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Abstract

IceCube is a neutrino detector located inside a cubic kilometer of ice at the South
Pole. Its geometry design makes it able to measure neutrinos in a large energy
range from as low as 5 GeV up to a few PeV. The low energy subarray DeepCore
can measure neutrinos as low as 5 GeV to roughly 100 GeV.

This dissertation presented a measurement of atmospheric tau neutrino appear-
ance with three years of IceCube/DeepCore data.

The key physics parameter is ντ (CC + NC) normalization, a scale factor as-
signed to the signal ντ (CC+NC) events, varying between 0 and 1, where the
value of one corresponds to the expected rate assuming the standard three-flavor
neutrino oscillations.

The best fit ντ (CC + NC) normalization was 0.59 with the 68% C.I. in [0.34,
0.90], i.e., 0.59+0.31

−0.25. The 90% C.I. was [0.18, 1.12]. This corresponds to 1379 ντ

events out of a total of 40,959 events (which includes 39,070 all-neutrino-flavor
events and 1,889 atmospheric muons).

To compare with two previous experiments, the measurement of ντ CC normal-
ization was also conducted, where a scale factor ντ CC normalization is assigned
to the signal ντ CC-only events. The best fit ντ CC normalization was 0.43, with
the 68% C.I. being [0.12, 0.80], i.e., 0.43+0.36

−0.43, and the 90% C.I. was [0, 1.07].
Both the measured ντ (CC + NC) normalization and ντ CC normalization are

consistent with existing measurements and the standard three-flavor oscillation
paradigm at 90% C.L.
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Chapter 1 |
Neutrino Oscillations

1.1 Neutrinos
Neutrinos are elementary particles that only interact via the gravitational and weak
interactions. There are three flavors of neutrinos when they interact weakly: νe, νµ

and ντ , corresponding to the produced lepton e, µ and τ . The electron antineutrino
was first discovered by Clyde Cowan and Frederick Reines [1] in 1956, using reactor
electron antineutrinos that interact via inverse beta decay. The muon neutrino was
discovered by Leon Lederman, Melvin Schwartz and Jack Steinberger [2] in 1962,
using accelerator muon neutrinos. Lastly, the tau neutrino was discovered by the
DONUT experiment [3] in 2000, using tau neutrinos produced via decay of charmed
mesons.

Each flavor eigenstate (νe, νµ, ντ ) is a superposition of the three mass eigen-
states (ν1, ν2, ν3). When a certain type of weak neutrino interaction happens,
neutrinos are produced with a certain flavor, when those neutrinos travel through
space, the three mass eigenstates m1, m2, m3 travel with different speeds. Af-
ter some distance, the composition of mass eigenstates is different from the initial
state. If the neutrinos then interact weakly, the interactions can involve a different
flavor. For example, a muon neutrino with energy E produced in a weak interac-
tion at some initial position, after traveling some distance L, may then interact as
a tau neutrino. This process of flavor change is called a neutrino oscillation and its
probability depends on L/E. The following section discusses the theory of neutrino
oscillations in detail.
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1.2 Neutrino Oscillations in Vacuum

1.2.1 PMNS matrix
Bruno Pontecorvo first put forward the concept of neutrino oscillations in 1957 [4].
In 1962, Ziro Maki, Masami Nakagawa and Shoichi Sakata proposed the unitary
mixing matrix [5] to describe the neutrino oscillations. Below is the 3 flavor case:


|νe⟩
|νµ⟩
|ντ ⟩

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




|ν1⟩
|ν2⟩
|ν3⟩

 . (1.1)

Each flavor eigenstate α (α = e, µ, τ) is a superposition of the three mass eigen-
states:

|να⟩ = Uα1|ν1⟩ + Uα2|ν2⟩ + Uα3|ν3⟩ =
∑

i=1,2,3
Uαi|νi⟩. (1.2)

Then,
|νi⟩ =

∑
α=e,µ,τ

(U †)iα|να⟩ =
∑

α=e,µ,τ

Uαi
∗|να⟩. (1.3)

The neutrino mixing matrix U in Eq. 1.1 is called the PMNS matrix after Pon-
tecorvo, Maki, Nakagawa, and Sakata. Under the standard three-flavor oscillation
paradigm, U is unitary, i.e., it satisfies two equations:

U †U = I,

UU † = I,
(1.4)

where I is the identity matrix. The two equations can be expressed with their
matrix elements: ∑

i

UαiU
∗
βi = δαβ, (1.5)

∑
α

UαiU
∗
αj = δij. (1.6)

Eqs. 1.5 and 1.6 are the same as the six normalizations for the three row elements
and three column elements below:

|Uα1|2 + |Uα2|2 + |Uα3|2 = 1 (α = e, µ, τ), (1.7)
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|Uei|2 + |Uµi|2 + |Uτi|2 = 1 (i = 1, 2, 3), (1.8)

and the six unitary angle closures below:

|Uα1U
∗
β1 + Uα2U

∗
β2 + Uα3U

∗
β3|2 = 0 ((α, β) = (e, µ), (e, τ), (µ, τ)), (1.9)

|UeiU
∗
ej + UµiU

∗
µj + UτiU

∗
τj|2 = 0 ((i, j) = (1, 2), (2, 3), (1, 3)). (1.10)

The current constraints on these 12 sums are shown in Fig. 1.1 and Fig. 1.2.
The sums that have no τ matrix elements are constrained on the order of a few
percent, whereas sums having the τ element are constrained on the order of 10%.

Figure 1.1: The constraints on the six normalizations, taken from Ref. [6]. Solid
lines are summations involving row elements, dashed lines are for column elements.

The mass eigenstates at position x and time t are:

|νi(x, t)⟩ = e−iEit|νi(x, 0)⟩, (1.11)

where Ei can be approximated as shown below when neutrinos are ultra-relativistic:

Ei =
√

mi
2 + pi

2 ≈ pi + mi
2

2pi

≈ E + mi
2

2E
. (1.12)
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Figure 1.2: The constraints on the six unitary triangles, taken from Ref. [6]. Solid
lines are summations involving row elements, dashed lines are for column elements.

Combining Eq. 1.11 and Eq. 1.2, the initial flavor eigenstate |να(x, 0)⟩ will evolve
with time as follows:

|να(x, t)⟩ =
∑

i=1,2,3
Uαie

−iEit|νi(x, 0)⟩. (1.13)

From Eqs. 1.12 and 1.13, the oscillation probability from one flavor α to another
β is:

P (να → νβ) = |⟨νβ|να(x, t)⟩|2 = |
∑

i

UβiUαi
∗ exp(−imi

2L/2E)|2

= |UαiUβi
∗|2 + 2Re

∑
j>i

UαiU
∗
αiU

∗
βjUβj exp(−i

∆m2
ij

2
L

E
),

(1.14)

where ∆m2
ij = m2

i − m2
j . Using CP invariance, Eq. 1.14 can be written as:

P (να → νβ) = |UαiUβi|2 + 2Re
∑
j>i

UαiUαiUβjUβj cos(
∆m2

ij

2
L

E
)

= δαβ − 4
∑
j>i

UαiUαiUβjUβj sin2(
∆m2

ij

4
L

E
).

(1.15)
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Assuming unitarity, we can parametrize the matrix as follows:

U =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13




c12 s12 0
−s12 c12 0

0 0 1




eα1/2 0 0
0 eα2/2 0
0 0 1

 ,

(1.16)
where sij = sin(θ/ij), cij = cos(θij), δ = δCP . α1 and α2 are the Majorana phases
that are only needed if neutrinos are Majorana particles, they don’t influence the
oscillation parameters either way.

Eq. 1.15 shows that the oscillation probabilities only depend on the difference
between the squares of the masses: ∆m2

ij. The sign of ∆m2
21 is determined to be

positive from solar neutrino oscillation experiments. The signs of the other two
mass splittings are not clear yet. Figure. 1.3 depicts the neutrino mass hierarchies:
normal hierarchy (m1 < m2 < m3) and inverted hierarchy (m3 < m1 < m2). They
are also referred to as the normal ordering and inverted ordering.

Figure 1.3: Neutrino mass hierarchy. Normal hierarchy means m1 < m2 < m3,
inverted hierarchy means m3 < m1 < m2. ∆m2

sol = ∆m2
21 > 0. ∆m2

atm is either
∆m2

32 under the normal hierarchy or |∆m2
31| under the inverted hierarchy. Figure

taken from Ref. [7].
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NuFIT 3.2 (2018)

Normal Ordering (best fit) Inverted Ordering (∆χ2 = 4.14) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.307+0.013
−0.012 0.272→ 0.346 0.307+0.013

−0.012 0.272→ 0.346 0.272→ 0.346

θ12/
◦ 33.62+0.78

−0.76 31.42→ 36.05 33.62+0.78
−0.76 31.43→ 36.06 31.42→ 36.05

sin2 θ23 0.538+0.033
−0.069 0.418→ 0.613 0.554+0.023

−0.033 0.435→ 0.616 0.418→ 0.613

θ23/
◦ 47.2+1.9

−3.9 40.3→ 51.5 48.1+1.4
−1.9 41.3→ 51.7 40.3→ 51.5

sin2 θ13 0.02206+0.00075
−0.00075 0.01981→ 0.02436 0.02227+0.00074

−0.00074 0.02006→ 0.02452 0.01981→ 0.02436

θ13/
◦ 8.54+0.15

−0.15 8.09→ 8.98 8.58+0.14
−0.14 8.14→ 9.01 8.09→ 8.98

δCP/
◦ 234+43

−31 144→ 374 278+26
−29 192→ 354 144→ 374

∆m2
21

10−5 eV2 7.40+0.21
−0.20 6.80→ 8.02 7.40+0.21

−0.20 6.80→ 8.02 6.80→ 8.02

∆m2
3`

10−3 eV2 +2.494+0.033
−0.031 +2.399→ +2.593 −2.465+0.032

−0.031 −2.562→ −2.369

[
+2.399→ +2.593
−2.536→ −2.395

]

Table 1.1: Oscillation parameters global best fit and ranges. “bfp” means “best
fit point”. The first two columns are best fit results assuming the normal ordering
and the inverted ordering, respectively. The third column is the best fit results
that also fit with respect to the ordering. Note that ∆m2

3l = ∆m2
31 > 0 for normal

ordering, and ∆m2
3l = ∆m2

32 < 0 for inverted ordering. Taken from NuFIT 3.2
(2018), www.nu-fit.org.

The current global best fit values for these oscillation parameters are listed in
Table 1.1, and the 3σ ranges of the matrix elements are listed in Eq. 1.17 [8, 9]:

|U |3σ =


0.799 → 0.844 0.516 → 0.582 0.141 → 0.156
0.242 → 0.494 0.467 → 0.678 0.639 → 0.774
0.284 → 0.521 0.490 → 0.695 0.615 → 0.754

 . (1.17)

1.2.2 The Two Neutrino Approximation
The following two-neutrino approximation in vacuum is used for illustration:

P (να → νβ, vacuum) ≈ sin2 2θ sin2
(

∆m2 L

4E

)
. (1.18)

With SI units:

P (να → νβ, vacuum) ≈ sin2 2θ sin2
(

1.27∆m2 L

E

[eV2][km]
[GeV]

)
. (1.19)
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Thus, the oscillation amplitude is determined by sin2(2θ), the oscillation phase
is ϕ = ∆m2 L

4E
. The maximum probability condition then is the oscillation phase

ϕ satisfying sin2(ϕ) = 1. It follows that ϕ = (2n − 1)π
2 , where n is an integer and

n ≥ 1.
Thus, the maximum condition for neutrino energy is:

E = |∆m2|L
2π(2n − 1)

. (1.20)

With fixed distance L and mass splitting ∆m2, the larger the n, the smaller
the energy. n = 1 corresponds to the first maximum condition, n = 2 corresponds
to the second maximum.

From Table 1.1, the oscillation angle θ13 is small. So, approximately speaking,
sin(θ13) ≈ 0, cos(θ13) ≈ 1. Also, ∆m2

21 ∼ 10−5 eV2, |∆m2
32| ∼ 103 eV2, since the

latter is larger by two orders of magnitude, we can use the following approximation:
|∆m2

31| = |m2
3 − m2

1| = |m2
3 − m2

2 + m2
2 − m2

1| ≈ |∆m2
32| = ∆m2

atm. Thus, using
these approximations, we can get the leading order term for the probability of
atmospheric muon neutrinos disappearing into tau neutrinos:

P (νµ → ντ , vacuum) ≈ sin2 2θ23 sin2
(

1.27∆m2
atm

L

E

[eV2][km]
[GeV]

)
. (1.21)

The survival probability of νµ is:

P (νµ → νµ, vacuum) ≈ 1 − sin2 2θ23 sin2
(

1.27∆m2
atm

L

E

[eV2][km]
[GeV]

)
. (1.22)

The baseline L for experiments that measure atmospheric neutrinos ranges
from 0 to 104 km. For example, for the atmospheric νµ to ντ oscillation (with L

= Earth diameter 12742 km), plug in the parameters values, it’s easy to calculate
that the energy around 25 GeV corresponds to the first maximum and the energy
of roughly 8 GeV corresponds to the second maximum.

1.3 Neutrino Oscillations in Matter
Neutrinos propagating in matter can have coherent forward elastic scattering with
its constituent electrons, protons and neutrons. Figure 1.4 shows the Feynman

8



diagram for the coherent forward elastic scattering process. There are electrons in
the Sun and the Earth, thus νe traveling through the Sun (or Earth) can undergo
either Charged Current (CC) or Neutral Current (NC) interaction, while νµ and
ντ can only have the NC interaction.

Figure 1.4: Feynman diagram of coherent forward scattering [10]. Left: charged
current interaction. Right: neutral current interaction.

For the charged current interaction, this adds an additional potential term in
the Hamiltonian [10]:

VCC =
√

2GF Ne

VNC = −1
2

√
2GF Nn,

(1.23)

where Ne and Nn are the electron and neutron densities in matter and GF is the
Fermi coupling constant.

1.3.1 MSW Effect
Again using the two-neutrino νe to νµ oscillation for simplicity, the difference be-
tween the potentials of νe and νµ is:

Vνe − Vνµ =
√

2GF Ne. (1.24)

The Hamiltonian changes to
HF = H0 + V, (1.25)
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where HF is the effective Hamiltonian, H0 is the Hamiltonian in vacuum, and HF

can be written into the flavor basis [10]:

HF = 1
4E

−∆m2 + ACC ∆m2 sin (2θ)
∆m2 sin (2θ) ∆m2 − ACC ,

 (1.26)

where
ACC = 2

√
2EGF Ne. (1.27)

Thus, the mass eigenstates change to the effective squared-mass difference:

∆mM
2 =

√
(∆m2 cos(2θ) − ACC)2 + (∆m2 sin(2θ))2, (1.28)

where the effective mixing angle is:

tan 2θM = tan 2θ

1 − ACC

∆m2 cos 2θ

. (1.29)

When ACC is equal to ∆m2 cos 2θ, this produces a resonance, where the effective
mixing angle is 45 °. This is called the MSW (Mikheyev–Smirnov–Wolfenstein)
effect, and was an important element of the solution to the solar neutrino prob-
lem [11].

