
Fee-For-Service Contracts in Pharmaceutical Distribution Supply
Chains : Design, Analysis, and Management

Hui Zhao1, Chuanhui Xiong

Krannert School of Management, Purdue University, West Lafayette 47907
Srinagesh Gavirneni

Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853-6201
Adam Fein

Pembroke Consulting Inc., P.O. Box 58757 1515 Market Street, Philadelphia, PA 19102

September 2011

Fee-For-Service (FFS) contracts, first introduced in 2004, dramatically changed the way the phar-
maceutical distribution supply chains are designed, managed, and operated. Investment buying

(IB), forward buying in anticipation of drug price increases, used to be the way the distributors
made most of their profits! FFS contracts limit the amount of inventory distributors can carry

at any time (by imposing an inventory cap) and require inventory information sharing from the
distributors to the manufacturers while compensating the distributors with a per-unit fee. In spite
of its widespread popularity, FFS model has never been rigorously analyzed and its effectiveness

carefully tabulated. In this paper, we formulate the multi-period stochastic inventory problems
faced by the manufacturer and the distributor under the FFS and IB models, derive their optimal

policies and develop procedures to compute the policy parameters. We show that FFS contracts
can improve the total supply chain profit - the manufacturer and distributor are now able to share

a larger pie. Thus, there exists a range of the per-unit fees that leads to pareto-improvement.
Simulation results show that such improvement is about 1.7% on average and as much as 5.5%

and the improvement increases as the inventory cap decreases. Determining the pareto-improving
per-unit fees is a source of contention in FFS contract negotiation and we propose a simple, yet

effective, heuristic for computing them. Further, supply chain transparency facilitated by the FFS
contracts can significantly reduce the manufacturer’s supply-demand mismatch costs (by about
3.63% on average and as much as 13.01%) and we show that the manufacturer should take advan-

tage of this transparency especially when the inventory cap and drug price increase are high and
demand variance is low. We believe that these results have the potential to improve the efficiency

of pharmaceutical distribution supply chains, thus reducing the healthcare costs that are such a
big burden on the U.S. economy.

1. Motivation And Introduction

American pharmaceutical industry, with cumulative revenues of more than 315 billion dollars in

2007 (US Pharmaceutical Industry report 2008-2009), is the largest in the world. In the same year,

US government spent $7, 285 per person on healthcare and $878 of that was spent on drugs (OECD

health data 2009). The pharmaceutical industry is one of the most profitable businesses in the

U.S. and Bureau of Labor Statistics estimates that pharmaceutical and medicine manufacturing
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alone provided 289,800 jobs in 2008. The pharmaceutical industry plays a vital role in the larger

U.S. economy and it is imperative that any and all possible efforts are made to ensure smooth and

efficient operation of this industry.

Despite the importance of the pharmaceutical industry, the operations management community

has thus far conducted very little research that captures the uniqueness of pharmaceutical supply

chains. This is a significant cause for concern given that this industry has recently undergone

dramatic changes and faces great challenges over the next few decades, forcing itself to take a deeper

look at (and resolve) its supply chain issues. According to a pharmaceutical industry consultant,

supply chain management is an area that the industry knows the least about. Recently, Schwarz

and Zhao (2011) provided an overview of the industry based on their research of the industry data

and interviews of industry executives. As Schwarz and Zhao (2011) indicates, some manufacturers

understand the potential of supply chain management to reduce inventories and improve profits,

but they do not know how to do it. Following up on their observations, we conduct rigorous analysis

of two distribution business models that the pharmaceutical industry has used (Investment Buying

and Fee-For-Service) and particularly address the industry challenges of how to best take advantage

of the FFS model that is widely used.

The pharmaceutical supply chain, overly simplified, is composed of the manufacturers, the

distributors, and the providers or chain retailers who sell to the end users of the pharmaceutical

products. While the distributors are highly concentrated (the top three distributors take up more

than 90% of the U.S. market), the brand-name manufacturing is more diverse in nature (in the

United States, the 10 largest pharmaceutical corporations accounted for about 60% of sales in

2004).

Compared to other consumer product supply chains, pharmaceutical supply chains possess the

following unique features:

1. In most consumer supply chains, distributors earn their margin by effectively managing both

their upstream and downstream partners. In the pharmaceutical industry, the majority of the

distributor margin comes from upstream because: (i) large retail pharmaceutical chains, which

dispense the majority of pharmaceuticals, have significant buying power; and (ii) third-party

payers such as Medicare, Medicaid, and insurance companies impose significant cost pressure

on the distributors (Schwarz and Zhao 2010). Pharmaceutical distributors also generally

experience small profit margins (e.g., during the 1995-2008 period, the top-3 distributors had

an average aggregate profit margin of 1.2%).

2. Branded drug price continues to increase each year, attracting lots of attention (from the

public, the media, and the government) for the pharmaceutical industry. Figure 1 shows the
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rate of list drug price increases compared to general inflation rates from 2000 to 2011 (year-

to-date). For many manufacturers, such price increases are rather predictable. For example,

one big brand manufacturer always increases its drug prices on the first business day of each

year. Some other manufacturers inform or signal their distributors in advance about price

increases of particular drugs in order to, for example, make quarterly sales.

These predictable price increases have profound impact on the business strategies of the man-

ufacturer and the distributor in the industry. In fact, before 2004, drug price increases had been

distributors’ major revenue source as they buy large stock in speculation of future price increases.

This business model is called the Investment Buying (IB) Model. Such practices have led to many

disadvantages:

1. High and non-transparent inventory level at the distributors as they try to hide from the

manufacturers how much inventory they have in order to buy how much ever they want. This

behavior is further exacerbated by the liberal returns policy in this industry.

2. Big fluctuations in the order quantities from the distributors, making production and inven-

tory planning difficult for the manufacturers.

3. Loss of revenue for the manufacturers due to distributors’ investment buying.

4. Less stable revenue sources for distributors as they have to rely on speculation instead of

services provided to the manufacturers to make profits.

Despite the issues mentioned above, investment buying remained the principal business model

for the pharmaceutical distributors until 2004, when an industry-wide switch from IB to Fee-

for-Service (FFS) took place. Indeed, this change was fascinating in its scope and speed (all top-3

distributors changed to FFS model with most of their suppliers within one to two years (Fein 2007)).

There are many reasons for this switch, including the issues mentioned above, but most importantly,

an SEC (Security and Exchange Commission) investigation of a big pharmaceutical manufacturer

(Bristol Myers Squibb, BMS) for channel stuffing facilitated by the practice of investment buying.

Although channel stuffing is not, per se, illegal, nor was BMS ever found guilty, BMS reached

a settlement with SEC, agreeing to restate its financial reports, pay $300 Million in fines and

payments to investors, and “limit future sales to distributors based on demand or amounts that do

not exceed approximately one month of inventory on hand” Fein (2005). Although public attention

was focused on BMS, most of the major pharmaceutical manufacturers participated in investment

buying, and some were under scrutiny. Following BMS, drug manufacturers were under a lot of
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Figure 1: Branded Drug Price Increases and General Inflation

pressure to reduce the amount of inventory in their distribution channels, leading to the rise of

FFS. For more details regarding the switch from IB to FFS, see Schwarz and Zhao (2011).

Under the Fee-For-Service (FFS) model, the distributors draw their revenue mainly from the

fees charged to the manufacturer for services provided to them. The services provided include

maintaining an inventory level within specified ranges and provide transparency by sharing in-

ventory level and other information (e.g., demand). Specifically, under FFS model, the Inventory

Management Agreements (IMA) between the manufacturer and the distributor specifically control

the inventory level at the distributors. Distributor’s inventory level is required to be high enough

to maintain a mutually agreed upon service level to the downstream customers and low enough

to control investment buying. It is important to point out that under FFS/IMA, distributors still

increase their inventory levels before price increase (a rational action for a decentralized distribu-

tor), however, the amount of investment buying is controlled by the maximum level of inventory

that the distributor is allowed to carry at any time as specified in the FFS/IMA contracts. Such

contracts are easily verifiable due to the aforementioned information sharing. Thus, when appro-

priately implemented, a FFS/IMA contract reduces investment buying by the distributor, reduces

the variability in the demands that the manufacturer faces, and improves transparency throughout

the supply chain.
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Industry data has shown (Schwarz and Zhao (2011)) that the impact of FFS/IMA on phar-

maceutical distributors has been profound as they are forced to be more efficient in achieving

the same service level with significantly lower inventory. However, FFS/IMA and particularly

information-sharing enabled by FFS/IMA have had little impact on pharmaceutical manufactur-

ers’ own inventory-management practices. According to the interviews conducted by Schwarz and

Zhao (2011), part of the reason is the lack of decision support mechanism on how to use the infor-

mation now provided to the manufacturers under FFS. Indeed, although the research on the value

of information and how to incorporate information into manufacturers’ decision making is extensive

(e.g., Gavirneni, et al. 1997 and Chen 2003), little is done to tackle the unique challenges in the

pharmaceutical industry. At the same time, the pharmaceutical industry is facing another difficult

question - the design of the FFS/IMA contract. Since its inception in 2004, distributors and man-

ufacturers have been trying their own ways to set contract parameters because there have been no

studies providing them any guidance in the important contract design problem. Furthermore, the

question remains as to who actually benefits from FFS contracts. Is it (i) the distributors because

of the fees they receive from the manufacturers, (ii) the manufacturers because of the reduced in-

vestment buying by the distributors, or (iii) the consumers because of reduced costs in the supply

chain. The answer to this question is not so obvious. Our research shows that the supply chain

is indeed better off from this switch. Further, if the fees are determined appropriately, both the

manufacturer and the distributor can be better off from switching from an IB model to an FFS

model. Thus, it is not a stretch of imagination to say that the pharmaceutical industry, by their

implementation of the FFS contract, has found a true win-win situation.

