

Mitchell M. Holland, Ph.D. Professor, Biochem \& MolBio

Forensic Science Program Eberly College of Science
Penn State University, University Park, PA

Advances in Mitogenome Sequencing for Forensic Laboratories

Mitochondrial (mt) DNA sequence analysis is useful for assessing ancestral origin and migration, identifying human remains, and examining evidentiary material in forensic casework. Conventional Sanger-type sequencing (STS) has been used for more than three decades to address these interests. This paper eviews the methodologies and merits of using a massively parallel sequencing MPS) approach for mtDNA testing in forensic laboratories, as The Time is Now for Ubiquitous Forensic mtMPS Analysis.

This article is categorized under:
Forensic Biology > Haploid Markers
Forensic Biology > Forensic DNA Technologies
KEywords
forensic DNA, massively parallel sequencing, mitochondrial DN

Forensic Science Program, Department of iochemistry and Molecular Biology, The Park, Pennsylvania
Institute of Legal Medicine, Medical Universi
Austria
dited by Michael Coble, Edito

Article
Routine Mitogenome MPS Analysis from 1 and 5 mm of Rootless Human Hair

Lauren C. Canale ${ }^{1}$, Jennifer A. McElhoe ${ }^{1}{ }^{\bullet}$, Gloria Dimick ${ }^{2}$, Katherine M. DeHeer ${ }^{3}{ }^{\bullet}$, Jason Beckert ${ }^{4}$ and Mitchell M. Holland ${ }^{1,2, *}$

https://sites.psu.edu/hollandresearch/

CASE REPORT
Mitochondrial DNA:
State of Tennessee v. Paul Ware

Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov
establishes the authenticity of the remains of Tsar Nicholas II

mtDNA sequence analysis is a useful tool for testing hair shafts and old skeletal remains associated with criminal and identification cases

Hairs are the most common biological evidence type found at crime scenes

Shed hairs (telogen) represent up to 90\% of evidentiary hairs

While chromosomal DNA typically accounts for $>95 \%$ of the DNA content in hair shafts, the nucDNA is highly degraded with an average fragment length of 40-70 bps, more degraded than mtDNA

Table 11. Sequencing statistics for recent single hairs.

Extracts	\# Unique Human Reads	\# mtDNA Unique Reads	\# Unique nuDNA Reads	$\%$ mtDNA/\% nuDNA (bp)	\% mtDNA/\% nuDNA (Reads)
R1	34,909	1,865	33,044	$11.95 / 88.05$	$5.3 / 94.7$
R2	327,165	1,707	325,458	$0.59 / 99.41$	$0.5 / 99.5$
R3	42,308	2,287	40,021	$9.29 / 90.71$	$5.4 / 94.6$
R4	196,737	4,790	191,947	$2.88 / 97.12$	$2.4 / 97.6$
R5	94,969	10,997	83,972	$14.08 / 85.92$	$11.6 / 88.4$
R6	952,728	25,575	927,153	$3.56 / 96.44$	$2.7 / 97.3$

genes	MDPI
Article	
Fragmented Nuclear DNA is the Predominant	
Genetic Material in Human Hair Shafts	
DNA Support Unit, FBI Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA; mdbrandhagen@fbi.gov (M.D.B.); oploreille@fbi.gov (O.L.)	

Ed Green UC Santa Cruz

Astrea

Routine mitoGenome MPS Analysis from 1-5 mm of Human Hair Shaft

Where the field is
likely to move

$$
\text { mitoGenome }=\sim 16,569 \mathrm{bps}
$$

HVI/HVII
mtGenome

Populations	\boldsymbol{n}	RMP	GD	RMP	GD
AFA	87	2.42%	98.72%	1.31%	99.84%
CAU	83	3.12%	98.06%	1.20%	100.00%
HIS	113	3.33%	97.53%	0.98%	99.91%
Mean \pm SD		$2.96 \pm 0.48 \%$	$98.10 \pm 0.59 \%$	$1.16^{\mathrm{c}} \pm 0.17 \%$	$99.91^{\mathrm{d}} \pm 0.08 \%$