1.3.2 Matter Effects for DeepCore
The Preliminary Reference Earth Model (PREM) [12] is the model of Earth that
we use. In this analysis, 12 radial layers of constant density are used.

Figure 1.5 (a) shows the Earth’s density profile under this model. Figure 1.5
(b) shows the neutrinos that travel along the border of the core and mantle. The
direction of a neutrino is described by two angles: the zenith angle θzenith (simplified
as θzen) and the azimuth angle (θazi). Thus, neutrinos with a θzen smaller than 146.9°
will go through only the mantle, and neutrinos with a θzen larger than 146.9° go
through both the mantle and the core.

Figures from 1.6 to 1.11 show the neutrino oscillograms, i.e., oscillation proba-
bilities of νe and νµ as a function of cos θzen and neutrino energy. Each set of figures
compares the oscillogram with the consideration of the Earth matter effects from
PREM and the oscillogram with a vacuum assumption. In all the figures with the
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PREM matter effects, the clear distinctions caused by the density difference in the
mantle and the core can be seen. Each figure has two different parts separated
by cos θzen = cos(146.9°) = −0.73. The core-crossing neutrinos are located in the
small lower part with cos θzen < −0.73, and the mantle-only-crossing neutrinos are
in the larger upper part with cos θzen > −0.73.
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Figure 1.5: (a) The density of the Earth as a function of the radial distance from
the center of the Earth from PREM. (b) The zenith angle of the neutrinos that
travel along the border of the core and the mantle is 146.9 °. The PREM density
curve is placed on top to show the corresponding densities for each layer.

1.4 Tau Neutrino Appearance

1.4.1 Tau Neutrinos
Tau neutrinos are hard to detect. DONUT [3] is the first experiment to detect
tau neutrinos, and it is the last type of neutrino to be detected even though its
existence was predicted long ago [13]. One reason for its late discovery is that tau
particles are heavy (1.776 GeV/c2). In order to make tau neutrino CC interactions
happen, the energy of the tau neutrino must be above the threshold energy of
3.5 GeV. Moreover, direct observation of tau neutrino CC interactions is difficult
because the tau lepton has a very short lifetime (2.9 × 10−13 s), so the length of
the tau track produced from a 25 GeV tau neutrino is only on the millimeter scale.
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(a) Vacuum assumption. (b) Addition of matter effects.

Figure 1.6: Survival probabilities of electron neutrinos as a function of neutrino
energy and zenith angle. (a) assumes vacuum. (b) uses the 12-layer PREM
model [12].

(a) Vacuum assumption. (b) Addition of matter effects.

Figure 1.7: Probabilities of electron neutrinos disappearing into muon neutrinos
as a function of neutrino energy and zenith angle. (a) assumes vacuum condition.
(b) uses the 12-layer PREM model [12].

1.4.2 Tau Neutrino Appearance Experiments
Appearance experiments look for neutrino flavors that are not present in the initial
neutrino flux but appear in the final flux.

Current tau neutrino appearance experiments are Super-Kamiokande (Super-
K) and OPERA, both of which observe muon to tau neutrino oscillation. Ice-
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(a) Vacuum assumption. (b) Addition of matter effects.

Figure 1.8: Probabilities of electron neutrinos disappearing into tau neutrinos as a
function of neutrino energy and zenith angle. (a) assumes vacuum condition. (b)
uses the 12-layer PREM model [12].

(a) Vacuum assumption. (b) Addition of matter effects.

Figure 1.9: Probabilities of muon neutrinos disappearing into electron neutrinos
as a function of neutrino energy and zenith angle. (a) assumes vacuum condition.
(b) uses the 12-layer PREM model [12].

Cube/DeepCore is the third experiment to do such a measurement. The parameter
to measure is the ντ signal strength called ντ normalization, it should be equal to
one under the standard three oscillation picture.

OPERA uses accelerator muon neutrinos as a source, while Super-K uses at-
mospheric neutrinos. Electron and muon neutrinos are produced in the Earth’s
atmosphere, where intrinsic tau neutrino production is negligible, and then νe and
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(a) Vacuum assumption. (b) Addition of matter effects.

Figure 1.10: Survival probabilities of muon neutrinos as a function of neutrino
energy and zenith angle. (a) assumes vacuum condition. (b) uses the 12-layer
PREM model [12].

(a) Vacuum assumption. (b) Addition of matter effects.

Figure 1.11: Probabilities of muon neutrinos disappearing into tau neutrinos as a
function of neutrino energy and zenith angle. (a) assumes vacuum condition. (b)
uses the 12-layer PREM model [12].

νµ oscillate while traveling through the Earth. When they interact weakly at the
detector again, there can be tau neutrino interactions.

IceCube/DeepCore also detects atmospheric neutrinos, but it has a different
energy range from Super-K. IceCube/DeepCore looks for neutrinos of 5 – 100 GeV
energy - it can look for neutrino appearance at the first maximum. Super-K’s
energy range is on the order of GeV [14], so most of their tau neutrino events
appear at the second maximum. The IceCube/DeepCore detector will be discussed
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in Chapter 3.
It’s worth mentioning also the neutrino disappearance experiments that mea-

sure the disappearance of neutrinos of one flavor changing into the other two
flavors.

By comparing Figs.1.6 (b) to 1.11 (b), we can see that the oscillations between
νµ and ντ are predominant, while probabilities of νe oscillating into the other two
flavors are small, most νe stay as νe. Then, since the appearance of atmospheric
ντ come mainly from the disappearance of atmospheric νµ, atmospheric neutrino
experiments can measure both νµ disappearance (i.e., measure the two oscillation
parameters θ23 and ∆m2

atm) and the appearance of ντ neutrinos (i.e., measure the
ντ normalization).

The θ23 and ∆m2
atm (|∆m2

32|) measurements have been preformed by several
experiments including Super-K and IceCube/DeepCore. This tau neutrino ap-
pearance analysis uses the same event sample developed for the νµ disappearance
result [15] published in 2017. While both the νµ disappearance analysis and ντ ap-
pearance analysis can measure the oscillation parameters (as seen from Eqs. 1.21
and 1.22), the goal of a ντ appearance analysis is to measure the signal strength
of the appeared ντ events. It tests against the null hypothesis that νµ and νe oscil-
late into some sterile neutrinos and not ντ . The νµ disappearance analysis, on the
other hand, examines the null hypothesis that νµ do not oscillate into the other two
flavors; it also measures the two oscillation parameters under the standard three
oscillation paradigm - thus the ντ normalization is fixed to one in the νµ analysis.
They have different goals even though they utilize the same events.

1.4.2.1 OPERA

The initial neutrino flux for OPERA is a muon neutrino beam produced at CERN,
which reaches the detector located 732 km away. The protons on target count
delivered to OPERA is 17.97×1019. In 2015, among the 19505 neutrino interactions
in their target fiducial volume, they observed 5 ντ candidates, with an estimated
background 0.25 ± 0.05.

The detector uses emulsion cloud chamber target units to record the neutrino
interactions. Each brick has 57 emulsion films, interleaved with 1 mm thick lead
plates and complementary electronic detectors. The electronic detectors are used
to trigger events and identify the brick with the neutrino interaction vertex inside.
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Then, the emulsion plates are scanned automatically to reconstruct vertex location,
particle identification, momentum, and so on [16]. Figure 1.12 shows the fifth
reconstructed event in a 2-d projection.

Figure 1.12: A display of OPERA’s fifth event. V0 is the primary vertex and V1
the secondary vertex. The black stubs are the measurements in the films, taken
from Ref. [17].

In 2018, a looser selection criterion is used in order to increase the statistics
to 10 ντ events, allowing a better measurement of the oscillation parameters [18].
The total signal consists of 10 ντ events with a background estimated at 2.0 ± 0.4.
This excludes the no-ντ -appearance hypothesis at 6.1σ. Their measurement of the
ντ CC interaction strength (ντ CC normalization) is 1.1+0.5

−0.4.

1.4.2.2 Super-K

Super-K is a water Cherenkov detector located in Japan. It does not observe tau
neutrinos directly, but the separation of ντ events from νe or νµ events can be
achieved by training a neural network (NN) algorithm.

In 2013, Super-K measured the ντ CC normalization to be 1.42±0.35+0.14
−0.12 using

2806 days of data, corresponding to 180.1 ± 44.3(stat)+17.8
−15.2(syst) tau neutrinos. It

excludes the no-ντ -appearance hypothesis at 3.8σ [19]. In Ref. [14], the measure-
ment is updated with 5326 days of data, and the result is 1.47±0.32 corresponding
to 338.1 ± 72.7 events, with the no-ντ -appearance-rejection significance at 4.6σ.

Figure 1.13 shows the fitted event distribution of Super-K. The ντ signal is
shown in grey color, their direction is upward-going in Super-K’s coordinates, i.e.,
the tau neutrinos come from the other side of the Earth.
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Figure 1.13: Super-K’s event distribution in cos(zenith) and NN output. See the
definition of the zenith angle in Chapter 2. Fitted ντ signal is the gray colored part.
The subplots are tau-like (NN>0.5), upward-going [cos(θzen) < −0.2], non-tau-like
(NN<0.5) and downward-going [cos(θzen) > 0.2], taken from Ref. [14].
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Chapter 2 |
Atmospheric Neutrinos

Neutrinos come from a variety of sources with a broad energy range. Figure 2.1
shows the measured and hypothesized fluxes from different sources over a wide
range of energies. Cosmological neutrinos [20] are relic neutrinos from the Big
Bang, they are estimated to have a temperature of roughly 1.95 K, but have not
been directly observed yet. At the highest-energy end of the spectrum are the
cosmogenic neutrinos, also referred to as the GZK neutrinos. They are produced
by interactions of the cosmic ray protons with the cosmic microwave background
(CMB). IceCube has the best limit on astrophysical neutrino fluxes. In 2013,
IceCube first observed neutrino fluxes at the PeV scale [21–23], although not likely
to be GZK neutrinos [24,25] or from Active Galactic Nuclei (AGN) [26]. ANTARES
also observed results [27] consistent with IceCube’s.

In 2018, IceCube reported a 3.5 σ evidence [28] for observing neutrino emission
in 2014 – 2015 from a flaring blazar source. The blazar is a type of AGN. This
result indicates that AGN is a likely source of high-energy cosmic rays.

All the other sources of neutrinos have been clearly discovered. Among them,
atmospheric neutrinos provide a great tool for studying neutrino oscillations. They
are produced by the decay of secondary particles from collisions of cosmic rays and
air particles in the atmosphere.

The first experiment to provide evidence for neutrino oscillations was done
by Super-K [30] using atmospheric neutrinos. The dominant oscillation Super-K
observed is the oscillation from muon neutrinos to tau neutrinos. Figure 2.2 is a
simple illustration of the two parameters L and zenith angle θzen commonly used
in atmospheric neutrino experiments. Detectors are usually located underground
to reduce the much more abundant atmospheric muons. Zenith angle (θzen) is the
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Figure 2.1: Neutrino fluxes from different sources, including naturally occurring
and artificial neutrinos, such as reactor neutrinos [29].

angle between the incoming neutrino and the vertical direction of the detector.
The baseline L is a function of the detector depth d, Earth radius R, and zenith
angle θzen. For IceCube, events with zenith angles larger than 90° (cos(θzen) < 0)
are called upward-going events.

This chapter describes the cosmic ray flux spectrum, the production of atmo-
spheric neutrinos, their oscillations, and the flux model we use.

2.1 Cosmic Rays
Primary cosmic rays mainly come from outside the solar system. The Fermi experi-
ment [31] shows that one source of cosmic rays is supernovae. IceCube’s observation
of neutrino emission in 2014 – 2015 from a blazar source [28] indicates one source
of high-energy cosmic rays is likely AGN.

Roughly 99% of the primary cosmic rays are protons and alpha particles. The
rest include electrons, carbon, oxygen, iron, and other nuclei. They have a very
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Figure 2.2: The definition of the zenith angle θzenith and baseline L. d is the
detector depth. D is the production height of the atmospheric neutrinos (used in
simulation). R is the Earth’s radius.

broad energy range from 109 to 1020 eV. The plot on the left in Fig. 2.3 shows
the flux composition. The all-particle differential flux ϕ (= dN

dE dA dΩ dt
) vs. energy

is shown on the right, dN
dE dA dΩ dt

∝ E−γ, where γ, the particle spectral index,
varies between 2.6 and 3.4 in different energy regions. Since the flux of neutrinos
is directly proportional to the flux of primary cosmic rays, a change of the cosmic
ray spectral index will also change the neutrino flux in a similar way. Thus we
use a function E∆γ to account for this uncertainty, where E is neutrino energy.
The primary cosmic ray spectrum changes according to the solar activity, because
the solar wind blows lower energy cosmic rays away from the Earth. This greatly
affects cosmic rays with energies below 10 GeV [32].

2.2 Creation of Atmospheric Neutrinos
Primary cosmic rays collide with the nuclei of particles in the Earth’s atmosphere,
generating pions and kaons. Eq. 2.1 shows the interaction, where X represents
other possible hadrons

p + N → π+ + π− + K+ + K− + X. (2.1)
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Figure 2.3: Left: Primary cosmic ray composition [33]. Right: The flux of cosmic
rays as a function of the energy. Generally speaking, it falls off approximately
proportional to E−3 (shown in green dashed line) [34].

The pions and kaons will then decay into muons and muon neutrinos as shown in
Eq. 2.2

π+(K+) → µ+ + νµ

π−(K+) → µ− + ν̄µ.
(2.2)

Figure 2.4 shows the fractional contributions from pions and kaons for muon
neutrinos and muons, where the pion decay chain dominates in the energy range
below 100 GeV and the kaon decay dominates at higher energies.

Muons can further decay into electrons, νe(ν̄e) and νµ(ν̄µ) (with an almost 100%
branching ratio [35]) before they reach the ground:

µ+ → e+ + νe + ν̄µ

µ− → e− + ν̄e + νµ.
(2.3)

The above muon decays are the main sources for the νe(ν̄e) production below
1 GeV. Muons with energy of several GeV and above reach the ground before
decaying, so the ratio of νe to νµ decreases with increasing energy. For νe(ν̄e)
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above 1 GeV, the kaon decay mode shown in Eq. 2.4 is the dominant source

KL → π+(π−) + e−(e+) + ν̄e(νe). (2.4)

Figure 2.4: Contributions from kaons and pions to muon neutrinos and muons at
different energies, solid lines represent pions or kaons traveling vertically, dashed
lines are those traveling with a zenith angle of 60°. We see that the contribution
from kaons is smaller in our energy range of interest 10 – 100 GeV [36].

From Eqs. 2.2 and 2.3, we know that the ratio of atmospheric νe to νµ is roughly
1:2 (below 1 GeV), and that the ratio of νµ to ν̄µ is roughly 1:1, and the ratio of
νe to ν̄e is proportional to µ+ : µ−.