Specifically speaking, the purpose of this research is to (i) characterize the manufacturer’s and

the distributor’s optimal decisions and provide industry-feasible solutions as to how they should

operate under the FFS model; (ii) investigate how each FFS parameter affects each player’s and

supply chain’s profit; (iii) by comparing each player’s performance under FFS and IB models,

provide guidance regarding FFS contract design, and in particular how to set the FFS contract

parameters such that each player can be better off under FFS than under IB model; and (iv)

capture the value of information in this industry setting. An extensive simulation study verified

the analytical results and provides additional managerial insights useful for this industry.

Before we detail the supply chain setup, the analytical results, and the computational results,

we would like to briefly describe our main findings. We formulated the stochastic inventory control

problems faced by the manufacturer and the distributor, established that the produce-up-to and

order-up-to policies are optimal for them, respectively, and developed procedures to compute the

FFS parameters. A comprehensive simulation study demonstrated that FFS contracts improve

the total supply chain profit by about 1.7% on average and by as much as 5.5%. Unfortunately,
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these profit gains are not universal in the sense that the manufacturer profit increases while the

distributor profit decreases. Therefore, it is necessary for the manufacturer to share some of the

gains with the distributor and the FFS fees are an ideal mechanism for this purpose. We are able to

compute the fee range that results in pareto-improvement for both the players. We further develop

a simple heuristic for computing these fee ranges and demonstrate its effectiveness.

The rest of the paper is organized as follows. In §2, we briefly review the literature. In §3, we

formally introduce the supply chain model set up. In §4 and §5, we characterize the manufacturer’s

and distributor’s optimal policy under FFS and IB models, respectively. In §6, we investigate

the FFS contract design problem through a detailed simulation study. We also derive an easy-to-

implement heuristic and demonstrate the effectiveness of this heuristic using a numerical study. In

§7, we further establish the robustness of the results and provide further insights through additional

numerical analysis. In §8, we conclude the paper with a summary of the managerial insights.

2. Literature Review

Relatively little has been published in the supply chain and operations management literature

that is directly on pharmaceutical supply chains. Burns et al. (2002) is the most frequently cited

general reference. Schwarz (2010) describes the flow of products, dollars, and information in the

supply chains for medical and surgical supplies, pharmaceuticals, and orthotic devices. Most other

available resources are website postings and reviews from industry experts, consulting companies,

and industry reports. For example, Yost (2005) and Fein (2005, 2007) discuss the change of the

business model from Investment Buying to FFS (Fee-For-Service) and the impact of this change

on the players in the pharmaceutical supply chain. These readings provide some background

information of this industry.

Recently, Schwarz and Zhao (2011) conducted some empirical research focused on the pharma-

ceutical industry. They provided an overview of the industry, its current status, and the challenges

it faces, from the operations perspective. Based on their analysis of the industry data and interviews

of industry executives, they also examined the impact of FFS/IMA contracts on the pharmaceutical

distributors and manufacturers. They concluded with a discussion of many current issues that are

worth the attention of the supply chain/operations management researchers.

Very limited research addresses the pharmaceutical supply chain using analytical models. Re-

cently, Martino et al. (2010) examines the different distribution models for the pharmaceutical sup-

ply chain using a mathematical model. Specifically, they compare IB, FFS, and direct-to-pharmacy

models for the manufacturer by considering cases where the aggregated demand is deterministic

and determine the profit maximizing production-inventory strategy in a multi-period setting for the
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manufacturer and distributor under each contractual agreement. They do not consider fee designs

or value of information (in fact, the value of information cannot be studied in this case due to the

demand being deterministic).

To our knowledge, our paper is the first to analytically study the supply chain, from a multi-

stage stochastic inventory perspective, under the IB and FFS business models. By solving the

optimal inventory and production policy under each model, we show how players change their

behavior under different business models and how to best design FFS/IMA contracts to ensure

pareto-improvement.

In addition to the limited research particularly targeted at pharmaceutical industry as discussed

above, the research presented in this paper is related to a few areas in the operations area, including

production and inventory control, production planning with information sharing, and supply chain

management. In the following, we briefly review related literature in these areas.

First, our paper is related to the literature that studies production and inventory decisions in

serial supply chains. Graves (1999) reviews production planning and inventory control models for

centralized systems with predictable demand. When it comes to multi-stage supply chains with

stochastic demands, Anupindi and Akella (1993) and Glasserman and Tayur (1995) were the early

papers. Since then, there has been a plethora of research on these systems and most of it has been

captured in books compiled by Tayur et al. (1999) and de Kok and Graves (2003).

In modeling the FFS model, one important aspect is to incorporate the distributor’s on-hand

inventory information into the pharmaceutical manufacturers’ production and inventory decisions

and analyze the value of such information. A great deal of literature is available (see Chen (2003))

to demonstrate the value of downstream information to upstream suppliers. In particular, this

literature shows that with more information about the downstream inventory or demand, manufac-

turers can improve production planning, better matching their stock levels with the demand, and

hence reduce total costs. Gavirneni et al. (1999) is the work that is most closely related to ours.

It compares a traditional model (in which downstream orders are the only information available to

a manufacturer) with two models, one in which the manufacturer is informed of the downstream

replenishment policy and its parameters and another in which the manufacturer is also informed of

the downstream on-hand inventory information. Their numerical study shows significant savings

(as large as 35%) for the manufacturer due to the modification of his production and inventory pol-

icy. Lee et al. (2000), Cachon and Fisher (2000), Aviv and Federgruen (1998), and Simchi-Levi and

Zhao (2004) report similar results. For a comprehensive literature review on value of information

sharing, see Chen (2003).

None of the studies described above, however, incorporates the unique characteristics of the

pharmaceutical supply chain. Price increase, which creates the non-stationary ordering process of
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the distributor to the manufacturer, is one such characteristic of brand-name drugs. As Lee et al.

(1997) show, price uncertainty is one cause of the bullwhip effect. Although the FFS/IMA business

model limits investment buying, distributors still take advantage of price increases within the

boundaries of IMA contracts. Therefore, incorporating the impact of price increases is an important

aspect when developing models for pharmaceutical decision making. Gavirneni and Morton (1999)

study a retailer’s inventory speculation behavior in case of price increase. In contrast, we study

a three-level supply chain and show how price increase will change the behavior of the players at

various levels in the supply chain.

There has been extensive literature on supply chain contracts in decentralized systems, e.g.,

wholesale price contracts, revenue sharing contracts, etc. and variations of these contracts. See

Cachon (2003) for more detailed review. Most of these contracts are studied under the single-period

setting and do not consider the price increase effect which is the key for the pharmaceutical industry.

The FFS contract is the pharmaceutical industry’s particular way of limiting investment buying

and compensating the distributors. It is essentially a profit/revenue sharing contract between the

manufacturer and the distributors.

Investment buying and price fluctuations have been discussed in the operations literature mainly

as a cause of demand information distortion, i.e., bullwhip effect (Lee, et al. 1997). Much research

discusses various ways to mitigate the bullwhip effect. These include demand information sharing

(e.g., Gavirneni, et al. 1999), vendor managed inventory (VMI) (e.g., Aviv and Federgruen 1998),

and collaborative planning, forecasting, and replenishment (CPFR) (e.g., Waller, et al. 1999, Aviv

2001). In the pharmaceutical industry, price increase causes investment buying which brings many

disadvantages. Directly limiting investment buying using contracts through inventory caps and

information sharing are used to reduce the negative impact of investment buying, which are also

the main targets of analysis in this paper.

3. Supply Chain Setup

Consider a three-level pharmaceutical supply chain, where the brand-name manufacturer (she)

supplies the distributor (he) who sells to a retailer (representing a provider or a chain retailer)

over an N -period finite horizon. The downstream retailer faces stochastic demand following i.i.d.

distribution for each period k with a cdf Φ() and pdf φ(), which we assume to be known to the

manufacturer and the distributor. The manufacturer produces to stock with lead time of one

period for regular production. She fills the demand from her stock and any unmet demand is

satisfied immediately using overtime or any other possible means reflected in a penalty cost, p.

