encoding, link control techniques; communication network architecture, design; computer communication system architecture, protocols.

Skills/Prerequisites needed for the course?
• Prerequisite: CMPEN 270, STAT 401 or 418

What will you learn?
• Protocol stack for communication networks; particularly the internet
• Detailed understanding of the different layers of Communication Networks

Who teaches it?
Mark Mahon

Student Opinions

Class difficulty?
Attendance is important for pop quizzes, for those that don’t have experience with computer networking, weekly review is needed.

Out of class hours: 5

What was best about the class
• The instructor makes sure you understand the material, no coding required and the course content is more theory based.

What was worst about the class?
• Quizzes play a huge role on the overall grade.
Digital Integrated Circuits/VLSI Design

Course Description
Design and analysis of digital integrated circuits employed in very large scale integrated (VLSI) chips. Course contains a significant laboratory component.

Skills/Prerequisites needed for the course?
- Prerequisites: EE 310 & CMPEN 270
- EE 340 is not a prerequisite but some knowledge of semiconductor physics is helpful.

What will you learn?
- Insight into the design of modern VLSI chips, especially CMOS approaches to design.
- Digital integrated circuit design, layout, simulation, and fabrication.
- Cadence circuit simulation software

Who teaches it?
Sumeet Gupta (Leaving)

Student Opinions

Class difficulty?
The exams are tough. The class’s final project can be both very time consuming and difficult.

Out of class hours: 4-7

What was best about the class?
- The lectures are very well done
- Learning cadence is a very useful skill
- Real design experience

What was worst about the class?
- The Cadence assignments could be very challenging
Digital Design Using Field Prog. Devices

Course Description
Field programmable device architectures and technologies; rapid prototyping using top down design techniques; quick response systems. **Course contains a significant laboratory component.**

Skills/Prerequisites needed for the course?
- Prerequisites: CMPEN 331
- Strong basics in software/hardware programming

What will you learn?
- Real world applicable knowledge in how to use FPGAs
- Steps in designing a PCB board which has an FPGA, process for selecting the best FPGA for a design
- How to program in System Verilog

Who teaches it?
- Vijay Narayanan, John Sustersic

Student Opinions

Class difficulty?
The lab component is difficult

What was best about the class?
The labs give really useful skills in the world of FPGAs

What was worst about the class?
N/A

Out of class hours: 3-4
Introduction to Computer Architecture

Course Description
Introduction to computer architecture. Memory hierarchy and design, CPU design, pipelining, multiprocessor architecture.

Skills/Prerequisites needed for the course?
- Prerequisite CMPEN 331

What will you learn?
- Pipelining, multiple processors, IO systems, memory/cache hierarchy, and other topics not previously covered in CMPEN 331 or in more depth

Who teaches it?
- Mary Jane Irwin, Mahmut Kandemir, Jack Sampson

Student Opinions

Class Difficulty?
- Out of class hours: N/A

What was best about the class?
- N/A

What was worst about the class?
- N/A

Fall / Spring Course
Fundamentals of Computer Vision

Course Description
Introduction to topics such as image formation, segmentation, feature extraction, shape recovery, object recognition, and dynamic scene analysis. **Course contains a significant programming component.**

Skills/Prerequisites needed for the course?
- Prerequisites: MATH 230, CMPSC 201 or CMPSC 121
- Basic MATLAB knowledge

What will you learn?
- Binary vision systems: Identify basic objects based on segmentation, contours, and physical dimensions
- Depth from vision: Emphasis on stereo imaging, algorithms based on distances from points on the object
- Computer vision: Sequence of images over time, based on spatial or temporal changes in an image
- 3D object recognition: Object identification and localization

Who teaches it?
Robert Collins

Student Opinions

Class difficulty?
The class projects can be very challenging and keeping up with the content can require some extra time.

What was best about the class?
- The material is appealing for ones that interested in computer vision and using neural networks

What was worst about the class?
- Programming component requires significant time, but the instructor gives 2 weeks to finish.