These neutrinos produced from the decay of charged pions and kaons in Eqs 2.2,
2.3 and 2.4 are called the conventional atmospheric neutrinos. They do not contain
ντ .

There are also neutrinos produced by the decay of heavier mesons containing
a charm quark. These neutrinos are called prompt neutrinos. For example the D+

meson (with the quark content: cd̄) can decay into a muon neutrino or an electron
neutrino (both with a branching ratio of 8.7% [35]):

D+ → K̄0 + µ+ + νµ,

D+ → K̄0 + e+ + νe.
(2.5)
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Also, the prompt tau neutrinos come from mainly the strange D meson D+
s

decay with a branching ratio of 5.5% [35]:

D+
s → τ+ + ντ . (2.6)

The charm mesons have a mean lifetime on the order of 10−12 s, so they de-
cay promptly almost all without interacting. Thus, these neutrinos are called the
prompt neutrinos. Also, since the decay is prompt, the prompt neutrinos follow
the same energy spectrum as the primary cosmic rays (roughly E−2.7). The con-
ventional neutrinos, however, have a steeper spectrum (roughly E−3.7) because
the pions and kaons may also interact since they have a longer lifetime (roughly
10−8 s).

Another difference is that the prompt neutrino fluxes of νµ and νe are identical,
but the conventional νµ flux is roughly two times the νe flux.

Figure 2.5 shows the comparison of the prompt νµ flux and the conventional
νµ flux. Only at energies around 105 – 106 GeV, the prompt neutrino flux starts
to dominate the conventional flux.

Figure 2.5: Flux comparisons of conventional neutrinos and prompt neutrinos.
GH stands for the Gaisser and Honda model [36], TIG stands for the Thunman,
Ingelman and Gondolo [37] model. DM stands for “dipole model” used for the
prompt neutrino flux calculation in Ref. [38]. The gray band is the theoretical
uncertainty of the prompt model. Figure taken from Ref. [38].

Figure 2.6 shows the comparison of the prompt νµ and ντ fluxes. The ντ
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Figure 2.6: Comparison of prompt νµ fluxes and ντ fluxes [38].

flux is about one order of magnitude lower than the νµ (νe) flux. From Fig. 2.5
and Fig. 2.6, at energy 103 GeV, the intrinsic ντ fluxes are roughly three orders
of magnitude less than the conventional νµ and νe fluxes, since the conventional
neutrinos have a steeper spectrum than the prompt neutrinos, at lower energies
below 103 GeV, the prompt neutrino fluxes to the conventional neutrino fluxes is
even smaller. Thus, prompt neutrinos can be safely neglected in the energy of
interest from 5–100 GeV.

Most atmospheric muons are produced at about 15 km [39] above the surface
of Earth. Muons lose about 2 GeV to ionization before reaching the ground. The
detector depth is 2 km below the surface. Atmospheric muons travel with a speed
close to the speed of light, they have a mean lifetime of 2.2 µs. The mean decay
length of muons can be calculated using

L = γβcτ, (2.7)

where γ is the Lorentz factor, β is the ratio of the particle speed v to the speed of
light c, τ is the mean lifetime of the particle at rest (τµ = 2.2 µs), cτµ = 659 m.
For example, a muon with an energy of 2.4 GeV has a decay length of 15 km, but
due to energy loss in the atmosphere it’s reduced to 8.7 km [35].

The energy loss of muons traveling in matter can be described by
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− dEµ

dX
= a + bEµ, (2.8)

where X is the distance the muon travels in matter, a is the ionization loss and b

is the fractional energy loss by three radiation processes: bremsstrahlung, direct
production of electron positron pairs, and photonuclear interactions [35]. Thus,
the minimum energy required for muons passing through a distance d of ice is [40]:

E(d) = (Ebd − 1) a/b. (2.9)

For the ice in IceCube, the values of a and b are a = 0.163 GeVm−1 and b =
0.192 × 10−3 m−1 [40]. The IceCube detector depth is 2 km. Thus, a vertically
traveling muon needs to have a threshold energy on the order of 400 GeV to
penetrate the 2 km of ice to reach the IceCube detector.

Muons with energies large enough to reach the IceCube detector are an im-
portant part of the background. The number of atmospheric muons that trigger
IceCube is roughly 106 times the number of neutrinos. Thus, we need to develop
tools to reject these background muons while preserving the signal neutrinos. These
tools will be discussed in Chapter 5.

2.3 Oscillations of Atmospheric Neutrinos
Since the intrinsic tau neutrinos produced in the atmosphere are negligible, at-
mospheric neutrinos are excellent neutrino source for tau neutrino appearance
experiments .

Figure 2.7 shows the energy dependence of the oscillation probabilities of νe

and νµ that travel vertically along the Earth’s diameter, i.e., their path length L ≃
12, 700 km. The oscillations between νµ and ντ are predominant, since probabilities
of νe oscillating into the other two flavors are small and close to zero for Eν >

20 GeV. The first maximum of νµ to ντ probability happens near 25 GeV.

2.4 Atmospheric Neutrino Flux Calculation Model
In order to calculate the number of neutrinos we expect to observe, one important
step is to get the expected neutrino flux for a neutrino with a certain flavor, energy,
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Figure 2.7: Oscillation probabilities as a function of neutrino energy for atmo-
spheric νe (left) and νµ (right) after traveling through the Earth along the Earth’s
diameter.

and direction. We use the HKKM flux model [41] for the location of South Pole
with the NRLMSISE-00 atmosphere model [42].

Figure 2.8 shows that the measured neutrino fluxes by IceCube and other ex-
periments for neutrinos at the low-energy end, and roughly up to energies on the
order of 102 GeV, agree well with the HKKM model. Figure 2.9 shows the flux
distributions at the South Pole calculated from the HKKM model. Figure 2.9 (a)
shows the fluxes as a function of cos θzen. cos θzen = 0 is the horizontal direction,
so Fig. 2.9(a) shows that there are much more neutrinos produced near the hori-
zon than the vertical direction. This is called the “secant theta” effect [43]. It
occurs because horizontal pions and kaons have a larger traveling distance in less
dense atmosphere than vertical ones. So there are more horizontal neutrinos pro-
duced than vertical neutrinos. The solid lines are the averaged fluxes from June
to August (winter for the South Pole) and the dashed lines are from December to
February (summer for the South Pole). This seasonal effects occur because of the
variations of the air density. Air density at higher altitudes (≳ 15 km) is higher
in the summer at the South Pole [41].

We perform parametrizations on the νe and νµ fluxes provided by the HKKM
model [41] at different zenith angles and energies.
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Figure 2.8: Comparison of measured neutrino fluxes and HKKM model. Measure-
ments by IceCube are shown as triangles (blue and purple for νe, pink for νµ) [44].

2.5 Flux Uncertainties
After obtaining the atmospheric fluxes from the parametrizations, we need to as-
sess the flux uncertainties. Based on uncertainties calculated in Ref. [45], the
dominant error in atmospheric neutrino fluxes results from uncertainties in hadron
production, while the second largest is from uncertainties in the primary flux.

In this ντ analysis, we use four parameters to do modifications of the fluxes
based on Ref. [45]: modification of the ratio of upward-going and horizontal neutri-
nos (up/hor ratio), modification of the ratio ν/ν̄ (ν/ν̄ ratio), deviation of spectral
index (∆γ), and the flux ratio of νe/νµ (applied on both νe/νµ and ν̄e/ν̄µ, but
denoted as νe/νµ from now on). They are discussed in detail in Chapter 7.
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(a) Azimuth-averaged flux (b) Flux ratio

(c) All-direction averaged flux

Figure 2.9: (a) Distribution of atmospheric fluxes averaged over azimuth angles vs.
zenith angles. Solid lines are averaged from June to August, and dashed lines from
December to February. (b) The ratio of fluxes with different flavors vs. energy.
(c) All-direction averaged fluxes vs. energy [41].
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Chapter 3 |
IceCube and Neutrino Detec-
tion

IceCube is a neutrino detector at the South Pole at around 2000 meters below the
surface. It consists of 5160 Digital Optical Modules (DOMs) embedded in the ice
and occupies a volume of approximately 1 km3. AMANDA was the precursor to
IceCube, aimed at mapping the ice properties. Its first four strings were deployed
in 1996 and all 19 strings completed in 2000 before it was shut down in 2009. The
ice properties vary with depth, correlated with the dust concentration in the ice.
The largest dust concentration is at the depths between 2000 m to 2100 m from
the surface, and is referred to as “dust layer.” In 2004, IceCube was approved and
its deployment started. DeepCore is the dense sub-array of IceCube, deployed in
the clearest ice below the dust layer in order to avoid strong light scattering and
absorption. The deployment of the DeepCore strings started in 2009, finishing in
2010. In 2011, all 86 IceCube strings were installed, taking seven years in total.
This chapter describes the IceCube detector, the ice properties, and how neutrinos
are detected in IceCube.

3.1 IceCube
Figure 3.1 shows the geometry of the IceCube detector. Its in-ice array consists
of 86 strings, each containing 60 Digital Optical Modules (DOM). Seventy-eight
of the strings have a horizontal spacing of 125 m; the vertical spacing between the
DOMs on each string is 17 m. The DOM is the detecting unit of IceCube. Each
DOM contains a photomultiplier tube (PMT) that transforms a light signal into
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an electronic signal. A detailed description is given in Section 3.1.2. These 78
strings are referred to as the standard IceCube strings and their DOMs (PMTs)
as standard IceCube DOMs (PMTs).

The other eight strings are the DeepCore strings, which are mostly located
2100 m below the surface in the clearest ice. They have a horizontal spacing of
70 meters, and the vertical spacing between DOMs is either 7 m (below the dust
layer) or 10 m (above the dust layer). See Fig. 3.2 for their distribution in space.

Six of the eight DeepCore strings consist of High Quantum Efficiency (HQE)
DOMs, which contain PMTs having a higher quantum efficiency than the standard
IceCube PMTs. The standard PMTs are the 10′′-diameter Hamamatsu R7081-
02 PMTs. The HQE DOMs are the Hamamatsu R7081-02MOD PMTs. In the
wavelength range 300 nm – 650 nm, the standard PMTs have a peak quantum
efficiency around 25% near 390 nm, and the HQE PMTs have a peak quantum
efficiency of 34% [46]. Two of the DeepCore strings are a mix of both standard
and HQE DOMs.

Figure 3.1: The IceCube Detector consists of 86 strings with digital optical modules
on each string [47].
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Figure 3.2: Top and side view of the IceCube detector. The DeepCore region
includes seven regular IceCube strings and the eight strings marked with red stars
and black triangles.
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Apart from the in-ice array and the DeepCore sub-array, IceCube also has an
IceTop surface array. It consists of 162 ice-filled tanks which contain PMTs for
Cherenkov radiation detection. It is sensitive to primary cosmic rays in the energy
range of PeV to EeV. For IceCube/DeepCore analyses with neutrinos, it is also
used for the veto of downward-going atmospheric muons.

The geometry of the standard IceCube strings is designed to detect astrophysi-
cal neutrinos above 100 GeV. DeepCore is optimized for the detection of neutrinos
in the 10 – 100 GeV energy range, where we expect to observe the maximum
disappearance of atmospheric νµ into ντ .

3.1.1 DeepCore Fiducial Region
The DeepCore fiducial region is different from the DeepCore strings; the former
contains the eight DeepCore strings and also seven standard IceCube strings. See
Fig. 3.2 for the top and side view of the detector. In the figure, the yellow box
below the dust layer shows the DeepCore fiducial region in the vertical direction,
the yellow hexagon in the top view plot shows the region in the horizontal plane.
Only events triggering the DeepCore fiducial region are recorded; its details will
be discussed in Chapter 5. Similarly, the yellow box above the dust layer contains
both standard IceCube strings and DeepCore strings, used as the veto region to
help identify and reject atmospheric muons, especially the vertical muons. They
can also be used to improve the reconstruction of low-energy, near-horizontal tracks
in certain analyses [47].

3.1.2 DOM Properties
A DOM is a spherical optical detecting unit composed of a downward-facing 10-
inch PMT, the DOM mainboard, and other electronics shown in Fig. 3.3. The
outer DOM glass sphere can withstand enormous pressure exerted by the ice.
The DOM mainboard contains an Analog Transient Waveform Digitizer (ATWD),
a Fast Analog to Digital Converter (FADC), and an Field-Programmable Gate
Array (FPGA) with an on-board processor, a flasher board and other ancillary
electronics.

The ATWD and FADC are used for digitizing the analog PMT signals (called
“waveforms”). There are three ATWD input channels, each with a different am-

32



Figure 3.3: Left: Schematic view of the DOM. The mu-metal grid is used to shield
the PMT from the Earth’s magnetic field, the layer of RTV gel to optically couple
the PMT glass to the pressure vessel, the LED flasher board is used for calibration,
and the HV generator and divider circuit for the voltage supply. Right: The PMT
output waveform is fed into the 3 ATWD channels (ch0, ch1, ch2) and the FADC
channel [48].

plification level as shown in Fig. 3.3. Each channel contains 128 samples with a
bin size of 3.3 ns, covering a total interval of 422 ns. Each ATWD stores these
waveform samples in capacitors. These signals can then be digitized if the local
coincidence (i.e., the 0.25 photoelectron (PE) threshold described in Section 3.1.3)
is triggered, if not they are cleared. The FADC has one channel, stores 256 sam-
ples each with a bin size of 25 ns, covering a longer interval of 6.4 µs. The three
ATWD channels have different amplification levels (16, 2 and 0.25 for ch0, ch1,
and ch2, respectively). The example waveform makes the highest amplification
level ch0 saturate first, then the medium level ch1, and the lowest level ch3 is
unsaturated [48, 49]. The digitized signals are then sent to the surface via cables.

3.1.3 Photoelectrons, Hits, and Local Coincidence
The photoelectron is a unit of charge. One PE is the charge recorded by a DOM
that corresponds to a single photon that initially hits the DOM. A “hit” occurs
when a DOM’s PMT exceeds the 0.25 PE threshold, and such a DOM is called a
“hit DOM.”

Local Coincidence (LC) means the occurrence of several neighboring DOMs
getting hit. This indicates a possible physics event and thus is used as the cri-
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terion for keeping the digitized ATWD and FADC signals. The types of local
coincidence are soft local coincidence (SLC) and hard local coincidence (HLC).
The non-LC signals are mostly PMT dark noise and isolated single photons. Dark
noise has several different sources, such as thermal noise, electronic noise, decay-
ing radioactive isotopes in the PMT/DOM glass, scintillation, and Cherenkov light
from radioactive decays.

There are two LC spans: LC span 1 is a coincidence between the direct neighbor
DOMs, and LC span 2 includes two DOMs up and two DOMs downward. If either
the LC1 or LC2 condition is met, the LC is called hard local coincidence (HLC)
and the hit is called an HLC hit. The HLC condition leads to a full readout of the
digitized 256 FADC and 364 ATWD channels. If one DOM is hit in isolation, it is
called an SLC. So SLC is actually not a coincidence, and it leads to a SLC readout
that’s only 3 FADC samples out of the first 25 samples (the highest amplitude
bin and its two neighbors), creating only a coarse time and charge stamp for this
DOM.