Although this assumption is mainly for simplification of the analytical model, it is not far from
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reality since “typically the manufacturer tries all possible means (using overtime or dispatching

stocks from different inventory depots) to avoid stockouts”, according to a manager in one of the

top-3 distributors. The distributor fills demand from his stock and any unsatisfied demand at the

distributor is backordered with a shortage cost, pd. We assume no lead time for distributor’s orders.

The distributor’s lead times may be added which will complicate the model with little additional

insights. In each period, the manufacturer determines how much to produce (for the next period)

and the distributor determines how much to order.

We consider and compare the FFS model with the IB model over a finite horizon, corresponding

to an average length of time within which there is one price increase. For example, if the price

of a branded drug is increased every year, the finite horizon is set to be one year, with the price

increase occurring in the middle of the horizon. Formally, we assume there is a price increase, δ,

in the middle of the horizon at the beginning of period n (n ∼ N/2). Notice that, in reality, there

may be more than one price increase during the drug’s patented years. However, as we will show,

after one price increase, each individual party as well as the supply chain settle down to a new

steady state. As long as the two price increases are far enough so that their impacts do not interact

(which is the case in reality), we can decompose the different price increases and focus, as we do

here, on the impact of one price increase on the performance of individual parties and the supply

chain. We assume all unsold inventory can be returned to the manufacturer with full refund at the

end of the finite horizon (this is consistent with the very liberal returns policy in this industry)

and hence we will see stationary policy over the finite horizon. We also assume the manufacturer’s

and distributor’s unit holding costs and unit shortage penalty costs do not change after the price

increase.

To summarize, in every period, the sequence of events is as follows: (a) the manufacturer re-

ceives the units produced in the previous period; (b) the distributor places an order if needed for

that period; (c) if the manufacturer does not have enough inventory to fulfill the demand, she gets

the product immediately from overtime (or expediting from other depots) at a higher cost; (d)

the manufacturer ships the product to the distributor; (e) the manufacturer decides how much to

produce (which will be available for next period); (f) distributor’s demand realizes and he satisfies

the demand as much as possible from his inventory. Unsatisfied demand at the distributor is back-

logged; (g) inventory-related costs (holding costs for the manufacturer and distributor, backorder

costs for the distributor and shortage penalty cost for the manufacturer) are tabulated.

Model FFS: Under the FFS model, the manufacturer imposes an upper limit on how much

inventory a distributor can hold (inventory position), ȳ, referred to as the distributor’s inventory

cap. Such an inventory cap effectively controls the amount of investment buying. As a result,
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the distributor charges a fee (u) from the manufacturer for each unit the manufacturer distributes

through him, as the “compensation” for his loss of revenue for investment buying, or in another

term, for his service. The distributor also shares with the manufacturer how much on-hand inven-

tory he has at the beginning of each period. Because of this information, the manufacturer is able

to calculate the total customer demand seen by the distributor since he last placed an order to

the manufacturer (i.e., the investment buying period) and uses that to more accurately estimate

the distributor’s future orders after the price increase. As we will show, in the periods following

the price increase, the manufacturer will have a state-dependent base-stock policy with the state

defined as the total customer demand seen by the distributor since he last placed an order to the

manufacturer (i.e., the investment buying period).

Model IB: Under the IB model, there is no limit of how much the distributor can order and

the manufacturer does not have information about distributor’s on-hand inventory. Hence, the

manufacturer can only estimate the distributor’s demand by the number of periods since the in-

vestment buying period. As we will show, under IB, in the periods following the price increase,

the manufacturer will again have a state-dependent policy, with the state defined as the number of

periods since the manufacturer’s last demand. It is easy to see that IB model is a special case of

FFS model with ȳ = ∞, u = 0, and no on-hand inventory information sharing.

Before we move on to detailed analysis, we first summarize notations used, some mentioned

above, others not.

hd: distributor’s unit holding cost before price increase,

pd: distributor’s unit penalty cost for backorders before price increase, pd > hd,

r: distributor’s unit selling price before price increase,

Dk: Stochastic demand seen by the distributor in period k, following i.i.d. c.d.f. of Φ() and

p.d.f. of φ(), 1 ≤ k ≤ N .

D̄: Mean demand seen by the distributor in each period.

Qk: Order quantity from the distributor to the manufacturer in each period k, 1 ≤ k ≤ N ,

cd: Distributor’s buying price from the manufacturer before price increase,

xd
k: distributor’s on-hand inventory level at the beginning of period k,

yd
k: distributor’s total amount of inventory available to satisfy demand in period k, xd

k+1 =

yd
k −Dk,

xk: manufacturer’s on-hand inventory level at the beginning of period k,

yk: manufacturer’s total amount of inventory available to satisfy demand in period k, xk+1 =

(yk −Qk)
+,

h: manufacturer’s unit holding cost,
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p: manufacturer’s unit penalty cost if there is shortage, p > h,

c: manufacturer’s unit production cost.

4. Fee-for-Service Model

In this section, we analyze each player’s optimal policy under FFS. As we mentioned before, under

FFS model, there is an inventory cap (ȳ) as to how much inventory the distributor may hold in

any period and distributor shares his on-hand information with the manufacturer. The distributor

charges a fee, u, for each unit that the manufacturer sends to him.

4.1 Distributor’s Optimal Policy

Due to backorders, distributor’s expected revenue/sales is not affected by his inventory decisions.

Hence, his optimal ordering policy is obtained by minimizing his expected cost. Let V d
k (x) represent

distributor’s expected optimal cost from period k to the end of the horizon, given he starts this

period with an on-hand inventory of x. We have V d
k (x) = minx≤yd

k
≤ȳ{G

d
k(y

d
k) − (cdk − u)x}, where

Gd
k(yd

k) = Ld
k(yd

k) + (cdk − u)yd
k +

∫ ∞

0
V d

k+1(y
d
k −D)φ(D)dD

Ld
k(y) = hd

k

∫ y

0
(y −D)φ(D)dD+ pd

k

∫ ∞

y
(D− y)φ(D)dD.

Note that before the price increase, i.e., 1 ≤ k ≤ n− 1, cdk = cd and after price increase, i.e., k ≥ n,

cdk = cd + δ. As mentioned, we assume the distributor’s terminal cost function as:

V d
N+1(x

d
N+1) = −(cd + δ − u)xd

N+1,

which means at the end of last period, the distributor can return all leftover units with full re-

fund. Moreover, in FFS/IMA contracts, there is an end-customer fill-rate requirement from the

manufacturer to the distributor, γ, corresponding to a minimum stock level, y = Φ−1(γ) at the

distributor. Due to the high penalty cost for not filling a demand immediately, we assume that

all newsvendor quantities satisfy the minimum stock level, y. Following the standard backward

induction, we obtain the distributor’s optimal policy, summarized in the following theorem.

Theorem 1 Define y∗ = Φ−1( pd

pd+hd
). The distributor’s optimal policy is a non-stationary base-

stock policy with the base-stock level equal to min(ȳ, yd∗
k ), where yd∗

k = y∗ for any period other than

n− 1 and yd∗
k = yd∗

n−1 for period n− 1 with yd∗
n−1 ≥ y∗.

Theorem 1 shows that the distributor maintains his newsvendor base-stock level in all the

periods except in the period right before price increase (period n−1) in which he will do investment

buying as much as allowed by the inventory cap, i.e., yd∗
n−1 ≥ y∗, ∀k 6= n− 1.
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4.2 Manufacturer’s Optimal Policy

Because all distributor orders are satisfied from the manufacturer (either from her inventory or from

overtime production), the manufacturer’s sales is equal to distributor demand which is not related

to her production and inventory decision. Hence, the manufacturer’s production decision could also

be solved to minimize her relevant expected cost. For tractability, we assume the manufacturer’s

terminal cost to be VN+1(x) = −cx.

To capture the manufacturer’s expected cost, we need to characterize her demand process.

Since the distributor has a stationary base-stock policy for periods 1 ≤ k ≤ n − 2, Qk = Dk−1,

the manufacturer will see i.i.d. demand from the distributor with a pdf of φ() before period n −

1. Because of investment buying in period n − 1 before price increase, there may be one or

more period(s) starting from period n (price increase period) during which the manufacturer does

not see demand. We refer to these periods as transitional periods, k = n, n + 1, .... After the

distributor resumes ordering, he will have stationary base-stock levels again (Theorem 1), hence,

the manufacturer will again see i.i.d. demand following a pdf of φ(). However, the length of the

transitional periods is uncertain and the first positive demand seen by the manufacturer once

the distributor resumes ordering also follows a different distribution depending on the number of

transitional periods. Since the distributor shares on-hand inventory with the manufacturer, she

can use this information to help estimate the distributor’s demand process for k ≥ n.

