Starting from the objective of PG

0 is the parameter of a policy
The policy objective functions are:
e In episodic environments: J; (6) = V(s1) = Eg[v1]

® |n continuing environments:
o If we use state value: Jy (0) = Y, 70 (s)V(s)

o If we use state-action (reward) value: Jg (0) = >, 7%(s) 3, mo(als)R®

79(s) is the stationary distribution of state s for policy §: § — R

7o (s, a) is the probability of taking action a at state s according to parameterized
policy 6.

0 directly influence 7 and indirectly influence 7.

If we denote the trajectoryas Y : (s1,a1, S2,as9,...,87-1,ar_1, ST), then the objective function
can be re-written as:

J(0) =Er[> R(s:,az);me]

= Eyp, (1) [Z R(st,at)]

=Y P(Y|))R / po(V)r(T)dY

T
which means, the expected rewards equals the sum of the probability of a trajectory x
corresponding rewards.

po(T) = py(s1,a1,...,87) = Dp(s1) Hf;ll mo(at|st)p(sr|sr—1,ar_1) is the probability of a
trajectory under policy .

Policy-based RL is an optimization problem which finds € that directly optimizes the goal J(0).

Policy gradient search for a local maximum in J(6) by ascending the gradient of the policy w.r.t. 6:
Al = OéAgJ(@)
With the policy gradient theorem, we have:

For any differentiable policy 7y (s, a), for any of the policy objective functions
J = Ji,Jv, Jg, the policy gradient is



ANpJ(0) =E,, ,0[Ag log m(s,a)Q™ (s, a)]

[model based] = /TG(S)/ mo(als) x Ag log mg(als) x Q™ (s,a) da ds

[model free] = / mo(als) * Ag log mg(a|s) * Q™ (s,a) da
For better understanding, we have the corresponding gradient w.r.t Y :

AgJ(0) = Ay /pg(T)r(T)dT = /pg(T) * Aglog pg(Y) x r(1)dY
= Evp,(1) [A0log po(T) * 7(T)]

Take the log:
T-1
log pe(Y) = log p(s1) H o (at|st)p(sr|sr-1,ar-1)
t=1
T-1
= log p(s1) + Z log o (as|st) + log p(sr|sT-1,ar-1)
t=1

Take the derivative over 6 :

T-1
Aglog ps(T) = A > log mo(ay|s:)

t=1
Then we have:
AgJ(0) = Exp,(1)[Aslog po(Y) * ()]

T-1

= Expy(r) [(As Z log mg(ay|st)) * r(T)

t=1

This is good, since the gradient now is an expectation so that we can use sampling (of
trajectories) to approximate it.

Monte-Carlo Policy Gradient (REINFORCE)

Monte-Carlo approach believes that if we draw samples from a distribution, we can estimate the
expectation of that distribution well by everaging the samples.

| don't know why it is the following way, but all the materials | see use just one sample (trajectory)
as the expectation of the distribution (maybe that's why the variance of the estimation is large) in
a stochastic way (means a trajectory has a stochastic of training instances).

DpJ(0) = E,, ;0[Ag log me(als)Q™ (s, a)]
~ Ag log mg(az|st) * V(st)



function REINFORCE
Initialise @ arbitrarily
for each episode {s1,a1,r,...,5T—1,aT-1,rT7} ~ M9 dO
fort=1to T —1do
0 <+ 6 + aVglog mp(st, at) vt
end for
end for
return 0
end function

In a batch way (means a trajectory has a batch of training instances):

AJ(8) = Ey, 0 [Ag log my(als)Q™ (s, )]
~ 3" Ay log m(als) + V(s,)

teT
Better understanding with trajectory objective, if we define (1) = 23;11 r(s¢,at):

T-1 T-1

AgJ(0) = Eyp,(1) Z Aglog mp(a|st)) * Z (8¢, at)]
t=1

T-1 T—

[roll out once] Z Aglog g (as|st)) * Y 7(s¢,at)
=1 t

—_

I
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REINFORCE with baselines

Take back the policy gradient theorem:

NgJ(0) = E,, .+ [Ag log mg(als)Q™ (s,a)] = 3/ Vg log m(s,a)Q™ (s,a)