3.1.4 Data Flow
The LC is the first level of data reduction, removing uncorrelated noise hits. The
second level is the Data Acquisition System (DAQ) that takes place in the com-
puters on the surface. The DAQ reads all DOM hits and runs different trigger
algorithms and eventually creates “events” as its output.

Table 3.1 shows several trigger algorithms [50]. Most triggers are simple ma-
jority triggers (SMT), generally they look for a certain number of HLC hits within
a time window. The first three rows are SMT for in-ice DOMs, DeepCore DOMs,
and IceTop DOMs. The DeepCore SMT3 (used for this analysis) looks for at least
3 HLC hits within 2.5 µs in the DeepCore DOMs.

Other triggers have requirements on the geometrical distribution of the hits.
The volumn trigger defines a cylinder around each hit DOM and look for certain
multiple hits within the cylinder. It allows the triggering of localized low-energy
events that do not trigger SMT. The cylinders’ radius r and height h defined under
the “Topology” column.

SLOP is Slow Particle (SLOP) trigger [46], designed to look for slow track-like
events. For example, it can look for the hypothesized magnetic monopoles. It first
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removes pairs of HLC hits that come too close in time (∆t < Tprox) to remove
muon hits. Then, it looks for 3-tuples of pairs within a time window [Tmin, Tmax],
requiring the number of these tuple pairs to be at least Ntuple = 5. The geometry of
each 3-tuple must satisfy track-like conditions. αmin is the minimum allowed angle
of the obtuse inner angle of the triangle. vmax

rel is the largest allowed value for the
“normalized velocity difference” vrel, which is defined as vrel = 3 v1

12−v1
23

v1
12+v1

23+v1
13

, vij =
∆xij/∆tij.

Fixed-rate trigger (FRT) reads out 10 ms of data in the full detector, it is used
as a minimum-bias sample and for studies of DOM noise [50].

All trigger algorithms are run in parallel over all DOM hits since the same hits
can satisfy multiple triggers, and overlapping triggers are merged to one single
event [46].

Table 3.1: Different trigger algorithms, their requirements and their typical event
trigger rates as of May 2013. Trigger rates vary seasonally. Taken from Ref. [50]

The third level is the Processing and Filtering (PnF), which takes the DAQ
events to perform fast reconstructions and selections to reduce the data rate from
1 TB/day to 100 GB/day. The output events are then sent over satellite to the
data warehouse in the Northern Hemisphere. Different filters are used for different
types of physics events. For example, the DeepCore filter is used for filtering
events triggering DeepCore. Other examples are: the cascade filter looking for
more sphere-like events, the EHE (Extremely High Energy) filter looking for highly
energetic events, and the Sun and Moon filter looking for events coming from the
Sun and the Moon. The DAQ and PnF described above are part of the online
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Table 3.2: The online data flow in IceCube [46].

systems (see Table 3.2 for the online data flow).
After the data get transferred to the North, the next steps are offline data

filtering and processing. The data that are filtered offline and processed offline are
internally termed “level 2” data. (“Level 1” data is the online data right before the
filtering and processing.) After level 2, more levels of event selection are needed for
specific analyses. For example, the level 3 of this ντ analysis contains a set of more
stringent triggering and vetoing algorithms, while at level 5, a boosted decision
tree (BDT) is developed to reject muon background. A detailed description of this
process is in Chapter 5.

3.2 Neutrino Detection
Neutrinos can’t be observed directly in IceCube, but some of the secondary charged
particles from neutrino interactions can be observed. The secondary particles’
Cherenkov radiation produces light; light travels in the ice and some of the photons
get scattered along the way, but those that arrive at a DOM can be detected by the
DOM’s PMT and digitized into electronic signals. By using the charge, temporal,
and spatial information of the hit DOMs, the incoming neutrino’s direction and
energy can be reconstructed (Chapter 4).
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3.2.1 Neutrino Interactions
In the intermediate neutrino energy range 0.1 – 20 GeV, the interactions of neu-
trino with matter include quasi-elastic (QE), NC elastic scattering, resonant single
pion production (RES), coherent pion production, multi-pion production and kaon
production. Neutrino scattering in this region is quite complex and not accurately
known. Here we only discuss the RES and QE scattering. In the high energy region
20 – 500 GeV, the neutrino is energetic enough to scatter off an individual quark
inside the nucleon, and such a process is called deep inelastic scattering (DIS) [51],
and is well understood.

The weak interactions have two types: charged-current (CC) interaction and
neutral-current (NC) interaction. The former has the charged exchange particle
W ± boson, and the latter a neutral Z0 boson. Figure 3.4 shows example Feynman
diagrams of CC DIS and CC QE, NC DIS, and NC elastic scattering. In the case
of RES, the target first goes to an excited state then emits a pion. The main
interactions are:

νl + N → l + N∗,

N∗ → π + N
′
,

(3.1)

νl + N → l + ∆++, ∆++ → p + π+,

νl + N → l + ∆+, ∆+ → n + π+.
(3.2)

These three types of interaction cross sections and the total cross section are
shown in Fig. 3.5. The RES and QE scattering have a much larger uncertainty. In
this analysis, the axial mass form factors for the CCQE scattering (MCCQE

A ) and
RES (M res

A ) events are included as systematics. The DIS cross section uncertainty
effect was also considered but it was found to be small and was therefore neglected
(Chapter 7).

3.2.2 ντ Deep Inelastic Scattering (DIS)
The DIS is the main component of ντ -nucleon scattering. The NC DIS interaction
is:

ντ + q → ντ + q. (3.3)
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Figure 3.4: Feynman diagrams of neutrino-nucleon interactions. “l” can be e, µ,
τ , and νl stands for the corresponding νe, νµ or ντ . “q” is a quark.

The CC DIS interaction is:
ντ + d → τ− + u. (3.4)

The heavy mass of the tau lepton (1.78 GeV) imposes a 3.5 GeV neutrino energy
threshold to make the CC reaction occur. This is called kinematic suppression.
The secondary τ± particle has a short lifetime and quickly decays. The main decay
channels and their branching ratios [52] are:

τ → e− + ν̄e + ντ , 17.82%

τ → µ− + ν̄µ + ντ , 17.39%

τ → π− + ντ , 10.81%

τ → π− + π0 + ντ , 25.49%

τ → π− + 2π0 + ντ (ex.K0), 9.26%

τ → π− + π− + π+ + ντ (ex.K0, ω). 8.99%

(3.5)

The first two decays shown in Eq. 3.5 are leptonic. The first one’s output
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lepton is an electron and the second one a muon, both have a similar branching
ratio around 17%. The rest of tau decay modes are all hadronic, and in Eq. 3.5 we
list the four dominant hadronic decay channels. The “ex. K0” means the decay
is a 3-prong decay without K0, similarly the “ex. K0, ω” means the decay has no
K0 or ω.

As mentioned in Section 2.2, the decay length can be calculated by

L = γβcτ = p

m0c
(cτ)

=

√
E2 − m2

0

m0c
(cτ).

(3.6)

The mean lifetime of a τ is (290.3 ± 0.5) × 10−15 s [35], so cττ = 87.03 µs. This
is very short. For example, the decay length of a 100 GeV τ is only 5 mm. A τ

with energy as high as one PeV has a decay length of 50 m. So for atmospheric
tau neutrinos below 100 GeV, IceCube is not able to clearly distinguish them from
the other flavors.

3.2.3 Detector Signatures
The signatures of the light deposited by particles traveling in IceCube can be
grouped into two categories: cascade-like and track-like. Cascade-like events have
a hadronic shower resulting in a relatively spherical distribution of hit DOMs.
Track-like neutrino events have both a cascade and a visible track left by a muon.
So track-like events include sufficiently energetic νµ CC events, and some ντ CC
events (via the τ → µ channel in Eq. 3.5). Downward-going atmospheric µ are
mostly track-like. But muons that sneak in through the empty pathways of the
detector without triggering too many DOMs might also be misidentified as cascade-
like.

The neutrino interactions that produce cascade-like events are: all NC events,
νe CC events, most of the ντ CC events, and low energy νµ CC events whose muon
track is too short to be separated from the hadronic cascade.

Most of the ντ signal should end up in the cascade channel (82.61% of the ντ

CC and ντ NC), only a small part (17.39% of ντ CC) is in the track channel.
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Figure 3.5: Cross section divided by energy as a function of energy for QE, RES
and DIS scattering and their total cross section. Upper left: νµ neutrinos. Upper
right: ν̄µ neutrinos. Bottom: Comparison of νµ and ντ cross sections divided by
energy vs. energy. We can see the ντ scattering only starts at 3.5 GeV [51, 53].

3.2.4 Cherenkov Radiation
Cherenkov radiation is the electromagnetic radiation produced from a charged
particle with a traveling speed faster than light’s phase velocity in the medium. It
is analogous to the sonic boom created by a plane traveling faster than the speed
of sound.

In Fig. 3.6, the red arrow represents the traveling direction of the particle with
a speed βc. The blue circles represent the photons propagating in all directions
with a speed c/n, where n is the refractive index of the medium and t is the time
since their emission. So when βc > c/n, the direction of the wavefront of the
photons (shown in two blue lines) form the Cherenkov cone. The angle between
the wavefront direction and the particle’s direction is called Cherenkov angle, θC ,
where cos(θC) = 1/βn and equals roughly 41° for charged particles traveling in ice.

40



βct

c
nt

Figure 3.6: Geometry of the Cherenkov cone (without scattering).

3.3 Ice Properties
Since the light emitted will travel in the ice before arriving at the DOMs, we need
to include the properties of the ice in our simulations and reconstructions. This
section mainly talks about the bulk ice properties, for description of the hole ice,
see Section 7.4.2.2.

The glacier ice at the South Pole is formed from hundreds of thousands of years
of snow accumulation [54]. When snow falls, it adds weight on the lower layers of
snow, turning them into firn, which is at the intermediate stage between snow and
glacier ice. Firn is not dense enough for air to escape, it has various densities from
0.4 − 0.83 g/cm3. When more snow falls and creates larger weights on the firn, its
density will get larger and eventually when its density reaches around 0.83 g/cm3

it starts to turn into ice. The air trapped in the firn then turns into air bubbles.
At larger depths from the surface, the hydro-static pressure gets larger thus the

air bubbles get compressed into smaller sizes. But below 1200 m, the air bubbles
begin to disappear [55]. The reason is at that depth, the pressure is huge enough to
make the crystal structure of the ice to transform from hexagonal to cubic, which
allows the air molecules to move inside and form the air clathrate hydrate [56,57].
The transformation from the air bubbles to the solid clathrate hydrate state is very
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Figure 3.7: Light emitted from an emitter (shown in red) and received by a receiver
(shown in blue) [62].

slow; they can coexist over the depth range of a few hundred meters [58].
At depths larger than 1500 m, the air bubbles disappear completely into air

hydrates [59]. IceCube detector is built in the depth range of 1450 – 2450 m,
so we don’t need to worry about the air bubbles’ effect on light scattering. One
important property of the air hydrate is that its refractive index is almost identical
to that of the normal ice [60]. So, the existence of air hydrates leaves almost no
effect on the light propagation in the ice. Therefore, the scattering and absorption
properties of the ice below 1500 m are dominated by the dust concentration in the
ice.

The dust particles can be approximated as spherical particles. The Mie solu-
tion (or Mie scattering) describes the scattering of electromagnetic waves off ho-
mogeneous isotropic particles. It is the complete analytic solution to the Maxwell
equations, computed by and named after Gustav Mie [61]. As mentioned before,
each DOM has an LED flasher board used for calibration. Each flasher board has
12 light emitting diodes (LEDs) that emit light which can be received by other
DOMs as far as 0.5 km away. The LEDs point towards six azimuth angles and
two zenith angles. Figure 3.7 shows the light curves (solid line) received by nearby
DOMs for one LED. There is one such light curve for each pair of emitter and
receiver.
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A flasher data set is the collection of these flasher light curves from multiple
LEDs at various depths to cover the whole detector. In the ice model used for
this analysis, the flasher data set was collected in 2008 when IceCube was in a
40-string configuration, there were at least 250 flashes from each DOM on string
63 (i.e., 15,000 flashes in total), and the receiver DOMs were all the DOMs on the
40 strings.

One of the earliest ice models is the AHA model [59] based on AMANDA
measurements. Spice (South Pole Ice) Mie [62] is the second generation of ice
model, where ice is described by a table of depth-dependent parameters be(400 nm)
and a(400 nm) related to scattering and absorption at a wavelength of 400 nm, by a
depth-dependent relative temperature parameter, and other six global parameters.
a(400 nm) is the absorption coefficient, and be(400 nm) is the effective scattering
coefficient. The ice model used for this analysis is called Spice (South Pole Ice)
Lea [63] based on Spice Mie. The difference is that Spice Lea takes into account
the anisotropy of the ice.

A global fit is done to find the best a(400 nm) and be(400 nm) so that the
simulation best matches the recorded flasher data.

Figure 3.8 shows the effective absorption and scattering coefficients as a func-
tion of depth comparing the AHA model and the Spice Mie model. The peak at
depth around 2000 m is the location of the dust layer, which greatly affects the
absorption and scattering properties of the ice. Figure 3.9 shows the comparison
of the Spice Mie and Spice Lea models.

The uncertainties of the bulk ice scattering and absorption parameters are
included as systematics in this analysis, and their effect on the final sample is
shown in Chapter 7.

The installation of the DOMs and strings in the ice was done by drilling holes
with hot water, which then cooled down and refroze. This refrozen ice column’s
ice properties are different from the bulk ice around it, mainly because of the
bubbles formed during the refreezing process. In addition, this ice is located near
the DOMs, so the light observed by each DOM is affected. These columns of ice
are called “hole ice.” Section 7.4.2.2 covers the systematics to describe its effect on
the optical sensitivity of DOMs.
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Figure 3.8: The depth dependence of the effective absorption coefficient a (400 nm)
(up) and scattering coefficient be (400 nm) (bottom). There are two models shown
here. The solid black line is the Spice Mie model, and the grey band indicates its un-
certainties. The dashed line is the AHA model used previously in AMANDA based
on Ref. [59], extrapolated to IceCube depths. Its uncertainties at the AMANDA
depths of 1730 ± 225 m are roughly 5% in be and roughly 14% in a. The right
side of the plots shows the corresponding scattering and absorption lengths in
meters [62].
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Figure 3.9: The depth dependence of the effective absorption coefficient a (400 nm)
(up) and scattering coefficient be (400 nm) (bottom) comparing the Spice Mie and
the Spice Lea model [63]. The grey band is the uncertainties on the Spice Mie
model reported in [62].
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Chapter 4 |
Monte Carlo Simulation and Re-
construction

This chapter discusses the Monte Carlo simulation in IceCube, focusing on the
simulation of neutrino events and the reconstruction used in this analysis.