Specifically, define the state of the manufacturer as follows: (1) Before the price increase (k ≤ n−

1), the manufacturer is in state 0−; after the distributor resumes his ordering, she is in state 0+. (2)

During the transitional periods, the manufacturer’s state, i = 0, 1, ..., ȳ−y∗−1, represents the total

downstream demand realized at the distributor since his investment buying in period n − 1. Now

define pi, 0 ≤ i ≤ ȳ − y∗ − 1 (i.e., pi is defined only for the transitional periods), as the probability

that manufacturer sees a positive demand in state i, hence, pi = Prob{i+D > ȳ − y∗|i < ȳ − y∗},

where D is the random demand seen by the distributor in one period. If the manufacturer sees a

demand from the distributor in state i, the demand, ηi, equal to i+D− (ȳ−y∗) = D− (ȳ−y∗− i)

in this case, follows a distribution with a cdf of Θi(ηi). It is easy to verify that pi ≤ pi+1 and

Θi(·) ≤st Θi+1(·), for i < ȳ−y∗ −1, i.e., the chance and quantity of distributor demand realization

increase as time goes along after the price increase.

Let V i
k (x) be the manufacturer’s minimum expected cost2 from period k to the end of the

horizon when she is in state i at period k with a starting inventory of x. We have V i
k(x) =

miny≥x{G
i
k(y)− cx}, where

2
V

i

k (x) does not include the manufacturer’s fees to the distributor since they are only affected by the downstream

demands, not by her production decisions.
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Gi
k(y) =



































cy + L(y) +
∫ ∞
0 V i

k+1(y −D)+φ(D)dD if i = 0− or 0+ and k 6= n− 1

cy + Ln−1(y) +
∫ ∞
0 V 0

n (y − (D + ȳ − y∗))+φ(D)dD if k = n− 1

cy + pi

[

Li(y) +
∫∞
0 V 0+

k+1(y − ηi)
+θi(ηi)dηi

]

+ (1 − pi)
[

hy+ +
∫ ∞
0 V i+D

k+1 (y)φ(D)dD
]

otherwise,

where

L(y) = h

∫ y

0
(y −D)φ(D)dD+ p

∫ ∞

y
(D − y)φ(D)dD,

Ln−1(y) = h

∫ (y−ȳ+y∗)+

0
(y − (D+ ȳ − y∗))φ(D)dD+ p

∫ ∞

(y−ȳ+y∗)+
(D + ȳ − y∗ − y)φ(D)dD,

Li(y) = h

∫ y

0
(y − ηi)θi(ηi)dηi + p

∫ ∞

y
(ηi − y)θi(ηi)dηi.

The following theorem shows the optimal production and stocking policy for the manufacturer.

Theorem 2 Under the FFS model,

• A produce-up-to policy is optimal for the manufacturer. The policy is characterized by a series

of produce-up-to levels, yi
k, for period k in state i. Particularly, before the price increase, the

produce-up-to levels are y0−

k , k < n. After price increase (k ≥ n), the produce-up-to levels are

uniquely defined by their state, referred to as yi, i = 0, 1, 2, · · · , ȳ − y∗ − 1, 0+.

• The optimal produce-up-to levels in the transitional periods have the following relationships:

y0 ≤ y1 ≤ y2 · · · ≤ yȳ−y∗−1 ≤ y0+

= Φ−1( p
p+h

).

The above theorem shows that because of price increase, the manufacturer’s optimal stock level

drops to a low level in the period of price increase (n), increasing during the transitional periods until

the distributor resumes ordering, from which time it remains at the newsvendor quantity through

the end of the horizon. The following corollary shows that as ȳ increases, the manufacturer’s optimal

stock levels will decrease in the transitional periods and remain at the newsvendor quantity after

the distributor resumes ordering.

Corollary 1 Given ȳ1 ≤ ȳ2, y
i(ȳ1) ≥ yi(ȳ2) for i ≥ 0, and y0+

(ȳ1) = y0+

(ȳ2).

5. Investment Buying Model

As mentioned above, the IB model is a special case of the FFS model with (1) ȳ = ∞, (2) u = 0, and

(3) no sharing of distributor’s on-hand inventory to the manufacturer. Therefore, the distributor’s

policy is the same as that under FFS with ȳ = ∞ and u = 0.
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As for the manufacturer’s policy, since the distributor does not share his on-hand inventory

information, during the transitional periods, she can only estimate distributor’s demand based on

how many periods have elapsed since the distributor’s last order (investment buying in period

n− 1). Hence, while the manufacturer is still in state 0− before the price increase and in state 0+

after the distributor resumes ordering after the price increase (as defined in FFS model), during

the transitional periods, state i is re-defined as the number of periods that have elapsed since the

distributor’s investment buying in period n − 1, 0 < i ≤ N − n + 1, i ∈ I+ (positive integers).

During the transitional periods, still define pi, 0 < i ≤ N − n + 1, as the probability of

manufacturer seeing the distributor resuming ordering in state i.

pi = Prob
(

∑i+n−1
k=n−1 Dk > yd∗

n−1 − y∗ |
∑i+n−2

k=n−1 Dk < yd∗
n−1 − y∗

)

. We also define the distributor’s

demand to the manufacturer (ηi), if realized in state i, follows a distribution with a cdf of Ψi(ηi).

We assume that pi ≤ pi+1 and Ψi(·) ≤st Ψi+1(·), i.e., the chance and quantity of distributor

demand realization increase as time goes along after the price increase. It is easy to show that

both assumptions are true if the end-item retailer demand has an increasing failure rate (IFR)

distribution (Normal, uniform, or Erlang distributions).

Let V i
k(x) be the manufacturer’s minimum expected cost from period k to the end of the horizon

when she is in state i at period k with inventory x. We have V i
k(x) = miny≥x{G

i
k(y)− cx}, where

Gi
k(y) =































cy + L(y) +
∫ ∞
0 V i

k+1(y −D)+φ(D)dD if i = 0− or 0+ and k 6= n− 1

cy + L̃n−1(y) +
∫ ∞
0 V 1

n (y − (D + yd∗
n−1 − y∗))+φ(D)dD if k = n− 1

cy + pi[L̃
i(y) +

∫ ∞
0 [V 0+

k+1(y − ηi)
+]ψi(ηi)dηi

+ (1 − pi)[hy
+ +

∫∞
0 V i+1

k+1 (y)φ(D)dD] otherwise,

where

L̃n−1(y) = h

∫ (y−yd∗

n−1
+y∗)+

0
(y − (D + yd∗

n−1 − y∗))φ(D)dD+ p

∫ ∞

(y−yd∗

n−1
+y∗)+

(D + yd∗
n−1 − y∗ − y)φ(D)dD,

L̃i(y) = h

∫ y

0
(y − ηi)ψi(ηi)dηi + p

∫ ∞

y
(ηi − y)ψi(ηi)dηi.

With minor adjustment, the proofs for FFS model apply to IB model as well. Hence we briefly

summarize the results: (1) The produce-up-to policy is the optimal policy for the manufacturer.

(2) The relationship of the optimal stocking levels in the transitional periods (Theorem 2) still

holds. Further, the following theorem shows that as the amount of price increase increases, the

manufacturer’s optimal stock levels in the transitional periods decrease.

Theorem 3 If price increase amount δ1 ≤ δ2, then yi(δ1) ≥ yi(δ2) for i ≥ 0, and y0+

(δ1) =

y0+

(δ2).
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6. FFS Contract Parameters - Numerical Study

In this section, we conduct an extensive numerical study to determine how the FFS contract

parameters affect supply chain performance. Further, we provide managerial guidelines on how

these parameters should be set in order to achieve pareto-improvement. Specifically speaking, the

objective of the computational study is to answer the following questions:

1. How does the inventory cap, ȳ, affect the manufacturer’s, the distributor’s, and the supply

chain’s profit? As ȳ decreases, we know that the distributor’s profit decreases due to less

investment buying. However, we do not know how the manufacturer’s profit will change,

because on the one hand, she enjoys less profit loss from investment buying, on the other

hand, she will have less benefits from information sharing (the information is more useful

to her under more investment buying). A priori, we also do not know what will happen to

the total supply chain profit. We will use the computational study to better understand this

behavior.

2. The per-unit fee (u) does not affect the supply chain profit; it only serves as a means to divide

the supply chain profit between the manufacturer and the distributor. What is the range of

fees that will make the manufacturer and the distributor better off by shifting from IB to

FFS? How are the fees affected by the various supply chain parameters?

3. Given that the calculation of the fees depend on solution to multi-period stochastic models,

are there any heuristics that managers can use to determine the pareto-improving fee values?

How effective are these heuristics?

4. What is the value of distributor’s on-hand inventory information to the manufacturer? How

do the various supply chain parameters affect this value?

To achieve our objective of quantifying and studying the value of information, we introduce

an “intermediate” model between FFS and IB. Referred to as FFS-NI, this model is the same

as the FFS model except that the manufacturer does not use the on-hand information in her

decision making. Under this model, the distributor makes the same decisions as under FFS, whereas

the manufacturer makes her decisions without using the on-hand inventory information from the

distributor. According to Schwarz and Zhao (2011), pharmaceutical manufacturers have largely

foregone the benefits of information shared with them by the distributor. Hence, studying the FFS-

NI model and comparing to the FFS model will enable us to characterize the value of information

that the manufacturer is foregoing in this process.

