
Understanding EM algorithm   
Previously on our paper: Context-aware Location Annotation on Mobility Records through User
Grouping, we use Viterbi algorithm for the inference of HMM. Viterbi algorithm is a specific
algorithm under in framework of Expectation-Maximization (EM) algorithm. Recently when I look
into the clustering algorithm with the help of JJ and Wenbo, I try to understand EM algorithm
again.

 

Problem formulation   

Given a set of observable variables  and unknown (latent) variables , we
want to estimate parameters in a model  to the data, where the likelihood is given by

Then our solution is for maximum likelihood estimation (here we use  to replace  for
simplicity) :

If both of above equation is hard to solve directly, we could:

We could directly maximize  using a gradient method (e.g., gradient ascent,
conjugate gradient, quasi-Newton) but sometimes the gradient is hard to compute, hard to
implement, or we do not want to bother adding in a black-box optimization routine.

 

Assuming ,  is known and easy to compute, which in most case is true. For
example, in Gaussian Mixture Model for clustering,  indicates which cluster  belongs to, 

 is the initial Gaussian distribution.

[ Our presentation will focus on the maximum likelihood case (ML-EM); the maximum a posteriori
case (MAP-EM) is very similar.]

 

Iteratively solving the   
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Why should we divide ? We will answer this later.

Based on the Jensen's Inequality, since  function is concave, we have:

A figurative illuatration about Jensen's Inquality is as follows (in this case it's a convex example):

[Source] (http://cs229.stanford.edu/notes/cs229-notes8.pdf)

 

Following above equation:

http://cs229.stanford.edu/notes/cs229-notes8.pdf


Usually in an iterative fashion,  is known, the second term is a constant. Then:

Usually we define:

Therefore, we have

Remark:

 is a lower bound of the objective function 

The Classical EM Algorithm   

0. GMM as an example   

For GMM, we have:

The goal of GMM is to find a  that:

Our strategy will be to instead repeatedly construct a lower-bound on ` (E-step), and then
optimize that lower-bound (M-step).

E-step

The E-step of the EM algorithm computes  and repeatedly

construct a lower-bound on 

given the observed data  , and the current parameter estimate .
M-step:



The M-step consists of maximizing over  the expectation computed above. That is, we
set

 

 

1. Solving Expectation in E-step   

Remember that from Equation  we know  us a lower bound of . Then if we
consistently push up the , then we will some how get a good estimation on  .

 

Then we will show how to compute .

Equation  can be estimated easily.

For GMM, calculating  is easy, , which indicates the probability of 

belongs to cluster .

Here, we have  and  , this will be used later.

Since we can compute  by summing weights, and  is a drawn from a known
distribution as in  , the same goes with .

2. Maximizing in M-step   

Maximize the M-step is equal to solving the following optimization problem:



Using K.T.T condition, we can solve its conjecuate problem:

For GMM, solving above equation leads to:

 

Why will EM converge?   

Now we need to prove:

which shows EM always monotonically improves the log-likelihood.

The key to showing this result lies in our choice of the .

By combining Equation 1 and 1.1 :



Hence, EM causes the likelihood to converge monotonically. In our description of the EM
algorithm, we said we’d run it until convergence. Given the result that we just showed, one
reasonable convergence test would be to check if the increase in  between successive iterations
is smaller than some tolerance parameter, and to declare convergence if EM is improving  too
slowly.
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