	Contents ists sualable at ScienceDirect	
	Forensic Science International: Genetics	
Elsevier	iournal homepage: www.elsovier.com/locate/tsis	
High-qual of the hum	igh-throughput massively parallel sequencing chondrial genome using the Illumina MiSeq	
Jonathan L Seung Bum Walther Par	by L. LaRue ${ }^{21}$. Nicole M. Novroski ${ }^{4}$. Monika Stoljarova ${ }^{2}$. ei Zeng ${ }^{2}$. David H. Warshauer ${ }^{\text {a }}$. Carey P. Davis ${ }^{\text {a }}$. Sajantila ${ }^{\text {ad }}$. Bruce Budowle ${ }^{2 \times}$	

Amplification Approaches \& Kits Available

- Promega
- PowerSeq CRM (control region, 1 multiplex, 144-237 bps)
- PowerSeq WGM (mitogenome, 1 multiplex of 161 amplicons averaging 167 bps, research product)
- Verogen
- ForenSeq mtDNA Control Region (2 multiplexes, 18 amplicons averaging 118 bps)
- ForenSeq mtDNA Whole Genome (2 multiplexes, 245 amplicons averaging 131 bps)
- ThermoFisher
- Precision ID mtDNA Control Region Panel (2 multiplexes)
- Precision ID mtDNA Whole Genome Panel (2 multiplexes of 81 amplicons averaging 161 bps)

Hair Study

Tested 1 mm and 5 mm cuttings from 60 hair shafts (120 samples).
Approximately 1 cm of the root end was removed, followed by the 5 mm cutting, and finally the 1 mm cutting.

Hair Study

Head Hairs in Three Different Age Ranges:

Recent (R) $=<5$ years of age (13 hairs)
Old (O) $=5-27$ years, avg of 13.6 (24 hairs)
Older (VO) $=41-46$ years, avg of 43.4 (23 hairs)

Microscopic Characterization

- Characterized on a Leica FS 4000 comparison microscope

- Medulla structure
- Diameter
- Other characteristics such as pigment, ovoid bodies, cortical fusi, cuticle structure, physical damage

Hair Extraction

LMB = Lyse (dissolve) \& Magnetic Beads

Custom mtqPCR assay to assess both quantification and degradation

mtDNA Yield v. Width of Hair

$$
\begin{aligned}
& \mathrm{R}=<5 \text { yo } \\
& \mathrm{O}=13.6 \text { yo } \\
& \mathrm{VO}=43.4 \text { уо }
\end{aligned}
$$

mtDNA Yield v. Width of Hair

age

Width without a medulla

Degradation Index (DI) v. Age

NSICSCN

$$
\begin{aligned}
& \mathrm{R}=<5 \text { yo } \\
& \mathrm{O}=13.6 \text { yo } \\
& \mathrm{VO}=43.4 \text { yo }
\end{aligned}
$$

Reverse Terminator Sequencing

PowerSeq WGM (mitogenome, 1 multiplex of 161 amplicons averaging 167 bps)
Sequencing on the Illumina MiSeq

Goodwin et al., Nat Genet Review 2016

Holland et al., FSIG 2017
GeneMarker ${ }^{\text {TM }}$ HTS

Percent of the mitoGenome Reported v. Age

If mitogenome sequencing is to be adopted by the forensic community, a database of haplotypes will be required to provide weight estimates for a match

EMPOP Database

In total, the EMPOP Release 13 holds 48,572 quality-controlled mitotypes with at leas HVS-I variation (16024-16365). Thereof,

- 46,963 cover HVS-I and HVS-II (16024-
$1636573-340)$

16365 73-340)

- 38,361 cover the Control Region (16024576)
- 4,289 cover the entire mitogenome (ALL)

The 10,000 mitogenome project!

PacBio Sequel Ile HiFi

 Sequencing

Reaction volume is ~ 20 zeptoliters (10^{-21} liters). During a single incorporation, the fluorescent dye is detected and released.

PacBio HiFi Accuracy

The polymerase sequences the template 8+ times ...

mmh20@psu.edu