4.1 Simulation
The simulation chain has the following six components: event generation, propa-
gation of secondaries, photon propagation, noise simulation, DOM simulation and
triggering.

4.1.1 Event Generation
The first step of simulation is to create the primary particle, its interaction, and
the created secondary particles.

For this analysis studying neutrinos in a relatively lower energy range, we use
the event generation module “genie-icetray.” It first generates neutrinos inside
the generation cylinder shown in Fig. 4.1 and propagated towards IceCube. The
generator volume is taken into account in the weight for this event. The neutrinos
are simulated with some chosen spectral indexes. The energy range is 1 – 1000 GeV
for νe and νµ, and 4 – 1000 GeV for ντ . 70% of the simulation are neutrinos and
30% are anti-neutrinos. Similarly, these factors are taken into account in the
weighting. One limitation of genie-icetray is that it can only propagate particles
through water and cannot add Earth matter effects. That’s why they are added
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later in the data analysis.
In the next step of genie-icetray, the neutrino interactions are done with GE-

NIE 2.8.6 [64, 65], which provides comprehensive neutrino interaction modelling
from 100 MeV to a few hundred GeV. It includes the RFG nuclear model (Bodek
and Ritchie version [66]), cross section models and hadronization AGKY model [67],
which uses the KNO [68] model in the low invariant mass region, and the PYTHIA/-
JETSET [69] model in the high invariant mass region. The hadronization models
provide the full final state particles.

IceCube

RL

Figure 4.1: Generator volume along a given neutrino direction. The generated
primary neutrino starts from the disk. Its radius, R, is called the injection radius.
The neutrino is then propagated towards the detector. Each neutrino is simulated
to interact within the cylinder whose height is called the detection length L. (The
interaction probability is later added in the event weight as a correction.) The
radius and length are optimized to different values to accommodate different flavors
in different energy regions. For example, in the MC used for this analysis, R=250 m
and L=500 m for νe flavor events.

For neutrinos at higher energies (usually above 200 GeV), the event genera-
tion uses the “neutrino-generator” module, which implements the All Neutrino
Interaction Simulation (ANIS) [70]. Similar to genie-icetray, it first generates the
primary neutrinos, injects them in the Earth, and propagates them through the
Earth (which means the Earth matter effects are taken into account here). In
its second step, it does not use GENIE to do the detailed event-by-event inter-
action simulation, but instead uses simple parametrizations and approximations.
For example, it only considers deep inelastic scattering cross sections since the
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contributions from CCQE and RES are very small (see Fig. 3.5). Also, it only
simulates one hadronic blob, while the genie-icetray uses GENIE to produce all
the final state particles in the hadronic shower.

The atmospheric muons in IceCube are simulated by the CORSIKA [71] pack-
age and MuonGun [72]. CORSIKA (COsmic Ray SImulations for KAscade) sim-
ulates extensive air shower events initiated by cosmic particles hitting the Earth’s
atmosphere. It begins with primary cosmic ray particles, propagates them through
the atmosphere towards the Earth, and then generates their interactions with the
air nuclei, creating secondary particles and their possible subsequent decay prod-
ucts. Because CORSIKA simulates primary cosmic rays all the way from their
source location in the atmosphere to the final location detector, it has the best
accuracy for generating the atmospheric muon events, however, it is also compu-
tationally expensive. For example, when an event selection can eventually reduce
the number of atmospheric muons from the original 106 times the number of neu-
trinos to rough parity, it is hard to simulate enough atmospheric muon statistics
for that sample. MuonGun is a faster simulation method that simulates muons
in the ice using a parametrization of the muon fluxes. Muons are then weighted
according to the cosmic ray interaction in the air. Due to the reasons explained
above, this analysis instead uses a data-based background shape estimation for the
atmospheric muons. It achieves reasonable agreement with both CORSIKA and
MuonGun.

4.1.2 Propagation of Secondaries
The second step is the propagation of secondaries. For neutrinos, secondaries in-
clude the electrons, muons and τ produced in their CC events, and the hadronic
showers. The electron produces an electromagnetic shower, the tau may also de-
cay into a muon. Muons created in νµ CC interactions are propagated through
the ice using PROPOSAL [73]. Tau leptons and their decayed muons, hadronic
showers, and electromagnetic (EM) showers below 100 MeV are propagated with
GEANT4 [74]. For events with EM showers above 100 MeV, shower-to-shower vari-
ations are small enough to use parametrizations [75] which are based on GEANT4
simulations.

For atmospheric muons, at low energies, CLsim [76] is used to propagate all
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secondary particles in the detector. For muons at high energies, either the Muon
Monte Carlo program (MMC) [77] or PROPOSAL [73] is used for their propagation
from the Earth’s surface to the detector.

4.1.3 Photon Propagation
The third step is the propagation of photons produced by Cherenkov radiation
in the ice. CLSim [76] is used for generating the light yield. It uses OpenCL to
run these processes in parallel. It first creates photons from Cherenkov radiation,
propagates them in the ice, and stores those that impact a DOM. In this process,
the South Pole Ice model (SPICE [63]) is applied. Then the photons are passed
on to the next step.

4.1.4 Noise Simulation
Before simulating the DOM response induced by the photons from the previous
step, photons from dark noise need to be included. Dark noise comes mostly from
thermal noise, electronic noise, and decaying radioisotopes in the PMT/DOM glass.
The software is called Vuvuzela [78]. The average total noise rate is 560 Hz for
standard DOMs and 780 Hz for HQE DOMs [46].

4.1.5 DOM Simulation
The fifth step is the DOM simulation using an IceCube module named “DOM-
Launcher.” It simulates PMT response and the digitization process that essentially
transforms the photons into photoelectrons and eventually digitized ATWD and
FADC signals, simulating the DOM data acquisition process.

4.1.6 Triggering
Finally, the trigger algorithms are applied across the full detector to produce the
final simulated data set. Trigger algorithms are simulated based on triggering
described in Section 3.1.4. As with real data, after triggering, offline filtering
and processing are applied. At this point, the generated data is called level 2
simulation. The details of these first two levels and the higher levels are discussed
in Chapter 5.
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4.2 Reconstruction
After triggering, the next step is to do offline processing. The IceCube module to
do this step is called “WaveDeform” [79], it takes the ATWD and FADC waveforms
and deconvolves them into photon information. They are called “RecoPulse” (“reco
pulse”) meaning “reconstructed pulses”. Each reco pulse contains three parameters:
the pulse time, pulse charge and pulse width. A DOM may observe one or several
pulses. The collection of these pulses in all the hit DOMs in an event is called reco
pulse series (or simply referred to as reco pulses). These reco pulses are usually
cleaned before being used in the event reconstruction. For example, several pulse
cleaning algorithms are discussed below.

Event reconstruction algorithm tries different neutrino event hypotheses and
finds the one whose expected pulse charge distribution gives the best agreement
with the observed pulse charge distribution in the detector. The Poisson likelihood
obtained from comparing the expected and the observed charge is the fundamental
quantity used to estimate how good the agreement is.

There are several different types of reconstructions: track directional recon-
structions, track energy reconstructions, cascade energy reconstructions, and cas-
cade directional/energy reconstructions [80]. The track directional reconstructions
fit with a track hypothesis and usually are used as a fast first step estimation. For
example the “LineFit” algorithm assumes an infinitely long track and ignores the
Cherenkov cone geometry [81].

For oscillation analyses, we need to have both the cascade and the track hy-
potheses in the fit. For example, SANTA (The Single string ANTares-inspired
Analysis) is used for IceCube’s 2015 νµ disappearance result [82]. SANTA first
uses the geometry of the direct Cherenkov light to fit pulses on each string to a
hyperbola and extract only pulses that are direct hits (SANTA hit cleaning). Then
the hyperbolas formed by the cleaned pulses are fitted to a track and cascade cone.
For this analysis, SANTA hit cleaning is only used as a trigger in level 3, and the
algorithm used for event reconstruction is the Pegleg/MultiNest reconstruction.
Pegleg is the event hypothesis construction based on HybridReco, which is the
reconstruction algorithm used in the 2017 IceCube νµ disappearance result [15].
MultiNest [83, 84] is the optimization algorithm.
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4.2.1 Photon Tables
Photon tables are produced with simulation of photon propagation in the ice for
each DOM. One photon table corresponds to one light source in the detector.
Putting together the photon tables from a wide range of possible sources gives
a complete picture. The tables are binned in six dimensions: z (source), zenith
(source), (x, y, z) of the observer relative to the source, and t (time).

The reconstruction is done by maximizing the Poisson likelihood between the
expected and the observed charge. The observed charge is the light deposited in
the DOMs. The expected charge is obtained using splined photon tables which
give the amount of charge in each DOM under a given event hypothesis. (“Splined”
refers to using splines to get a smooth parametrization of the tables [85, 86].)

4.2.2 HybridReco
HybridReco is the event reconstruction algorithm developed for low energy anal-
yses, the “hybrid” in its name means a hybrid of cascade and track hypothesis.
A neutrino interaction contains the incoming neutrino, the hadronic and/or EM
cascade, and a muon track if it exists.

Since deep-inelastic scattering is the dominant interaction type for DeepCore
energy region, HybridReco assumes that all energy not transferred to the outgoing
muon is converted to a single hadronic cascade. Eight parameters are considered
to describe an event: (x, y, z, t, zenith, azimuth, Ecascade, Ltrack). See Fig. 4.2
for a sketch of the event signature.

The first four parameters (x, y, z, t) are the position and time of the neutrino
interaction vertex, (zenith, azimuth) is the direction of the hypothesized output
muon, and track length Ltrack is the distance the muon travels in the ice before it
stops or leaves the detector. Ecascade is the energy of the hadronic cascade, whose
starting position is the same as the neutrino vertex and has a collinear direction
as the muon track. Thus from momentum conservation, (zenith, azimuth) is also
the primary neutrino’s direction.

We first do a fit with all eight parameters turned on and call it a 8-d fit
or the “cascade+track fit”. In our energy range, the outgoing muon undergoes
ionization with a constant dE/dX = 1 GeV/4.5 m, where X is the distance it
travels, thus allowing the track length to be translated into the energy emitted by
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Figure 4.2: The 8-parameter event hypothesis in HybridReco. Blue regions indicate
where Cherenkov light has been created. For the muon track, only the Cherenkov
cone at the wave front is depicted.

the muon. The total neutrino energy is then roughly Eν ≃ Ecascade + Ltrack/4.5.
The reconstructed energy Eν and cos θzen are two dimensions for the 3-dimensional
binning of the events.

Then, the track length is set to zero to perform a 7-d fit with only the cascade
hypothesis (“cascade-only fit”). If an event gives roughly equal values of likelihoods
from the two fits, then it’s considered a cascade-like event. If the “cascade+track
fit” achieves a much better likelihood, the event is considered a track-like event.
This difference between the two log likelihoods (∆LLH) is used as the third di-
mension in the binning.

4.2.3 Pegleg
Pegleg is a similar reconstruction method based on HybridReco, and has a sim-
ilar reconstruction resolution to that of HybridReco, but runs faster. The event
hypothesis and the two fits are still the same. It is faster mainly because it has a
faster implementation of likelihood service so that when doing the 8-d fit, it’s only
internally doing a look-up in 6-d (not including the cascade energy and the track
length) likelihood space, while the other two parameters are done separately. This
cuts down the photon table look-up time.
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4.2.4 Likelihood Minimizer: MultiNest
MultiNest is short for the Multimodal Nested sampling algorithm developed [83,
84]. It is one type of Bayesian inference, which is a method based on Bayes’
theorem to get the posterior probability given the prior available information (or
“evidence”). For this analysis, MultiNest is used to calculate the evidence in the
Pegleg reconstruction. Bayes’ theorem [87] is:

P (H | E) = P (E | H) · P (H)
P (E)

, (4.1)

where P (H | E) is the posterior probability: the probability of the hypothesis H
being true after seeing the current evidence E. P (E | H) is the likelihood: the
probability of seeing evidence E given the hypothesis H. P (H) is the prior proba-
bility: the probability of the existence of hypothesis H before seeing E. P (E) = Z

is the Bayesian evidence or the marginalized likelihood: Z =
∫

H P (E | H)P (H).
If we want to determine a set of parameters of a hypothesis H: θ, then the

above equation [83] becomes:

P (θ | E, H) = P (E | θ, H) · P (θ | H)
P (E | H)

. (4.2)

Here, Z =
∫

θ P (E | θ, H)P (θ | H) dθ. When we need to determine which hypoth-
esis gives a better posterior probability, such as in the case of minimization, the
fitter needs to obtain the higher probability from comparing two sets of parameters.
Using Eq. 4.1:

P (H1 | E)
P (H2 | E)

= P (E | H1)) · P (H1)
P (E | H2) · P (H2)

= Z1 · P (H1)
Z2 · P (H2)

. (4.3)

Thus the calculation of the evidence Z becomes important and if the likelihood
space is multi-modal it could be time-consuming. Nested sampling [88] provides
an efficient way to calculate Z. MultiNest is an implementation of the nested
sampling for multimodal posterior spaces.

MultiNest throws “active points” into the parameter space, then partitions
them into clusters and constructs ellipsoidal bounds around the clusters. These
ellipsoids can be overlapping. In each iteration, the probabilities are evaluated and

53



the point with the lowest likelihood inside an ellipsoid is dropped as an “inactive
point,” making the ellipsoid’s volume smaller. Then a new “active point” is gen-
erated inside this smaller ellipsoid satisfying the requirement that its likelihood is
larger than the one dropped. As iterations proceed, the algorithm moves inside
these “nested” likelihood shells until the stopping criterion (a tolerance on the
final evidence) is met. Figure 4.3 (a) shows the multiple overlapping “ellipsoids”
constructed by MultiNest. Figures 4.3(b) and (c) show how well it can recover a
multimodal likelihood space in a toy model.

One disadvantage of MultiNest is that it uses random active points, and our
likelihood space could be spiky with local minima, the randomness of the thrown
active points gives rise to instability in the best fit neutrino zenith angle, energy,
and ∆LLH, the 3 parameters for the final binning of the events. This means
different reconstructions can create migration of events between bins if the bin
sizes are too small. By choosing the bin sizes larger than the standard deviations
for each parameter’s distribution, the migration is greatly reduced. Our final
binning is eight energy bins in [5.6, 56] GeV, eight cos θzen bins in [-1, 1], and two
∆LLH bins: [−3, 2, ∞].

(a) (b) (c)

Figure 4.3: (a): Black points are the active points sampled inside of the constructed
ellipsoidal bounds (orange). (b) and (c): MultiNest can recover the highly mul-
timodal two-dimensional likelihood space very well. (b) is the input likelihood
function, (c) shows what MultiNest gets. Each dot is one lowest likelihood at one
MultiNest iteration [84].

4.3 Reconstruction Resolution
The final events are binned into 3-dimensional histograms, where the three bins
are the reconstructed energy, reconstructed cos θzen and ∆LLH.
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As mentioned in Chapter 1 and Chapter 2, the leading term for tau neutrino
appearance probability is

P (νµ → ντ , vacuum) ≈ sin2 2θ23 sin2
(

1.27∆m2
atm

L

E

[eV2][km]
[GeV]

)
, (4.4)

where L is a function of cos(θzen). Thus, the tau neutrino appearance measurement
depends greatly on how well we can reconstruct the neutrino zenith angle θzen and
the neutrino energy E.