To answer these questions, we designed a comprehensive test bed of numerical experiments with

the following parameter values. In the pharmaceutical industry, all prices (between manufacturer
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and the distributor and even also the selling prices to the retailers) are set in terms of a reference

price, called Wholesale Acquisition Cost (WAC), published to all players. It is interesting that

WAC is never the true price between any two players, but nevertheless all the prices (For example,

cd, r, u) are set as a percentage of WAC.

• Almost all distributors obtain 2% off WAC as prompt pay discount, which makes cd =

98%WAC.

• On average, distributors sell to the retailers at 2.7% off WAC, i.e., r = 97.3%WAC. Note that

the distributors are selling at a price lower than their buying price. However, the distributors

obtain positive margin because of the service fees.

• Manufacturer’s production cost is typically very low, about 10% of WAC, i.e., c = 10%WAC.

• Holding cost at the distributor is more significant than at the manufacturer because of dis-

tributor’s low margin and higher requirement for cash flow. Typically, annual holding cost at

the distributor and at the manufacturer is 20% of WAC and 10% of c, i.e., hd = 20/24%WAC

and h = 10/24%c (we look at a one-year horizon with 24 periods and hd and h are holding

costs per period).

• Penalty costs are set to assure a 98% service level at both the distributor and the manufacturer

using news-vendor quantity, i.e., pd = 49hd and p = 49h.

To summarize, we use the following parameters as discussed above: cd = 98%WAC, r =

97.3%WAC, c = 10%WAC, hd = 20/24%WAC, h = 10/24%c, pd = 49hd, and p = 49h. In

addition to the above parameter setup that is quite typical (and validated by our industry contacts)

in the industry, we investigate the impact of a few other very important parameters that vary a

lot in the industry and study their impact on the supply chain profit, the fees that should be

used, and the value of information. These parameters are: WAC3, δ (the annual price increase

percentage), the demand variance, and the inventory cap. Specifically, we set 5 levels of WAC =

200, 650, 1100, 1550, 2000 and 5 levels of δ = 5%, 7.5%, 10%, 12.5%, 15%. As for demand, we choose

Erlang distribution, which may resemble normal distribution but does not have the concerns of

negative demand and hence has more flexibility of the variance change. We choose 4 levels of

variances by having Erlang with (µ, k) = (30, 1), (15, 2), (10, 3), (7.5, 4). These four sets of Erlang

share the same average demand with decreasing variance level. For each of the above 100 sets

of parameters, we also solve the problem under different levels of inventory caps. Let D̄ be the

expected value of the i.i.d random demand for one period. The inventory cap ȳ is chosen at its

3This value is included to answer the current industry question regarding whether the same fees should be charged

for cheaper drugs compared to the much-higher-valued bio-pharmaceuticals.
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newsvendor amount (y∗) plus additional periods of average demand, i.e, ȳ is chosen at y∗, y∗ + D̄,

y∗ +2D̄,..., and increase by an incremental of D̄ until it hits yd∗
n−1, the distributor’s stock level with

full investment buying under IB. Beyond yd∗
n−1, ȳ does not limit investment buying any more. This

usually includes at least 8 levels of inventory cap (depending on the price increase level). These

settings are evaluated using a 24-period timeline designed to capture a one-year horizon with each

period equivalent to half a month.

For each of 1337 cases described above, we use simulation with IPA (see Glasserman and Tayur

(1995) for details) to solve for, under IB, FFS, and FFS-NI, the optimal production levels at the

manufacturer, optimal stocking levels at the distributor, profits for each player and the supply

chain, pareto-improving fee ranges, as well as the value of information measured by the percentage

savings in the manufacturer’s supply-demand mismatch (inventory holding and penalty) cost. In

the following, we describe our findings on the supply chain and each player’s profit, the pareto-

improving fees, and the value of information. For each of these, we explore how their behavior is

impacted by the inventory caps, price increase, and demand variance.

6.1 Impact of FFS on Supply Chain Performance

Figure 2 shows how the manufacturer’s, the distributor’s, and the supply chain’s average profit per

period change with the inventory cap for a system with WAC = 200, δ = 10%, demand following

Erlang (15.0, 2) distribution, and fee u = 2%WAC. Inventory caps are plotted in additional

periods of demand. For example, an inventory cap of 0 and 2 in the figure corresponds to ȳ = y∗

and ȳ = y∗ + 2D̄, respectively. Observe that as ȳ decreases, the distributor’s profit decreases and

the manufacturer’s profit increases. This is along the lines of the arguments we presented earlier.

It is pleasant to see that as ȳ decreases, supply chain profit increases. What this means is that a

transition from IB to FFS will increase the supply chain efficiency, resulting in increased overall

profit. Hence, a transition from IB to FFS is beneficial to the industry as a whole and the players

are able to share a bigger pie. A summary analysis over all 1337 simulation cases reveals that the

increase in system profit is 1.7% on average and is as large as 5.5%. For this specific example, a

transition from IB to FFS has the potential to increase the system profit from $5, 982 to $6, 131

per period. This is a result of the manufacturer’s profit increasing from $3076 to $3369 per period

while the distributor’s profit decreases from $2906 to $2762. Thus, if the manufacturer were willing

to transfer about $144 per period to distributor (in addition to the 2% fee she currently pays),

then the distributor should be ambivalent to the transition and the manufacturer will be able to

keep the additional $149 resulting from this transition. Ideally some of these additional profits will

be shared with the end-consumer as well (in the form of lower prices) and thus, as a result of the

transition from IB to FFS, all the parties involved would be better off.
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Figure 2: Individual player’s and supply chain’s profit

The per-unit fee-for-service, u, used in the FFS contracts serves the aforementioned role of

transferring profit from the manufacturer to the distributor. Since the benefit realized by the

manufacturer is greater than the profit loss seen by the distributor, we can define upper and lower

limits for the fees for pareto-improvement as follows.

Define ū as the value of the fee under FFS at which the manufacturer’s profit is the same as

that under the IB model and u as the value of the fee at which the distributor’s profit is the same

as that under the IB model. We have

ū =
∆πm(ȳ)

ND̄
, (1)

and

u =
∆πd(ȳ)

ND̄
, (2)

where ∆πm(ȳ) is the manufacturer’s expected profit gain when switching from IB model to a

FFS model with an inventory cap of ȳ, and ∆πd(ȳ) is the distributor’s expected profit loss when

switching from IB model to a FFS model with an inventory cap of ȳ.

Clearly, since the increase of the manufacturer’s profit is higher than the decrease of the dis-

tributor’s profit (supply chain profit increases), u ≤ ū. When the fee is set anywhere between

these two values, both the manufacturer and the distributor are better off than they were in the IB

model, thus achieving pareto-improvement. Within these pareto-improving ranges, the lower the
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fee is, the more profit is obtained by the manufacturer. In real-world contracts, where the fee lies

depends on the negotiation power of the players. However, it is easy to see these two values of the

fee are very useful in designing and managing FFS contracts effectively and our study is designed to

estimate these values, using both optimal and heuristic procedures, and understand their behavior.

For simplicity, we shall refer to u and ū as the lower fee and the upper fee, respectively.

In closing this section, we would like to summarize our main observation in the form of guidelines

to the various stakeholders in this industry:

Manufacturers: The manufacturers of brand-name drugs should be at the fore-front of this

transition from IB to FFS as they have the most to gain from this transition. However, without ap-

propriate incentives, the distributors in the supply chain may not follow and thus they should ensure

that the distributors be appropriately compensated if they are to see a successful implementation

of these contracts.

Distributors: While FFS provides more stable revenue than investment buying, they should

realize that if the fees are not set appropriately, they could be worse off than they used to be under

IB model. Fortunately, with the implementation of FFS contracts, there is a larger pie to share, so

they should work with the manufacturers to ensure that they get their fair share of this bigger pie.

Policymakers: Policymakers should acknowledge that the FFS contracts are better for the phar-

maceutical industry and the economy as a whole and ensure that they enact policies that encourage

the implementation of these contracts. They should also realize that some of the improved efficien-

cies or increased profits should potentially be shared with the end-consumers and they should urge

the manufacturers and distributors to do so.

End-consumers: End-consumers are the ones that eventually bear the burden of the supply

chain cost and they should realize that their burden is smaller under the FFS contract. In addition,

they should demand a share of the increased profits.

6.2 Behavior of the Pareto-Improving Fee Levels

We compute the pareto-improving fees for all cases and investigate how different parameters impact

the fee ranges. As is the industry norm, all fees are reported as percentages of WAC. Figure 3(a)

shows the average pareto-improving fee ranges over all cases under different inventory caps, ȳ.