Out of class hours: 10
Introduction to Digital Image Processing

Course Description
Overview of digital image processing techniques and their applications; image sampling, enhancement, restoration, and analysis; computer projects. **Course contains a significant programming component.**

Skills/Prerequisites needed for the course?
- Prerequisites: EE 350, CMPSC 201 or CMPSC 121
- Basic MATLAB knowledge

What will you learn?
- Digital image processing techniques: Applications, image sampling, enhancement, and analyses
- One/Two Dimensional Fourier Transform analyses
- Discrete Cosine Transform: Used in JPEG and MPEG
- Techniques for image encoding and decoding

Who teaches it?
William Higgins

Student Opinions

Class difficulty?
Understanding how to do the projects can be challenging, but overall the class is not difficult

Out of class hours: 3

1 2 3 4 5 6 7 8 9 10

What was best about the class?
- Teacher is very reasonable with workload and exams

What was worst about the class?
- Heavy math, strong knowledge of Fourier transforms needed.
Microprocessors and Embedded Systems

Course Description
Microprocessors: architecture, design, assembly language, programming, interfacing, bus structure, and interface circuits and their use in embedded systems

Skills/Prerequisites needed for the course?
- Prerequisite CMPEN 331

What will you learn?
- Develop, write and debug programs in assembly language
- Use of general department computing facilities consisting of UNIX workstations running the appropriate program development tools

Who teaches it?
- Kyusun Choi

Student Opinions

Class Difficulty?
Coding Assembly was difficult

Out of class hours: 7

What was best about the class?
- His tests are very straight forward if you attend/pay attention to lectures.

What was worst about the class?
- Some homeworks were a breeze, and some kept me up all night.
Microcomputer Laboratory

Course Description
Design of digital systems using microprocessors

Skills/Prerequisites needed for the course?
• Prerequisites CMPEN 472

What will you learn?
• Processor architecture, memory structure, real-time software for embedded systems, power electronics interface, wireless data communications.
• How to take a project from proposal through design and implementation to final review and documentation.
• Industrial project practices

Who teaches it?
• Kyusun Choi

Student Opinions

Class Difficulty?

Out of class hours: N/A

What was best about the class?
• N/A

What was worst about the class?
• N/A
Course Description
Introduce concepts, methods, and technology for effective functional verification of modern electronic systems

Skills/Prerequisites needed for the course?
- Prerequisite CMPEN 331

What will you learn?
- The industrial issues surrounding functional verification
- Descriptions of techniques used in functional verification

Who teaches it?
- Vijay Narayanan
Special Topics
(Wireless Communications System and Security)

Course Description
Fundamental concepts and engineering processes of wireless communication systems, sensors, and security algorithms

Skills/Prerequisites needed for the course?
• Prerequisite EE/CMPEN 362

What will you learn?
• Take it and find out!

Who teaches it?
• Mark Mahon

Student Opinions

Class Difficulty?

What was best about the class?
• N/A

What was worst about the class?
• N/A

Out of class hours: N/A
Eta Kappa Nu, HKN
The Pennsylvania State University Epsilon Chapter
Electives Night

Computer Science
Computer Security
What is this course about?
- Introduction to Computer and Network Security

Skills/Prerequisites needed for the course?
- Prerequisites CMPSC 473, CMPEN 362

What will you learn?
- Introduction to theory and practice of computer security with an emphasis on Internet and operating system applications

Who teaches it?
- Patrick McDaniel and Sencun Zhu

Class Difficulty?
- Out of class hours: 2

What was best about the class?
- Professor and interesting content

What was worst about the class?
- n/a
Artificial Intelligence
General Information

What is this course about?
- Artificial Intelligence

Skills/Prerequisites needed for the course?
- Prerequisite CMPSC 122 or equivalent
- Concurrent CMPSC 465

What will you learn?
- Introduction to the theory, research paradigms, implementation techniques, and philosophies of artificial intelligence

Who teaches it?
- Athar Sefid and Rebecca Passonneau

Fall Course

Student Opinions

Class Difficulty?

Out of class hours: 20

What was best about the class?
Assignments are hard, but good for learning

What was worst about the class?
The teacher is fairly boring, and 50% of the class dropped the last assignment
General Information

What is this course about?
- Evaluation and use of machine learning models; algorithmic elements of artificial intelligence.