Figure 4.4 shows the comparison of reconstructed energy and cos(θzen) vs. their
true values in four (flavor, interaction) channels: νe CC, νµ CC, ντ CC and νall

NC. Figure 4.5 shows the fractional energy vs. true energy and the θreco − θtrue vs.
true energy in the four channels.

Note that in all four channels, at energies below 10 GeV, the reconstructed
energy is consistently higher than the true energy. This is because the trigger
threshold creates a selection of events - only events that have a charge higher
than trigger level end up in the sample. Thus, among low energy neutrino events
where the true neutrino energy is not high enough to produce light to pass the
trigger, those having an energy reconstructed higher than the true energy can get
triggered but those with the energy reconstructed lower than the true energy do
not get triggered and do not end up in the event sample. This means essentially a
selection of events with overestimated energy.

For ντ CC and νall NC events, the energy reconstructions are biased at energies
above 10 GeV, where the reconstructed energy is consistently lower than the true
neutrino energy.

The reason is that the ντ CC interaction produces a ντ which carries away a
fraction of the primary ντ energy. (See the detailed interactions in Section 3.2.1.).
Similarly, for all neutral current events where there is an outgoing ν, the ν also
carries away a fraction of the incoming ν energy.

For νe CC events, we see a consistent overestimation of energy, the reason
is that the νe CC interaction have an electromagnetic shower produced, but the
reconstruction algorithm assumes one hadronic cascade - this causes the bias seen
in the figure.
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Figure 4.4: Left: Reconstructed energy vs. true energy in four flavor and interac-
tion channels: νe CC, νµ CC, ντ CC and νall NC. Right: Reconstructed cos θzen vs.
true cos θzen.
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Figure 4.5: Left: Fractional difference between the reconstructed and true energy
vs. true energy in four flavor and interaction channels: νe CC, νµ CC, ντ CC and
νall NC. Right: Difference between the reconstructed and true zenith (in degrees)
vs. true energy. Red dots are the median resolution in each energy bin, the bar’s
length the range where 50% of the events fall.
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Chapter 5 |
Event selection

This chapter discusses the analysis event selection, developed by Matthew Dunkman [89].
It is used for the νµ disappearance analysis published as the 2017 IceCube νµ dis-
appearance result [15].

The major variables being cuts at each selection level are shown in Table 5.1
under three categories: trigger, veto and quality cuts. Trigger cuts are used to
select physics events out of noise events. Veto cuts are used to remove atmospheric
muons, the major background for IceCube. Quality cuts are used in higher levels
to improve the quality of the events; in this sample, the quality cuts are two
containment cuts to select events contained in DeepCore.

Level 1 is already discussed in Section 3.1.4; for our analysis, we use the Deep-
Core SMT3 trigger; it requires at least 3 HLC hits within 2.5 µs in the DeepCore
DOMs.

Before discussing the selection cuts, Section 5.1 first describes two definitions
of DeepCore fiducial volumes used in this analysis.

Section 5.2 discusses level 2. Section 5.3 discusses the further triggering and
vetoing in levels 3 and 4. Section 5.4 discusses the Boosted Decision Tree (BDT)
cut in level 5. Section 5.5 is about the Corridor Cut used in level 6. Section 5.6
discusses the quality cuts. Section 5.7 talks about the background estimation
technique.

The event rates for the six flavor-interaction channels at each level is shown
in Fig. 5.1. It shows the number of neutrino events expected with three years of
IceCube/DeepCore data, see the numbers in Table 5.2. Table 5.3 shows the rates
in mHz combining the interaction types for each flavor. The level 6 here includes
the final binning of the events, i.e., the cuts placed on the reconstructed energy
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and ∆LLH: 5.6 GeV ≤ Ereco ≤ 56 GeV ∆LLH ≥ −3.
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Figure 5.1: Number of events at each selection level expected in IceCube in three
years’ time. (Effective live time is 2.5 years.)

5.1 Definition of DeepCore Fiducial Volume
Two definitions of DeepCore fiducial volumes (regions) are used in this analysis.
Fig. 5.2 shows the comparison of the top view of the two volumes. (The side view
can be seen in Fig. 3.2.)

The Extended DeepCore (EDC) fiducial region contains the DOMs on 12 Ice-
Cube strings and eight DeepCore strings below 2100 m (see the overhead view
in Fig. 5.2(a)). The EDC veto region is the region surrounding the EDC fiducial
region, i.e., the outer three layers of IceCube strings.

The DeepCore Classic (DCC) fiducial region contains the DOMs on seven Ice-
Cube strings and eight DeepCore strings below 2100 m (see the overhead view in
Fig. 5.2(b)). The DCC veto region is the region surrounding the DCC fiducial
region.
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Figure 5.2: (a) The overhead view of the EDC fiducial region used in the Online
DeepCore Filtering in level 2 and the cut on “EDC-VetoPE” in level 3; (b) The
overhead view of DCC fiducial region used in the cut on “DCC_VetoPE” in level
4.

5.2 Level 2: Online DeepCore Filter
As seen from Table 5.1, Level 2 is the Online DeepCore Filter, it aims at removing
most of the events caused by atmospheric muons, while at the same time keeping
a good amount of signal neutrino events.

This section first discusses the definition of the “particle speed” parameter,
then discusses the cut region placed on it. The online DeepCore filter removes
events having more than one hit DOM whose associated “particle speed” is in the
cut region.

5.2.1 Definition of “Particle Speed”
The filter removes events having one or more HLC hits in the EDC veto region
that, relative to the time and position of the event’s center of gravity in the EDC
fiducial region, are consistent with having been produced by a muon moving with
nearly the speed of light. Figure 5.3 explains the filtering algorithm.

The center of mass of a rigid object is a concept used often in mechanics. It is a
point around which the distribution of mass of the object is balanced. If we apply
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Table 5.1: The trigger/veto/quality cuts at each selection level

Levels Trigger Veto Quality cut

Level 1 Online Trigger
(SMT3)

Level 2 Online Filter

Level 3 EDC_VetoPE
Modified 2012 DC Veto

Level 4

SANTA direct DOMs
RT Fiducial Charge
Event Size (σz, σt)
Space-time Interval
SRT-TW-cleaned DOMs

DCC_VetoPE
Causal Track Veto

Preliminary
Containment

Level 5 BDT Cut

Level 6 Corridor Cut Final
Containment

Table 5.2: Number of expected events in three years at each selection level.

flavor+type L2 L3 L4 L5 L6
νe CC 122254 61874 20321 13203 9201
νe NC 9831 4901 1597 1019 703
νµ CC 482778 230436 72422 39406 24310
νµ NC 50565 25424 8388 4586 2706
ντ CC 14668 7741 3091 2212 1646
ντ NC 5962 3038 1019 776 593

a force at the center of mass of a rigid object to change its velocity, the velocity
change will have the same direction as the force. In a uniform gravity field, it is
the same as the center of gravity (CoG).

The concept is borrowed here to find a point in space to represent an event.
The center of gravity (CoG) of the event is calculated via a three-step process.

Table 5.3: Event rates in mHz at each selection level.

L2 L3 L4 L5 L6
νe (CC+NC) 1.674 1.289 0.278 0.180 0.126
νµ (CC+NC) 6.760 4.930 1.024 0.558 0.342
ντ (CC+NC) 0.262 0.210 0.052 0.038 0.028
all ν 8.696 6.430 1.354 0.776 0.496

60



Figure 5.3: Online DeepCore Filter algorithm [47]. A simulated muon traveling
downwards deposits photons in the DOMs. Each colored circle represents a hit
DOM, with the earliest hits marked in red and the latest hits in blue. The largest
circle is the CoG of the hits in the Extended DeepCore (EDC) fiducial region.
The charges of these hits are also shown in the first histogram below, ordered by
time. The second histogram is the “particle speeds” distribution. For example, the
earlier hits in the upper left part of the detector have “particle speeds” consistent
with speed of light travelling from the hit to the CoG, and therefore fall into the
“cut region.” Events having at least one such hit in the cut region are removed.

First, get a position r⃗ and time t by simply taking the average position and time
of the hits inside the EDC fiducial region. Second, select a subset of hits whose hit
times are within one standard deviation of the average time t, these subset hits’
average position is the CoG position r⃗CoG. Last, get “corrected” hit times for each
hit by subtracting the time it takes for unscattered light to travel from the CoG
position r⃗CoG to each DOM, take the average of these corrected hit times, and use
it as the event CoG’s time tCoG.

Once the position and time (r⃗CoG, tCoG) of the CoG are obtained, we define a
“particle speed” (v) parameter for each hit DOM:

v = |r⃗CoG − r⃗DOM|
tCoG − tDOM

, (5.1)
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where rDOM and tDOM are the position and time of a DOM, respectively. So, the
“particle speed” is positive if a hit occurs before the CoG time and negative if it
occurs after. See Fig. 5.4(a) for the speed probabilities for simulated atmospheric
µ and νµ events. Events having one or more hits in the particle speed cut region
[0.25 m/ns, 0.4 m/ns] are removed.

(a) Speed probabilities. (b) Signal efficiency.

Figure 5.4: (a) Particle speed probabilities per event for simulated atmospheric
muons and simulated muons from atmospheric νµ interactions inside DeepCore.
(b) Signal efficiency vs. background rejection for events falling into the speed cut
region between +0.25 m/ns and a variety of upper values, ranging from +0.35 m/ns
to +1.0 m/ns [47].

5.2.2 Cut Region of “Particle Speed”
The “particle speed” for hits in the EDC veto region are mostly close to c = 0.3 m/ns.
In Fig. 5.4(a) we can see the peak location for the atmospheric muons is located at
roughly 0.3 m/ns. Speeds smaller than 0.3 m/ns occur due to scattering in the ice.
In principle, speeds larger than 0.3 m/ns are non-causal, but here r′ is the average
position of hits, while t′ is the corrected average time, which represents the time
of a starting muon (either from a neutrino interaction or being an incoming atmo-
spheric muon). This time is slightly earlier than the hit times of the DOMs. So,
in Eq. 5.1, the particle speed is slightly overestimated, which is why in Fig. 5.4(a)
particle speeds can be larger than 0.3 m/ns.

The cut region is [0.25 m/ns, 0.4 m/ns], which is chosen by studying the signal
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efficiency vs. background rejection plot (Fig. 5.4 (b)). It removes 96% of the
background muons and keeps 98.8% of the signal.

5.3 Triggering and Vetoing in Level 3 and 4

Figure 5.5: Left: A simulated νµ event in IceCube. The star is the interaction
vertex, the line between the star and the string is the outgoing muon track. The
blue circles represent hit DOMs, and their area represents how large the charge is
in each DOM. Right: The signature left by the Cherenkov cone of the track on the
string. The solid line is the signature hyperbola left by the true MC muon track.
The purple circles are the photons located near the hyperbola left by a track fit;
they are the direct photons arriving at the DOMs from the Cherenkov cone created
by the track. Those that don’t match the hyperbola are the late photons and will
be removed [82].

5.3.1 Triggering in Level 4
This section covers triggering in level 4. The second table in Table 5.5 lists the
cuts. Note that in levels 2 and 3, the EDC fiducial region contains 12 IceCube
strings and eight DeepCore strings. Here in level 4, the fiducial volume used is the
“DeepCore Classic” (DCC) volume.

There are six cuts in level 4 triggering.
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First, “SANTA direct DOMs >=3.” SANTA (The Single string ANTares-
inspired Analysis) is a track plus cascade reconstruction algorithm inspired by
the ANTARES experiment [90]. It was implemented and used as the event re-
construction method in the 2015 IceCube muon neutrino oscillation result [82].
SANTA consists of three parts: a hit selection, a directional reconstruction, and
a cascade/track discriminator. All three take advantage of the signature of the
Cherenkov light left on the strings.

The Cherenkov cone produced by a (muon) track or a cascade intersects with
a string and can leave a unique signature on the strings. For a track, the moving
Cherenkov cone leaves a hyperbola-like signature. The shape of the hyperbola
projected in the string is described by 4 quantities: the minimum distance between
the cone’s axis and the string, the angle between the cone’s axis and the string,
the time of the point of closest approach, and the z position (depth) of the point
of closest approach. For a cascade, the Cherenkov cone is much fuzzier and the
signature does not depend on the direction. It’s similar to a horizontal track,
leaving roughly two arms of the same length.

Here, only the output of the first hit selection part of SANTA is used, which
removes scattered hits and saves only DOM hits that are likely produced by direct
Cherenkov light. Figure 5.5 explains this process. SANTA direct DOMs is the
number of DOMs having such SANTA-cleaned hits. We require at least three
SANTA-cleaned direct hit DOMs.

Second, the RTFidQ is the charge deposited in the largest RT cluster in the
DCC fiducial region. The RT cluster is the output of an RT-cleaning module,
which removes hits that have no other hit within a time-window T and a distance
radius R. Here R = 150 m, T=[-250, 500] ns, and we require a RT cluster having
at least seven PE.

Third, the CoG σz and CoG σt are two geometrical cuts on the charge-weighted
CoG of the SRT-TW-cleaned pulses in DCC fiducial region. The SRT-TW-cleaning
contains the SeededRT cleaning (SRT) and a time window (TW) cleaning. SeededRT-
cleaning is different from the aforementioned RT-cleaning, although both conduct
cleaning on hits based on their spatial and temporal distributions. SeededRT-
cleaning starts out with a list of “seeds” - HLC hits in this case, which are likely to
be physics-related hits - and adds all further hits found within a RT-range around
each seed (HLC hit) to the list. It repeats this adding process for each hit, until
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no more hits can be added to the list. This SeededRT-cleaning is better than
the RT-cleaning, because RT-cleaning is not able to remove clustered noise hits.
The cleaned pulses used in this analysis are the SRT-TW-cleaned DCC pulses or
simplified to be referred to as SRT-TW-cleaned pulses.

Time Window cleaning is a static time window (STW) cut with the [-5, 4] µs
window around the trigger time of the event to remove early hits and late hits.

The output SRT-TW-cleaned DCC pulses represent clean hits caused by phys-
ical events and not noise. The charge-weighted CoG of the cleaned pulses then is
a good indicator of the interaction vertex for this event. CoG σz is the standard
deviation of the depth (z) of the pulses, CoG σt is standard deviation of the time
(t) of the pulses. The cuts are CoG σt < 1000 ns and CoG σz in [7, 100] m.

Next, SRT-TW-cleaned pulses are sorted by time into four subsets. (∆s)2 is
the space-time interval between CoG of the 1st quarter of pulses and the CoG of
4th quarter defined below:

(∆s)2 = (∆r)2 − (ctQ1 − ctQ4)2, (5.2)

where ∆r is the spatial distance between the CoG of the 1st quarter and the 4th
quarter of pulses. tQ1 and tQ4 are the times of the CoG of the 1st quarter and the
4th quarter, respectively.