Notice that as ȳ increases, the fees, both u and ū, decrease. The manufacturer’s breakeven fee, ū,
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Figure 3: The Change of Pareto-Improving Fee Ranges with Inventory Cap (a) and Annual price

increases (b)

Figure 4: The change of Pareto-improving Fee Ranges with Downstream demand variance
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decreases from 5.3% to 1.2% while the distributor’s breakeven fee, u, decreases from 2.7% to 0.2%.

The reasons behind this behavior are as follows. As ȳ increases, the manufacturer’s profit decreases

thus urging her to provide a smaller fee. On the other hand, as ȳ increases, the distributor’s profit

increases from more investment buying and thus he requires a smaller fee to break even. The

magnitude of the fee interval (i.e. ū− u) also decreases as ȳ increases because the improvement of

the supply chain profit decreases as ȳ increases (Figure 2).

Figure 3(b) shows the average pareto-improving fee ranges (over all the instances with that

value of δ) under different annual price increase rate, δ. It can be seen that as δ increases, the

pareto-improving fees (both u and ū) increase and the magnitude of the fee interval also increases.

When δ was at 5%, the fee range was from 0.2% to 0.6% and when δ was at 15%, the fee range was

from 1.8% to 4.2%. This is because a higher value of δ means more profit from investment buying

and hence the manufacturer needs to pay more under FFS to compensate for the profit loss the

distributor sees from the restriction on investment buying.

Figure 4 shows the impact of downstream demand variance on the fees. The figure reveals that

the lower bound of the pareto-improving fee ranges (u) is not affected much by demand variance

because the distributor is mostly concerned about the change in the magnitude of investment

buying necessitated by the imposition of ȳ. On the other hand, as the demand variance increases,

ū decreases. This is because the manufacturer is impacted both by the change in investment buying

and by the use of information shared from the distributor. As the demand variance increases, the

value of information decreases (discussed in the next subsection) resulting in a slight decrease in

the fees that she is willing to pay to the distributor.

In addition to these observations, our numerical study also confirms that fees, as a percentage

of WAC, are not affected by WAC since all parameters and fees are represented as percentages of

WAC.

In closing this section, we would like to summarize our findings in the form of the following

managerial guidelines:

1. When the inventory cap is small, the manufacturers should offer a larger per-unit service fee

and the distributors should expect a larger fee. Both the distributor and the manufacturer

have a little more leeway in deciding the pareto-improving fees when ȳ is small whereas when

ȳ is large, they should be very careful in determining the fees because there is increased

possibility that they could arrive at a value that is not pareto-improving.

2. When the price increase (as a percentage of WAC) is small (high), the manufacturers should

offer a lower (higher) fee and the distributors should expect a smaller (larger) per-unit fee.

The determination of the pareto-improving per-unit fees should be done more carefully at
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lower values of δ as the magnitude of the effective interval is smaller.

3. The minimum fee a distributor expects should not be impacted by the variance of the end-

customer demand whereas the manufacturer should offer a smaller fee when the end-consumer

demand has a higher variance.

6.3 Value of Information

Here, we study the manufacturer’s performance under FFS and FFS-NI, whose difference reflects

the value of the on-hand inventory information shared by the distributor with the manufacturer.

We measure value of information as the percentage savings of the manufacturer’s supply-demand

mismatch (inventory holding and penalty) cost when using the distributor’s on-hand inventory

information. We observed that, over all the instances in our study, the average value of information

is 3.63% and this value can be as high as 13.01%.

Figures 5 show the average value of information under different inventory caps and different

levels of price increase, respectively. Figure 5(a) shows that this value increases as the inventory cap

increases. This is because, as ȳ increases, the distributor will have more investment buying quantity

leading to longer periods (following investment buying) in which the distributor does not place an

order (longer transitional periods). It is during these periods that the information shared from the

distributor to the manufacturer is useful and thus the average value of information increases with

ȳ.

Figure 5(b) shows that as price increase (δ) increases, the value of information will first increase

and then flatten out (after δ reaches 10%). This is because, as δ increases, the investment buying

quantity and hence the number of transitional periods increases. Thus the value of information

increases. However, there is a limit as to how much investment buying takes place and hence the

value of information flattens out.

Our experiments also show that the value of information slightly decreases as demand variance

increases. The average value of information is 3.36% when the demand has the Erlang (7.5, 4)

distribution while it is 2.86% when with demand has the Erlang (30, 1) distribution. This is

because when the variability is very large, the information provided by the distributor is not

enough to resolve a significant portion of the uncertainty. As the demand variance decreases, the

information provided by the distributor resolves a larger percentage of the uncertainty, thus making

the information relatively more valuable.

In summary, the manufacturers should ensure that they make their best efforts to incorporate

the information (they receive from the distributor) into their decision making process when the

inventory cap is high, price increase is large, and the end-customer demand variance is not too
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Figure 5: The change of value of information with inventory cap (a) and annual price increase (b)

Figure 6: The performance of the heuristic in estimating the pareto-improving fee ranges
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large. If they do not use the information, they may lose an opportunity to reduce supply-demand

mismatch costs by an average of 3.63% and as much as 13.01%.

6.4 A Simple Heuristic to Estimate the Pareto-Improving Fee Range

Given that the optimal solution involves solving a multi-period model and is possibly beyond the

scope of a decision maker in the real-world, in this subsection, we develop a simple heuristic that

can be used to estimate the pareto-improving fee ranges given a specific inventory cap and other

parameters. To develop this heuristic, we first need to understand how to obtain the upper and

lower bounds of the pareto-improving fee ranges, ū and u, respectively.

Consider an N -period horizon. Based on (1) and (2), the key to estimate ū and u is to estimate

∆πm and ∆πd. In the following, we develop a simple heuristic to estimate these two values.

In estimation of ∆πm, recall yd∗
n−1 is the optimal stock level for the distributor under IB model

and ȳ is the maximum stock level the distributor can reach in period n − 1 under FFS. Changing

from IB to FFS, although losing profit due to less investment buying, the distributor saves on

holding cost. Since the service level is quite high, we will omit the loss of penalty cost in the

estimation and estimate the distributor’s holding cost savings.

To do this, note that if there were no price increase, y∗ = Φ( pd

pd+hd
) for all periods. Next we

estimate the change of the distributor’s holding cost when switching from the no-price-increase case

to IB model or to FFS model.

For the IB model, let kIB =
yd∗

n−1
−y∗

D̄
and bkIBc represent the integer part of kIB. The distrib-

utor’s estimated holding cost increase under IB model compared to the no-price-increase case is

calculated in this way: there is roughly D̄ units of overstock sold in period n (the period of price

increase) that cost extra holding cost for one period (period n), hdD̄, and there is roughly D̄ units

sold in period n+ 1 that cost extra holding cost for 2 periods (periods n− 1 and n), 2hdD̄, and so

on. Finally, there are (kIB − bkIBc)D̄ units sold in period n + bkIBc that cost extra holding cost,

(bkIBc + 1)(kIB − bkIBc)h
dD̄. So the estimated increased holding cost is:

hdD̄ + 2hdD̄ + · · ·+ bkIBch
dD̄ + (bkIBc + 1)(kIB − bkIBc)h

dD̄

=





bkIBc
∑

i=1

hdD̄



 + (bkIBc + 1)(kIB − bkIBc)h
dD̄

= hdD̄(bkIBc + 1)(kIB −
bkIBc

2
) (3)

Similarly, for the FFS model, let kFFS = ȳ−y∗
D̄

and define bkFFSc to be the integer part of kFFS.

Following the same logic, we estimate the distributor’s increase under FFS model compared to the

no-price-increase model to be:

hdD̄(bkFFSc + 1)(kFFS −
bkFFSc

2
) (4)
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Then the decreased cost switching from IB to FFS model is (3) −(4). We also know the

distributor’s reduced revenue when switching from IB to FFS model is δ(yd∗
n−1 − ȳ).

So the distributor’s total profit loss after switching from IB to FFS model can be estimated as:

∆πd ∼ δ(yd
n−1 − ȳ) − hdD̄[(bkIBc + 1)(kIB −

bkIBc

2
)− (bkFFSc + 1)(kFFS −

bkFFSc

2
)] (5)

and u = ∆πd

N∗D̄
.

Next, we estimate the manufacturer’s profit gain (∆πm) to calculate ū. When switching from IB

to FFS, the manufacturer gains a revenue of δ(yd
n−1 − ȳ) because of the limited investment buying.

The cost should not change too much because the manufacturer basically carries enough stock for

periods that he predicts that he will not see demand. So we can estimate ∆πm as δ(yd
n−1 − ȳ) and

the upper bound of the fee range, ū, can be estimated as
δ(yd

n−1
−ȳ)

N∗D̄
.