Policy gradient methods maximize the expected total reward by repeatedly estimating the gradient
g := VgE[Y ;2 7). There are several different related expressions for the policy gradient, which
have the form

g=E Z\D,Vg log mg(ay | 8¢)| , M
t=0

where ¥; may be one of the following:

1. Zzo r¢: total reward of the trajectory. 4. Q™ (s¢,a¢): state-action value function.
2. fo) _, r: reward following action ay. 5. A™(s¢,a¢): advantage function.
3. Yoo, e — b(s): baselined version of

previous formula. 6. ¢ + V™(844+1) — V™(s¢): TD residual.

The latter formulas use the definitions

oo oo
V7(s¢) := IEs.;J;:,, [Z Tt+l] Q7 (s¢,a¢) := ]Efzﬁl{fc' [z Tt+l] ()

=0 =0
A7 (sy,a¢) == Q™ (8¢, a¢) — V™(s¢), (Advantage function). 3)

Now we have a critic (state-action value function Qv) to tell us the goodness of its possible
trajectory and approximate the (), then we finally introduce our baseline b(s), which is
independent of my:

T-1
AgJ(0) ~ Z Vg log mo(s,a)(Q"(s,a) — b(s))
t=1
so that,

e introducing b(s) will not introducing bias
e introducing b(s) will decrease the variance of the gradients

b(s) will not introducing bias



T-1
71'9 70 ve‘](e) - 7rg,T9 [Z v9 lOg 7‘-9(37 a’)(Qw(s’ a’) - b(S))]

=1
T-1
K, +[V log m(5,0) (Q"(5,0) — b(s)]
=1
T-1 T-1
=) Er, #[Vglogmy(s,a)Q(s,a)] — > Er, 4[Ve logm(s,a)b(s)]
=1 =1
T-1 T-1
= ]E7r9,7"9 [Vg lOg 71-9(8’ a’)Qw(37 a’)] - E?Tg,Te [VQ lOg 770(37 a’)] * b(S)
=1 t=1
T-1 T-1
E,, [V logmg(s,a)Q"(s,a)] — ) 0xb(s)
=1 =1
T-1

= Eﬂ'g,‘r" [V'9 lOg Ty (37 a‘)Qw (5, a)]

t

Il
—

b(s) will decrease the variance of the gradients (Actor-
critic)

Varg, (VoJ(0)) = Eq, +[VoJ(0)]> — E2 ,[V4J(6)]

e For an actor-critic with a baseline:

T-1
Var[AgJ(0)] = Var[Z Vo log my(s,a)(Q" (s, a) — b(s))]

= > Var[Vy log mg(s,a)(Q"(s,a) — b(s))]
T-1
=2 {E[Vy log m9(s,a)(Q" (s, a) — b(s))]* — E*[Vy log m(s,a)(Q" (s, a) — b(s))]}
T-1
=2 {E[Vo log m(s,a)(Q"(s,a) — b(s))]* — E*[Vg log my(s,a)Q" (s, a)]}

Above we have several assumptions:

1. Several T are indipendent, which is pretty strong and sometimes wrong.
2. We assume independence among the values (since we are using anther Q-network Q" that
is independent on 6 ) involved in the expectation

E[Vg log (s,a)(Q%(s,a) — b(s))]* =~ E[Vy log m(s,a)]* x E[Q¥(s,a) — b(s)]?

then (we negect t in the following):



Var[AgJ(0)] =~ E[Vy log ms(s,a)]* * E[Q¥ (s,a) — b(s)]* — E*[Vy log m(s,a)Q"(s,a)]}
= E[Vy log ms(s,a)]” * E[Q"(s,a)” — 2 Q" (s,a) * b(s) + b(s)’] — E*[V log mg(s,a)Q" (s, a)]}

e For a PG without a baseline:

Var[AgJ(0)] =~ E[Vy log m(s,a))? * E[Q™ (s,a)?] — E*[Vy log m(s,a)Q™ (s,a)]}

Now the question becomes:

E [—2 % Q™ (s,a) * b(s) + b(s)?] < 07

t=1

This value has the minimum value when b(s) = Q™ (s, a)
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