We select events with −400 ≤ (∆s)2 ≤ 0.
If these two quarters of pulses are generated by the same neutrino that travels

at nearly the speed of light, then, the value of ∆s2 is either equal to zero or smaller
than zero. ∆s2 = 0 means the light observed are direct light. ∆s2 < 0 means the
light observed are scattered, thus taking a longer time to arrive at the DOMs,
making ∆s2 negative.

A value of ∆s2 > 0 can only be explained by uncorrelated hits, i.e., the two
quarters of pulses are not generated by the same neutrino. It’s non-causal for one
neutrino to create light at two locations (rQ1, rQ4) at times (tQ1, tQ4) whose spatial
distance is larger than what speed of light can travel in the time window [tQ1, tQ4].

That’s why we choose the upper cut value at (∆s)2 ≤ 0. The lower cut value
−400 m2 is chosen because at −400 m2 the event distribution for neutrino events
falls off much more rapidly than muons.

The last cut is a requirement of a minimum of eight of the number of DOMs
having SRT-TW-cleaned DCC pulses. The cleaned pulses are also used for event
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Table 5.4: Triggers, their definitions and cut values.

Level Parameters Definitions Cuts

1 Online Trigger
(SMT3 DC)

Minimum of 3 HLC hits within a sliding
2.5 µs window in the DeepCore subarray NHLC >= 3

4

SANTA direct
DOMs

Number of DOMs having SANTA-cleaned
hits produced by direct Cherenkov light >= 3

RT Fiducial
charge

The charge of a RT cluster in the fiducial
volume (cluster radius R= 150 m, time
window T= [-250, 500] ns around trigger)

>= 7 PE

CoG σz

The standard deviation of the z position of
the charge-weighted CoG of the SRT-TW-
cleaned pulses in DCC

[7,100] m

CoG σt

The standard deviation of the time of the
charge-weighted CoG of the SRT-TW-
cleaned pulses in DCC

<=1000 ns

Space-time
interval

Pulses are sorted by time into four subsets.
Space-time interval between the 1st and 4th
subset.

[-400, 0] m2

SRT-TW-
cleaned DOMs

Number of DOMs having SRT-TW-cleaned
DCC hits >= 8

reconstruction. Table 5.4 summarizes all the trigger cuts used in all levels.

5.3.2 Vetoing in Level 3
Veto cuts are used to remove atmospheric muon events. In level 3, there are
two cuts: EDC Veto and the modified 2012 DC Veto cut. So, in the level 2
online DeepCore filter, events having one or more HLC hits in the EDC veto
region are rejected; at level 3 EDC Veto serves as an offline filter, rejecting events
having seven or more PE in the same online filter window, i.e., keeping events
with“EDC_VetoPE” < 7 PE.

The modified 2012 DC Veto is used to further remove muon events. It has
cuts on 8 parameters: NoiseEngine, MicroCountHits, MicroCountPE, NAbove200,
FiducialQ, VertexGuessZ, VetoQ/FidQ, and C2QR6. It is “modified” because the
standard “2012 DC Veto” has 9 parameters and has a slightly shorter time window
in the DTW cleaning. So the modified 2012 DC Veto has a slightly larger event
rate at level 3 than the standard one.

NoiseEngine is a module for identifying events that are likely triggered by
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Table 5.5: Level 3 DC Veto and Level 4 Trigger

Level 3 DC Veto Level 4 Trigger
NoiseEngine True RTFidQ >=7 PE
MicroCountHits >2 CoG σz [7,100] m
MicroCountPE >2 PE CoG σt <=1000 ns
NAbove200 <12 (∆s)2 [-400, 0] m2

VertexGuessZ <-120 m SRT-TW
-cleaned
DOMs

>=8C2QR6 >0.4
FiducialQ >0
VetoQ/FidQ <1.5

random noise. It first performs a static time window (STW) cut and the RT-
cleaning on the pulses. The STW cut removes pulses that are outside of the static
time window [-3, 2] µs around the event trigger time. The RT-cleaning is used to
remove isolated hits. A hit is kept if it has another hit within a radius R and a
time window T with it (here T = 750 ns, R = 150 m). Then, the STW-RT-cleaned
hits are mapped into all possible pairs with velocities inside a speed window [0.1,
1.0] m/ns, and a sliding time window of 750 ns. The pairs are then projected onto
a binned Healpix sphere. If more than three pairs land in a single bin, the event
passes. This is intended to select events with at least some possible hits compatible
with the speed of light. The parameters are also designed to be easy for physics
events to pass.

MicroCountHits and MicroCountPE are the charge and pulse information from
a dynamic time window (DTW) cleaning. The time window is 300 ns and applied
onto the pulses only in the EDC fiducial volume. Events having more than 2 PE
of charge (MicroCountPE > 2) and more than 2 pulses (MicroCountHits > 2) in
the window get passed.

NAbove200 is the number of hits above the depth z = -200 m prior to the
DeepCore trigger time. Events are required to have no more than 12 PE in the
region. In IceCube’s coordinate system, the origin (x, y, z) = (0, 0, 0) is located at
the mid point of the IceCube array, so z = 0 is the location between the 30th and
31st DOM, which is roughly 2000 m below the surface. Its exact point is 46500’E,
52200’N, at an elevation of 2900 ft (883.9 m). This cut removes events having
some hits in the upper side of the detector that are more likely to be caused by
atmospheric muons.
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VertexGuessZ is the z position of a simple vertex hypothesis for each event,
which is given by the earliest pulse in the SRT-TW-Cleaned DCC hit series for
the event. The Z-location of this vertex must be located below -200 m in detector
coordinates or the event will be removed.

C2QR6 is the ratio of the charge deposited in the first 600 ns to the total
charge. The hit series used here is the SRT-TW-Cleaned DCC hit series but with
the first two hits removed. Muons will have a lower ratio because their light is
more evenly distributed over time and over a longer timescale. We require C2QR6
to be greater than 0.4.

QVeto/QFid is the ratio of the charge deposited in the DCC Veto region to the
charge in the DCC fiducial region. Having a smaller ratio means the event is more
likely to be neutrino-induced rather than atmospheric-muon-induced. Events with
a ratio smaller than 1.5 are kept.

5.3.3 Vetoing in Level 4
The vetoing in level 4 has two parts: the DCC (DeepCore Classic) Veto cut and
the “Causal Track Veto,” which defines a new veto region using the trigger as a
reference. The DCC Veto cut requires less than 5 PE (“DCC_VetoPE” ≤ 5) in
the DCC veto region (see its definition in Section 5.1).

The Causal Track Veto’s “causal” veto region is defined by using the hit whose
time is closest to the trigger time as a reference point. Hits with a distance ∆r

in space and ∆t in time with respect to the reference hit satisfying the following
criteria fall into this veto region: ∆r/c < 2.5 µs, ∆r/c < −2

3∆t + 1
3 µs and

∆t − 0.15 µs < ∆r/c < ∆t + 1.85 µs. No more than seven PE deposited charge
in this causal veto region are allowed. Figure 5.6 illustrates the veto region in a
speed vs. time plot.

5.4 Cut Using Boosted Decision Tree
A boosted decision tree (BDT) [91] was trained to further reduce the atmospheric
muon background. The input for the BDT uses the charge, timing, and geometrical
information of the remaining hit DOM signals, along with best-fit zenith angles
and particle speed from crude but fast track reconstructions.
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Figure 5.6: Causal Track Veto region [89]. The red region is the veto region in
which events are likely to be produced by atmospheric muons. The blue region is
the region where events produced by neutrinos are likely to locate.

Table 5.6 lists the 11 input variables and their definitions. The first four are
charge-related variables of the SRT-TW-Cleaned DCC pulses. For example, “QR3”
is the ratio of the charge in the first 300ns after the trigger time to the total charge,
atmospheric muons tend to have a smaller “QR3” value than neutrinos, because
the light they deposit in the detector is more evenly distributed over time and over
a longer timescale.

The next four are geometry-related variables. For example, σz is the stan-
dard deviation of the depth (z) of the pulses. As mentioned in Chapter 5.3.1,
cleaned pulses are sorted by time into four subsets. “Separation” (∆r) is the
spatial distance between the first and the fourth subsets of the hits. Atmospheric-
muon-like events tend to have a larger ∆r value, neutrino-like events tend to have
a smaller ∆r. “CoG Q1 z” is the z position of the CoG of the first quarter of hits,
atmospheric-muon-like events tend to have a higher z position, because most of
them are downward-going and deposit light when they enter the detector. Simi-
larly, “CoG Q1 ρ” also tends to be larger for atmospheric-muon-like events, because
when horizontal (or close to horizontal) atmospheric muons enter the detector, they
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Table 5.6: BDT input variables and their definitions.

BDT Variables Definitions
No. of hit DOMs Number of hits in SRT-TW-Cleaned DCC pulses
Total Charge Total charge in SRT-TW-Cleaned DCC pulses

QR3 Ratio of the charge in the first 300ns after the
trigger time to the total charge

C2QR3 Same as QR3, but excluding the first two pulses after the
trigger to reduce the impact of noise

CoG σz
The standard deviation of the z position of the charge-
weighted CoG of the SRT-TW-cleaned DCC pulses

CoG Q1 ρ The radial distance of the CoG of the first subset of hits
CoG Q1 z The depth (z) of the CoG of the first subset of hits
Separation The distance between the first and the fourth subset of hits.
SPE11 zenith Best fit zenith from SPE fit
Linefit zenith Best fit zenith angle from Linefit
Linefit speed Best fit particle speed from Linefit

are likely to deposit light in the outer three layers of IceCube strings surrounding
the DeepCore fiducial volume, whereas, neutrinos that have interactions inside
DeepCore (or deposit light inside DeepCore) will leave less light in the outer three
IceCube strings.

The last three are from two fast track reconstructions: SPE11 [92] fit, and
Linefit [93] fit. “SPE11 zenith” is the best fit track direction from the 11-iteration
SPE (Single Photoelectron) fit. “Linefit zenith” and “Linefit speed” are the best
fit track direction and particle speed from Linefit.

Requiring events to have a BDT score > 0.2 removes 99.9% of the atmospheric
muon background while keeping 58% of all neutrinos from simulations.

5.5 Corridor Cut in Level 6
The CorridorCut [94] is developed to reject events with tracks that pass through
several “corridor” regions where the detector coverage is most sparse. See Fig. 5.7
for some example corridors through which background muons might be able to
enter DeepCore without depositing detectable light in the veto region, enabling
them to evade the veto.

The CorridorCut algorithm is as follows: First, find the earliest hit DOM
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above threshold in a clean hit series, using SANTA-cleaned pulses and a threshold
of 0.3 PE, and record the hit DOM’s position and time. Second, do a look-up on
the possible corridors for the string that the DOM is located at. Third, for each
corridor, create hypothesized tracks with one azimuth step and several zenith steps
per corridor. Find the direct hits that could have been produced by each track -
hits in a [-75, 250] ns window and within 150 m distance to the track are included.
The track hypotheses with largest number of hits are saved. The cut can be placed
on the number of hits. In our sample, events having none or only one such hit are
kept.

Figure 5.7: Example “corridors.” The IceCube detector was constructed on a
triangular lattice in the horizontal plane. The blue spot is string 86, the four red
arrows represent the directions of possible background muons towards string 86
that sneak into the detector without triggering or only triggering very few DOMs
in the veto region. Figure is adapted from a plot in Ref. [95].

5.6 Containment Cuts
Additional “containment” criteria retain events that interact inside the DeepCore
volume. They are used to further remove atmospheric muons. First, in level 4,
we require the position of the first HLC pulse and the CoG of the first subset of
charge to be within a cylindrical region centered on the DeepCore sub-array:
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−125 ≤ Z ′
first ≤ 150

ρ′
first ≤ 150

−125 ≤ Z ′
Q1 ≤ 200

ρ′
Q1 ≤ 150,

(5.3)

where the unit is in m, the coordinate system is relative to the center of Deep-
Core:

X ′ = X − X(String 36)

Y ′ = Y − Y (String 36)

Z ′ = Z − (−350).

(5.4)

Then, in level 6, after reconstructing events, we require the starting and stop-
ping positions of their tracks to be inside two regions surrounding DeepCore. The
containment regions are shown in Figure 5.8, which also shows examples of allowed
events and rejected events. Their equations are:

−125 ≤ Z ′
start or (Z ′

start ≥ 0 and r′
start ≤ 125),

ρ′
start ≤ 100,

−150 ≤ Z ′
stop ≤ 150,

ρ′
stop ≤ 150.

(5.5)

The starting position is required to be coming from the inner smaller region,
so that we can better reject atmospheric muon events. If an event is not fully
contained, for example, if part of its track extends outside of the detector, the
reconstructed neutrino energy will be smaller than the true energy. So, the stop-
ping point is constrained to ensure the entire track is within the more densely
instrumented DeepCore region, thereby improving the energy resolution.

5.7 Background Estimation
Background muons in the first level dominate the events in IceCube. After six
levels of selection, the amount of background muons is greatly reduced. The ratio of
number of the atmospheric muons to the number of neutrinos is reduced from 106 at
the trigger level to 5% at the final level. Thus, it’s too time-consuming to simulate
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Figure 5.8: Final containment cut. The red dashed region is for the starting
positions, and the blue region is for the stopping positions. The green events
are examples of allowed events, while the purple ones are examples of rejected
events [95].

muon events at the earliest level to achieve a reasonable amount of statistics for
the final level. So, a data-driven background shape estimation is developed. From
Section 5.5, the CorridorCut is effective in removing events that sneak in through
the empty “corridors” in IceCube. By inverting this CorridorCut and keeping all
the other selection cuts, we are able to do a good estimation of the background
muon shape. This data-driven method achieved a reasonable agreement with the
direct simulation method using CORSIKA [71] and MuonGUN [72]. Figure 5.9
shows the estimated background shape at the final level using this method.

The uncertainty of this background shape is estimated from two such back-
ground shapes when modifying the selection cuts. The difference is requiring more
than one hit and more than two hits in the veto region. The former is used as
the background shape, the latter is a more pure sample, and the difference of the
two is used as the uncertainty. This uncertainty is added in quadrature with other
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Figure 5.9: The estimated background muon template at the final level using the
inverted CorridorCut method.

terms such as the term to account for the limits of statistics in the fit statistic χ2

defined in Chapter 6.
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Chapter 6 |
Analysis Techniques

Using the simulation chain described in Section 4.1, we can simulate neutrinos
and their interactions in the detector. Then, applying the selection cuts described
in Chapter 5, we achieve a final sample which consists of roughly 5% atmospheric
muons and 95% neutrinos, of which roughly 5% are tau neutrinos. Then, using the
deposited light observed by the DOMs (Section 4.2), we do reconstructions mainly
to get the energy and direction of the incoming neutrino for each event. The
next step then is to analyze the reconstructed events to perform the tau neutrino
appearance measurement. This chapter discusses the physics parameters measured
and the analysis techniques used for the measurement.