Figure 6 reflects the performance of the heuristic by showing the optimal pareto-improving fee

ranges ū and u and their estimates calculated from the heuristic under different inventory caps. As

seen from the figure, the heuristic provides very accurate estimation of the u and a slightly (and

consistently) higher estimate of ū (by about 0.3 − 0.4%). Given that the manufacturer is usually

the leader in setting the per-unit fees, she is most interested in identifying u, the fee value that

motivates the distributor just enough to participate in the FFS contract. Given the simplicity

of the proposed heuristic and its effectiveness (almost perfect estimation of the lower fee), it can

be an invaluable asset to the manufacturer in determining the per-unit fees she should offer the

distributor in FFS contract negotiation.

7. Extensions

In this section, we investigate four additional issues and their impact on the supply chain profits,

pareto-improving fee ranges, and value of information. These extensions provide us more insights

into the industry practice and also help us establish the robustness of our results.

7.1 Impact of the Mean Demand

Different products may face different volumes of demand. To separate from the effect of demand

variance (which was already shown in section 6), we expanded the computational study by using

the demand distributions Erlang (15, 2), Erlang (15, 2)+5, Erlang (15, 2)+10, Erlang (15, 2)+15...,

hence keeping the demand variance the same, but capturing mean demand per period to be 35, 40,

45,...through 75 in addition to the 30 that was already in our study. We do this for the case with

δ = 10% as cases with other δ values have similar insights.

Figures 7(a) and 7(b) show how the average percentage of supply chain profit increase of FFS

over IB and the pareto-improving fee ranges change with mean demand. Observe that: (1) As the

25



average demand increases, the percentage of improvement of FFS over IB decreases, indicating that,

the benefits of FFS model is bigger for products with smaller average demand. This is because

the supply chain transparency enabled by FFS is more valuable at lower mean demands as the

demand variance then plays a larger role in defining supply chain efficiency. (2) As the mean

demand increases, the upper fee decreases, but the lower fee does not change much. This is because

the lower fee is related to the break-even compensation to the distributor for not using investment

buying, which is directly connected to the mean demand. Thus, as the mean demand increases,

the break-even compensation also increases, leaving the per-unit lower fee roughly unchanged. On

the other hand, the upper fee captures the change in the manufacturer profit which consists of (i)

the reduction in investment buying; and (ii) the value of information. The reduction in investment

buying is directly related to the mean demand (as mentioned above) while the value of information

is a function of demand variance. Thus, as the mean demand increases, the first quantity increases

while the second quantity remains the same. This leads to a decreasing trend of the per-unit upper

fee.

To summarize, given similar demand variance, for products with lower mean demand (poten-

tially more expensive products like bio-pharmaceuticals), the benefit of FFS over IB is higher,

distributor could potentially charge a higher fee, and the value of information is roughly the same

(figure omitted).

7.2 Impact of fixed ordering Cost

Generally speaking, in the pharmaceutical industry, the cost of a distributor placing an order is not

significant. Nearly all transactions between a manufacturer and a distributor are conducted using

Electronic Data Interchange (EDI). In addition, all pharmaceutical manufacturers use bar codes at

the pallet, case, shelf-pack, and individual item levels. This enables very high levels of efficiency

in order receipt and handling by distributors. According to HDMA (Healthcare Distribution and

Management Association), 100% of distributors use warehouse management systems (WMS) and

the distributor operating expenses average only 1.12% of revenues, i.e., very small. Therefore, we

do not specifically model ordering cost. But the periodic review set-up still helps us to capture

the impact of fixed ordering cost. Specifically, in our periodic review model, an ordering cycle is

defined as one period. In practice, the ordering cycle is usually one or two weeks, which is adopted

with the balance of holding and penalty costs and the ordering/transaction cost. Thus, given a

specific finite horizon, say one year (as used in our numerical study), a decrease in the number of

periods in the horizon indicates an increase in the length of an ordering cycle, corresponding to an

increase of the ordering cost. Thus, by investigating how the number of periods in the one-year
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Figure 7: The impact of mean demand on the profit increase of FFS over IB (a) and the pareto-

improving fee ranges (b)

finite horizon affects the supply chain profits, fee ranges, and the value of information, we can see

the impact of ordering cost.

Specifically, we re-ran the computational study with N=36, 48, and 60, compared to N=24 in

the original study. These correspond to ordering every 1.5, 1.0, and 0.8 weeks (6 days) as compared

to every 2 weeks (N=24) that was in the study. We choose these numbers because in practice, the

ordering cycle almost never exceeds two weeks.

Fig 8(a) shows that as N decreases (ordering cost increases), supply chain profit increase of FFS

over IB increases, i.e., the benefit of switching from IB to FFS increases. This is because the supply

chain is able to better recover from the shock created by the price increase when ordering more

frequently, hence the transition to FFS is not that beneficial. Moreover, Fig 8(b) shows that as the

ordering cost increases (N decreases), the upper fee increases and the lower fee decreases, leading to

a larger pareto-improving fee range. This is because when ordering cost increases, the distributor’s

ordering pattern under FFS is closer to that under the IB system. As a result, he needs a smaller

fee to compensate him for switching from IB to FFS (i.e. lower fee decreases). Similarly, this effect

would lead the manufacturer to offering a smaller fee to the retailer when switching from IB to FFS.

On the other hand, as N decreases, the value of information to the manufacturer increases (see Fig

8c), enabling the manufacturer to offer a larger fee to the distributor. This latter effect outweighs
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the former effect, hence leading to an increase in the upper fee when ordering cost increases (N

decreases).

In summary, for companies with a higher fixed ordering cost, there is a bigger benefit switching

from IB to FFS. In addition, the upper fee will be higher while the lower fee will be lower, leading

to a larger pareto-improving fee range. Finally, the company would forego a bigger benefit when

not using the inventory information shared by the distributor.

Figure 8: The impact of fixed cost on the profit increase of FFS over IB (a), the pareto-improving

fee ranges (b), and the value of information (c)

7.3 Impact of Holding and Penalty Cost Increase after price increase

In the previous sections, we have assumed that holding and penalty costs are not changed after price

increase. In reality, these costs will be affected by price increase. In this section, we ran further

numerical experiments on the impact of holding and penalty cost change after price increase. The

change of the holding and penalty costs for both the manufacturer and the distributor are based

on the price change δ and their relationship to WAC. For example, when δ = 15%, h, p, hd, pd all

increase 15% after price increase. Theoretically, holding costs should only increase for products

purchased at higher price, yet tracking products based on purchase prices is very difficult. Hence,

in the computational study, holding and penalty costs are increased for all products after price

increase in period n. By doing this, we overestimate the impact of the holding cost hence our

results provide an upper-bound of such impact. We chose to run experiments for the cases with
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Figure 9: Pareto-improving fee ranges with only holding cost increase (a) and with holding and

penalty cost increases (b)

δ = 15% since these are the cases with the maximum change to the holding and penalty costs in

the study, hence would again provide an upper bound of this impact.

To see the impact of holding cost and penalty cost, we re-ran the experiments first changing

only the holding cost after price increase (penalty cost remained the same). Fig 9(a) shows that

when considering only holding cost increase, both the upper fee and lower fee decrease slightly (by

at most 0.6%). This is because distributors will order less in investment buying anticipating holding

cost increases after price increase. Hence, the manufacturer needs to compensate the distributor

less for switching from IB to FFS (upper and lower fees decrease). On the contrary, when penalty

cost increases after the price increase, distributors will order more in investment buying (due to the

greater penalty during the transitional periods and the following periods if they stock out), leading

the upper and lower fees to increase, opposite to the effect of holding cost. Since there is only

a small chance of incurring penalty cost (due to the high service level), the effect of holding cost

outweighs that of the penalty cost, hence the overall effect will have similar trend as the holding

cost. Fig 9(b) confirms this, showing that considering both the holding and penalty cost increase,

the upper and lower fees decrease slightly (by most 0.5%).

In summary, given these results provide an upper bound, the impact of the increase of holding

and penalty costs after price increase seems to be not very significant (fees decrease by at most
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0.5% and the value of information remains almost the same (figure not shown)).

7.4 Different Demand Distributions

In this section, we investigate whether our results hold true for distributions other than the Erlang

and Exponential distributions. Specifically, we expand our study to include uniform and normal de-

mands. For uniform distribution, we ran experiments on demand following U [10, 50] and U [20, 40];

for normal distribution, we ran experiments on demand following N (30, 5) and N (30, 10). All dis-

tributions have a mean demand of 30 and we ran all experiments with WAC = 200, δ = 10%, and

ȳ levels starting from y∗ until it reaches yd∗
n−1. Our results show that supply chain profit increases

when switching from IB to FFS for all the distributions and the average profit increase of FFS

over IB is comparable for all three distributions that we tested, i.e., 1.48% for normal distribution,

1.46% for the uniform distribution, and 1.53% for the Erlang distributions in the original study.

This result is not surprising since imposing an inventory cap increases the efficiency of the supply

chain by reducing excessive inventory without sacrificing the service level. Hence, we expect our

results also hold for other demand distributions.