Skills/Prerequisites needed for the course?
- STAT 319 or STAT 415
- CMPSC 122 and junior level programming experience

What will you learn?
- Introduction to the theory, research paradigms, implementation techniques, and philosophies of artificial intelligence

Who teaches it?
- Mehrdad Mahdavi

Spring Course

Student Opinions

Class Difficulty?
Out of class hours: N/A

What was best about the class?
N/A

What was worst about the class?
N/A
Numerical / Scientific
General Information

What is this course about?
• Concurrent Scientific Programming

Skills/Prerequisites needed for the course?
• Prerequisites CMPSC 121, CMPSC 201 or 202, Math 220, Math 230 or 231

What will you learn?
• Problems of synchronization, concurrent execution, design and implementation of concurrent software in a distributed system

Who teaches it?
• Hongyuan Zhan, William Seisler, and Madduri

Student Opinions

Class Difficulty?

Out of class hours: N/A

What was best about the class?
N/A

What was worst about the class?
N/A
General Information

What is this course about?
- Introduction to Numerical Analysis I

Skills/Prerequisites needed for the course?
- Prerequisites Math 220, Math 230 or 231

What will you learn?
- Floating point computation, numerical rootfinding, interpolation, numerical quadrature, direct methods for linear systems

Who teaches it?
- Xiantao Li and Jesse Barlow

Student Opinions

Class Difficulty?
- Out of class hours: N/A

What was best about the class?
- N/A

What was worst about the class?
- N/A
What is this course about?
- Numerical Computations

Skills/Prerequisites needed for the course?
- Prerequisites 3 credits of programming, Math 230 or 231

What will you learn?
- Algorithms for interpolation, approximation, integration, nonlinear equations, linear systems, fast FOURIER transform, and differential equations emphasizing computational properties and implementation

Who teaches it?
- Jesse Barlow, Xiantao Li and Madduri
What is this course about?
• Introduction to Numerical Analysis II

Skills/Prerequisites needed for the course?
• Prerequisite CMPSC 455

What will you learn?
• Polynomials and piecewise polynomial approximation; matrix least square problems; numerical solution of eigenvalue problems; numerical solutions of ordinary differential equations.

Who teaches it?
• Jesse Barlow

Student Opinions

Class Difficulty?

Out of class hours: N/A

What was best about the class?
N/A

What was worst about the class?
N/A
Miscellaneous
What is this course about?
• Fundamentals of Computer Graphics

Skills/Prerequisites needed for the course?
• Prerequisites CMPSC 311, Math 220, Math 230 or 231

What will you learn?
• Fundamentals of computer graphics: input/output devices, transformation, projection, clipping, hidden line/surface elimination

Who teaches it?
• Yanxi Liu

Class Difficulty?

What was best about the class?
N/A

What was worst about the class?
N/A

Out of class hours: N/A
Theoretical
 CMPSC 467

General Information

What is this course about?
- Factorization and Primality Testing

Skills/Prerequisites needed for the course?
- Prerequisites CMPSC 360 or Math 311W

What will you learn?
- Prime sieves, factoring, computer numeration systems, congruences, multiplicative functions, primitive roots, cryptography, quadratic residues

Who teaches it?
- Robert Vaughan

Student Opinions

Class Difficulty?

Out of class hours: N/A

What was best about the class?
- N/A

What was worst about the class?
- N/A

Fall Course
Software Design / Programming
What is this course about?
• Introduction to Compiler Construction

Skills/Prerequisites needed for the course?
• CMPSC 461

What will you learn?
• Design and implementation of compilers; lexical analysis, parsing, semantic actions, optimization, and code generation.

Who teaches it?

?? Course
What is this course about?
- Applications Programming

Skills/Prerequisites needed for the course?
- CMPSC 221 or 425, CMPSC 311 or 312, CMPSC 462 or 465

What will you learn?
- Development of software for devices including smartphones, tablets, handheld units, and other general purpose computing platforms

Who teaches it?
John Hannan

Class Difficulty?
There was one project every week. Projects are much harder than the stuff you learn in class

What was best about the class?
- Projects will force you to learn a lot
- You'll be a decent iOS developer by the end of the class.

What was worst about the class?
- Takes a lot of hours to complete the programming assignments.