8. Conclusion

In this paper, we address some pressing issues facing the current pharmaceutical distribution indus-

try. By comparing investment buying (IB) models and fee-for-service (FFS) models, we clarify the

industry’s doubts regarding which model is better, provide guidelines in how the manufacturer and

the distributor operate under FFS model (a model adopted by most distributors today), and how

to set the FFS contract parameters which lead to pareto improvement for both the manufacturer

and the distributor. Here, we list the main managerial insights obtained from our analysis.

• Transition from IB to FFS is beneficial to the supply chain as a whole and certainly is

advantageous to the manufacturer. While this limits the investment buying opportunity

to the distributor, an appropriate per-unit service fee can overcome this deficiency. The

improved efficiency of the supply chain under FFS ensures that there exists a range of fees

that guarantee the manufacturer and the distributor achieve pareto-improvement.

• Under the FFS contract, given that the distributor is able to satisfy the service level target,

as the inventory cap decreases, the manufacturer’s and the supply chain’s profits increase and

the distributor’s profit decreases.

• The values (and the range) of pareto-improving per-unit fees decrease as the inventory cap

increases. Thus at lower values of ȳ, the manufacturer and the distributor have more flexibility
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in choosing the fees while they should be a lot more careful in setting the fees when the ȳ is

larger.

• Manufacturers may forego significant (on average 3.63% and as much as 13.01%) supply-

demand mis-match cost savings when they do not take advantage of the distributor’s inventory

information that is provided to them under FFS for production planning. The value of

information decreases as they impose tighter inventory cap on the distributor, when the price

increase is smaller, or the end-consumer demand has a high variance.

• Given similar demand variance, transition from IB to FFS brings more benefits for products

with lower mean demand (potentially more expensive products like bio-pharmaceuticals) and

distributor could potentially charge a higher fee for these products.

• For companies with a higher fixed ordering cost (i.e., the ordering cycle being longer), we see

a bigger benefit switching from IB to FFS. In addition, the upper fees should be higher while

the lower fees should be lower, leading to a larger pareto fee range. Finally, the manufacturer

would forego a bigger benefit when not using the distributor’s on-hand inventory information.

• Considering the change of holding and penalty costs after price increase, both the upper and

lower limits of the pareto-improving fee ranges decrease (by at most 0.5%).

• A simple, effective, and useful heuristic is developed that could be very useful for real-world

FFS contract negotiations by decision makers that are not adept at solving stochastic inven-

tory control problems.
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Technical Appendices

A-1. Proof for Theorem 1

Use backward induction. Since the distributor’s terminal cost function is V d
N+1(xd) = −(cd+δ−u)xd

with a slope of −(cd + δ − u), based on Theorem 4.3 of (Porteus (2002)), a base-stock policy with

base-stock level y∗ = Φ−1( pd

pd+hd
) is optimal for period k with n ≤ k ≤ N since cdk = cd + δ for any

k ≥ n. Consider period n − 1, we have G′d
n−1(y

∗) = L′d
n−1(y

∗) + (cd − u) − (cd + δ − u) ≤ 0 since

L′d
n−1(y

∗) = 0, which implies yd∗
n−1 ≥ y∗ is the optimal stock level for period n − 1. Next consider

period n − 2, we have G′d
n−2(y

d∗
n−1) = L′d

n−2(y
d∗
n−1) + cd − cd ≥ 0 since L′d

n−2(y
d∗
n−1) ≥ L′d

n−2(y
∗) = 0

which implies yd∗
n−2 ≤ y∗n−1. By solving G′d

n−2(y
d∗
n−2) = 0 we get yd∗

n−2 = y∗ = Φ−1( pd

pd+hd
). Then by

the backward induction, we can get yd∗
k = φ−1( pd

pd+hd
) = y∗ for 1 ≤ k ≤ n− 2.

A-2. Proof for Theorem 2

Since the total production cost through the finite horizon is c
∑N

k=1(yk −xk)− cxN+1 = c
∑N

k=1 Qk,

which is not dependent on the stock level, to show the property of optimal stock level we don’t need

to consider the production cost −c(y−x) in each period. Thus, we rewrite V i
k (x) = miny≥x{G

i
k(y)},

where

Gi
k(y) =



































L(y) +
∫∞
0 V i

k+1(y −D)+φ(D)dD if i = 0− or 0+ and k 6= n− 1

Ln−1(y) +
∫ ∞
0 V 0

n (y − (D + ȳ − y∗))+φ(D)dD if k = n− 1

pi

[

Li(y) +
∫ ∞
0 V 0+

k+1(y − ηi)
+θi(ηi)dηi

]

+ (1− pi)
[

hy+ +
∫∞
0 V i+D

k+1 (y)φ(D)dD
]

otherwise.

To prove the optimality of the produce-up-to policy, we will use backward induction again. It

can be easily shown that L(y), Ln−1(y) and Li(y) are convex by definition. Since we know V i
N+1(x)

is convex in x for any state i, for Gi
N(y) whether i = 0+ or not, we know Gi

N (y) is convex in

y by the convexity of V i
N+1. Based on the fact that if f(y) is convex then g(x) = miny≥xf(y)

is also convex, we know V i
N(x) = miny≥x{G

i
N(y)} is also convex in x for any i. Now assume in

period k, Gi
k(y) and V i

k (x) are convex for any i. We want to prove then Gi
k−1(y) and V i

k−1(x) are

convex for any i. Consider the situation where i = 0− or 0+ and k 6= n − 1, we have Gi
k−1(y) =

L(y) +
∫∞
0 V i

k (y −D)+φ(D)dD , then

G′i
k−1(y) = L′(y) + (

∫ ∞

0
V i

k (y −D)+φ(D)dD)′

= L′(y) + (

∫ y

0
V i

k(y −D)φ(D)dD)′ + (

∫ ∞

y
V i

k (0)φ(D)dD)′

= L′(y) +

∫ y

0
V ′i

k (y −D)φ(D)dD

1



G′′i
k−1(y) = L′′

( y) + (

∫ y

0
V ′i

k (y −D)φ(D)dD)′

= L′′
( y) +

∫ y

0
V ′′i

k (y −D)φ(D)dD+ V ′i
k (0)φ(y)

≥ V ′i
k (0)φ(y)

Since V ′i
k (0) ≥ max{G′i

k (x), 0} ≥ 0, we get G′′i
k−1(y) ≥ 0 and prove that Gi

k−1(y) is convex. By

use the similar method we can prove for other state i, Gi
k−1(y) is convex. Then we get V i

k−1(x) =

miny≥x{G
i
k−1(y)} is also convex. So we prove that Gi

k−1, V
i
k−1 are convex for all i. By backward

induction, we get Gi
k, V

i
k are convex for all i, k which shows the produce-up-to policy is the optimal

policy.

Next to prove y0 ≤ y1 ≤ y2 · · · ≤ yȳ−y∗−1 ≤ y0+

. It is easy to show after state is changed

to i = 0+, the stationary base stock level y0+

= Φ−1( p
p+h

) is the optimal produce-up-to level by

applying Theorem 4.3 of (Porteus (2002)). Since Θ0(·) ≤st Θ1(·) ≤ · · · ≤ Θȳ−y∗−1(·) ≤st Φ(·),

the demand from periods n to the ending period N is monotonic stochastically increasing. So the

myopic policy is optimal which means for any period k ≥ n with state i = 0, 1, · · · , ȳ − y∗ − 1,

the optimal yi must have L′i(yi) + (hy+)′ = 0. With the property that Θi ≤st Θi+1, we can solve

L′i(yi) + (hy+)′ = 0 to get that y0 ≤ y1 ≤ y2 · · · ≤ yȳ−y∗−1 ≤ y0+

.

A-3. Proof for Corollary 1

From Theorem 2, we know for y0+

(ȳ1) = y0+

(ȳ2) = Φ−1( p
p+h

). For the transitional periods, we

know pi(ȳ1) ≥ p′i(ȳ2) and Θi(·|ȳ1) ≥st Θi(·|ȳ2) given ȳ1 ≤ ȳ2 (details omitted). From Theorem

2 we know during the transitional periods, myopic policy is optimal. By using the property that

Θi(·|ȳ1) ≥st Θi(·|ȳ2), we get yi(ȳ1) ≥ yi(ȳ2) for i ≥ 0.

A-4. Proof for Theorem 3

If δ1 ≤ δ2, we have yd∗
n−1(δ1) ≤ yd∗

n−1(δ2). We know y0+

(δ1) = y0+

(δ2) = Φ−1( p
p+h). For the

transitional periods, we know pi(δ1) ≥ pi(δ2) and Ψi(·|δ1) ≥st Ψi(·|δ2) by knowing yd∗
n−1(δ1) ≤

yd∗
n−1(δ2). In the Investment Buying model, we have similar result as Theorem 2 that during the

transitional periods, the myopic policy is optimal. By using the property that Ψi(·|δ1) ≥st Ψi(·|δ2),

we get yi(δ1) ≥ yi(δ2) for any i ≥ 0.
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