6.1 Physics Parameter (ντ Normalization)
The physics parameter we measure is ντ (CC + NC) normalization, a scale factor
assigned to the ντ signal histograms, varying between 0 and 1. A value of one
means we measured the same amount of tau neutrinos predicted by the standard
three-flavor oscillation theory.

OPERA [18] and Super-K [14] both measure the ντ CC signal strength. Ice-
Cube/DeepCore measures the combined ντ CC and NC normalization because the
detector observes both CC and NC events, even though the ντ NC events cannot be
distinguished from the other two flavors. When measuring ντ (CC+NC) normal-
ization, the null hypothesis is the absence of ντ , i.e., νe and νµ don’t oscillate into
ντ (but into some sterile neutrinos that don’t interact with matter). When measur-
ing ντ CC-only normalization, the null hypothesis is that ντ CC normalization = 0
and at the same time ντ NC normalization ̸= 0, i.e., there are ντ produced from
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oscillations but they only participate in the NC interaction. We believe it is
more logical to do the former measurement with IceCube. To compare with the
other two results, the measurement of ντ CC normalization is also conducted, but
ντ (CC + NC) normalization is our main result.

6.2 Binning
The reconstructed events at the final level are grouped into a 3-dimensional his-
togram. The bins are eight energy bins between [5.6, 56.2] GeV, eight cos θzen bins
between [−1, 1], and two ∆LLH bins: [−3, 2, ∞].

The energy bound interval [5.6, 56.2] GeV is actually [100.75, 101.75] GeV, where
0.75 and 1.75 are chosen because they are two good round numbers. These two
bound values are not optimized specifically but are chosen to satisfy the simple
requirement that the lower bound should be larger than the energy threshold for
ντ CC interactions (3.5 GeV), and the fact that we don’t see much oscillations
above 60 GeV (see Fig. 1.11.)

The cos θzen bound interval [−1, 1] means we use neutrinos from both the North-
ern sky (upward-going) and the Southern sky (downward-going). Even though
there is no oscillation in the downward-going region, the addition of downward-
going events is useful for constraining systematics.

As mentioned in Section 4.2.2, ∆LLH is the difference of the log likelihoods
between the 7-d cascade-only reconstruction and the full 8-d cascade+track re-
construction. A larger ∆LLH value means adding the track length as one extra
dimension in the reconstruction improves the reconstruction likelihood, thus the
event is more likely to be track-like. Similarly, a low ∆LLH value means the event
is more cascade-like. Figure 6.1 shows the fraction of events split in four channels
as a function of ∆LLH values, where the fraction of νµ CC events are higher at
higher ∆LLH values.

Ideally speaking, all νµ CC events should be track-like, but because of the spac-
ing between the detector strings, some lower energy νµ CC events won’t produce a
µ track energetic enough to trigger several DOMs. Thus, those low energy νµ CC
events won’t be distinguished from cascade-like events.

For this analysis, two ∆LLH bins are used to roughly classify the two event
topologies. Events with ∆LLH in [−3, 2) are considered cascade-like and [2, ∞) are
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Figure 6.1: The fraction of final level events split in four channels vs. ∆LLH
values. The νµ CC events become more dominant at higher ∆LLH values.

track-like. Originally, the event classification was performed empirically - the MC
neutrino sample was divided into three regions of approximately equal statistics:
region A with ∆LLH ∈ [3, 0), region B with ∆LLH ∈ [0, 3), and region C with
∆LLH ∈ [3, ∞) [89]. But later, the event migration issue caused by reconstruction
instability (Section 4.2.4) was found. To mitigate this problem, the number of bins
is then reduced to two and the bins were changed to [-3, 2] and [2, ∞], where the
value 2 is chosen to ensure also roughly the equal statistics in the two bins.

Fig. 6.2 shows the cumulative distribution plot of the percentage of νµ CC
events vs. ∆LLH value, from which we can calculate that 55% of the νµ CC
events have ∆LLH ≤ 2, and 45% have ∆LLH > 2, so roughly half of the νµ CC
events are located in each channel. In Table 6.1, we can compare the percentage
of cascade-like and track-like events in all five event types: νe CC, νµ CC, ντ CC,
νall NC and atmospheric muons.

Figure 6.3 shows the binned histograms expected at the final selection level.
Figure 6.3 (b) is the ντ (CC+NC) signal histograms assuming ντ CC normalization
equal to unity. Figure 6.4 shows S/

√
B distribution, where S and B are the number

of signal and background events in each bin. The figure indicates that upward-
going cascade events with reconstructed energies around 20 GeV dominate the
measurement.
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Figure 6.2: The cumulative distribution of the percentage of νµ CC events vs.
∆LLH values. The value ∆LLH = 2 splits the νµ CC events into roughly two
halves: 55% of the νµ CC events have ∆LLH ≤ 2, and 45% have ∆LLH > 2.

[−3, 2] (2, ∞)
νe CC 0.7711 0.2289
νµ CC 0.5475 0.4525
ντ CC 0.7312 0.2688
νall NC 0.7660 0.2340
muons 0.503 0.497

Table 6.1: The percentage of cascade-like events and track-like events for different
event types. We see over 70% of the νe CC, ντ CC, νall NC events are in the cascade
channel, and νµ CC events and atmospheric muons distribute evenly among the
two channels.

6.3 Fit Statistic
The goodness-of-fit statistic is the quantity that measures how well a theoretical
model describes the observation. In our case, the theoretical model is the expected
histogram determined by the physics and nuisance parameters. The observation
is the binned data histogram using the same selection cuts and reconstruction as
simulated data.

We perform a χ2 minimization. The minimizer gets the best agreement by
varying the parameter of interest (ντ normalization) and other nuisance parameters
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(a) The expected distributions at the final level.
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(b) The expected ντ (CC+NC) signal distributions at the final level.
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(c) The expected background distribution at the final level.

Figure 6.3: Expected histograms with parameters set to their nominal values:
(a), the total expected events at level 6, (b), the signal (ντ (CC+NC)), and (c)
the background which include νe (CC+NC), νµ (CC+NC) and atmospheric back-
ground muons.
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Figure 6.4: Signal ντ (CC+NC) divided by the square-root of the background (νe,
νµ and atmospheric µ) for each analysis bin. The figure includes both neutrinos
and anti-neutrinos.

(systematics). The fit statistic is a χ2 function defined as:

χ2 =
∑

i∈{bins}

(N exp
i − Nobs

i )2(√
N exp

i

)2
+
(
σexp

i

)2 +
∑

j∈{syst}

(sj − ŝj)2

σ̂2
sj

,

where
(
σexp

i

)2
=
(
σMC

i

)2
+
(
σICC

i

)2
.

(6.1)

The first term is the sum of all bins i with observed count Nobs
i , and expected

count N exp
i and the associated uncertainties.

√
N exp

i is the uncertainty from Poisson
statistics. The σMC is the uncertainty from finite MC statistics. “ICC” (Inverted
Corridor Cut) refers to the background estimated using ICC. The term σICC rep-
resents both the finite ICC background statistics and its shape uncertainty. The
second term is the penalty term that sums over all nuisance parameters s that
have a Gaussian prior imposed on them with an uncertainty σ̂.

Most nuisance parameters have an associated prior; their central value and
±1σ ranges are listed in the Prior column in Table 6.2. Other parameters are
left floating freely with a uniform prior. For example, θ23 is allowed in the region
[31°, 59°] (which is much larger than their global fit 3 σ range [8, 9]).

∆m2
31 is also allowed in a region larger than its global 3 σ range. Since ∆m2

31
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Table 6.2: Nuisance parameters and their associated prior central value and ±1σ
ranges.

Parameter Prior
Flux

νe/νµ ratio 1.0 ± 0.05
νe up/hor ratio (σ) 0.0 ± 1.0
ν/ν̄ ratio (σ) 0.0 ± 1.0
∆γ (spectral index) 0.0 ± 0.1

Neutrino Interaction
MA (quasi-elastic) (GeV) 0.99+0.248

−0.149
MA (resonance) (GeV) 1.12 ± 0.22

Oscillation
θ13 (◦) 8.5 ± 0.21
θ23 (◦) -
∆m2

31 (10−3 eV2) -
Detector

bulk ice scattering 0.0 ± 10%
bulk ice absorption 0.0 ± 10%
DOM efficiency (%) 100 ± 10
hole ice (σ) 0.0 ± 1.0
hole ice forward (a.u.) -
hole ice model (spiciness) -

Normalization
ν NC normalization 1.0 ± 0.2
effective lifetime (y) -
Atm. µ scale -

can be either larger than zero (under normal hierarchy) or smaller than zero (under
inverted hierarchy), each one fit (either with data or pseudo data in MC studies)
actually consists of two fits. The fitter starts with a fit under normal hierarchy
assumption, where ∆m2

31 is allowed in a positive range [1×10−3, 7−3] eV2. Then, it
switches to the inverted hierarchy assumption with ∆m2

31 floating in the negative
range [−7 × 10−3, −1 × 10−3] eV2. Finally the fitter compares the two fits and
returns the better fit.
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6.4 Confidence Interval
When an experiment measures a parameter of interest, the parameter’s true value
may be different from what is measured. A confidence interval (C.I.) is the range
of values calculated from the experiment that the true parameter might lie in. The
true value is never known, but one can get more and more confident in how likely
the true parameter is located inside the interval. A confidence level (C.L.) is the
quantity to measure this confidence [96], usually represented by α. Having α = 90%
for a confidence interval means that if we repeat the experiment independently
many times, 90% of the time the true parameter lies in that interval.

Figure 6.5 shows the classical Neyman’s method [96] to construct the confidence
interval. Here, we use µ to represent the parameter of interest whose true value
is unknown, and x is the measured value for µ. The probability density function
P (x|µ) is the probability of measuring a value of x given the true parameter µ. In
a counting experiment, P (x|µ) is the Poisson likelihood function.

6.4.1 Feldman-Cousins Confidence Interval
In the ντ (CC + NC) normalization measurement with real data, we use the Feldman-
Cousins construction [97] for the calculation of the confidence interval. It has an
advantage over the classical construction because it can eliminate the unphysical
region.

The Feldman-Cousins construction is based on the Neyman construction, but
differs in how the acceptance region [x1, x2] is produced. It does not choose the
x values for the acceptance region based on P (x|µ), instead it uses a principle of
ordering on the profile likelihood ratio to construct the acceptance region. The
profile likelihood ratio is defined as:

R = P (x|µ)
P (x|µbest)

, (6.2)

where µbest is the best fit value for µ in performing the maximized likelihood
estimation (MLE).

The R values produced from the MLE trials are then sorted in decreasing order.
The x values with the highest R value are added to the acceptance region first,
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Figure 6.5: Illustration of the Neyman construction of confidence interval (figure
from Ref. [97]). For each value of µ, calculate the acceptance region [x1, x2] so
that the probability of x being in the region ∑x2

x1 P (x|µ) equals α. The acceptance
regions are shown as the horizontal lines. The actual measurement of x gives one
value of x. Drawing a vertical line at the position gives a range of values that
intercept with the vertical line at [µ1, µ2]. [µ1, µ2] is the confidence interval for the
measurement.

then the next highest R is added. This process repeats until the sum of the P (x|µ)
reaches the desired confidence level.

6.5 Expected Sensitivity
In our case, we use χ2 as our fit statistic, µ is ντ normalization, and the profile
likelihood ratio is then:

∆χ2 = χ2(x|ντ norm, θbest) − χ2(x|ντ normbest, θbest), (6.3)

where θ represents the nuisance parameters, and θbest is the best fit value. The
first term in the ∆χ2 is the conditional fit with ντ (CC + NC) normalization fixed
at various values and the nuisance parameters free, the second term is the global
fit with ντ (CC + NC) normalization freely floating together with other nuisance
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parameters.
The Feldman-Cousins construction is accurate but computationally expensive.

Thus, in Monte Carlo studies, we calculate the expected sensitivity using an asymp-
totic approximation (Wilk’s theorem [98]), since our binned histograms have a
large number of events. Figure 6.6 shows the expected MC sensitivity of roughly
31% on the ντ (CC + NC) normalization. The expected significance to exclude
the no-appearance null hypothesis is, according to the Wilk’s theorem, 3.6 σ

(=
√

∆χ2(ντ norm. = 0) =
√

13.1).

6.6 Data Challenge
There are statistical tests necessary to do before we look at the data. A “data
challenge” is used to test if the analysis code can recover the injected signal value.
We add Poisson fluctuations to the expected event histogram to produce the pseudo
data histogram. The physics parameter of this pseudo data is set to values other
than the nominal value. Then, we perform fits to the pseudo data to test if we can
recover the injected parameter. In our analysis, we generate Poisson-fluctuated
pseudo data with ντ (CC + NC) normalization set to values from 0 to 2.

Fig. 6.7 plots the measured ντ (CC + NC) normalization vs the injected val-
ues. The central black curve is the median values of the measured ντ (CC+NC)
normalization at each injected value of pseudo data. The light green region is the
95% confidence belt using the F-C C.I. construction. The thin solid and dashed
lines are the classical Neyman C.I. construction. This shows that the fitter can
recover the injected parameter well.

6.7 Treatment of Systematics
This section covers how the systematic uncertainties are handled in the analysis.
The actual calculation and estimation of the uncertainties are discussed in Chap-
ter 7. This section has two parts: the first part is about the smooth systematics
whose effect can be applied on individual event weights using analytic functions,
and the second part discusses the discrete systematics.
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Figure 6.6: Expected sensitivity of the ντ (CC + NC) normalization measurement
with three years of IceCube/DeepCore data. ∆χ2 is defined in Eq. 6.3. 21 ντ

normalization values are scanned in the range of 0 – 2. At each value, 1000 profile
likelihood ratio fits are conducted. The blue shaded regions are the 68% and 90%
regions for ∆χ2. The black line connects the median values of ∆χ2 at each ντ

normalization value. The grey lines are the asymptotic lines from Wilk’s theorem.
The intersections between the lines and the median line gives the expected confi-
dence intervals shown in the lower half of the figure. The 68% and 90% C.I. are
[0.68, 1.31] and [0.49, 1.58].

6.7.1 Smooth Systematics
The term “smooth” is used here to refer to systematics whose effects on event
weights are smooth functions of the systematics together with some physics param-
eters for each individual event. Each event weight is composed of factors coming
from the fluxes, oscillation probabilities, and interaction cross sections. So the
effect of oscillation parameters is simply a matter of calculation of the oscillation
probabilities for each event at true (E, cos θzen ). There is no need to redo the
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Figure 6.7: Data challenge. The y axis is the measured ντ (CC+NC) normalization,
the x axis is the injected ντ (CC+NC) normalization for pseudo data.

simulation or reconstruction.
Similarly, the effect of flux-related systematics is applied by modifying the

associated flux weights. For example, the flux ratio of νe/νµ is applied on the νe

(ν̄e) flux and νµ (ν̄µ) flux so that their ratio is changed according to the intended
flux ratio value while conserving the total flux.

The normalization systematics like ν NC normalization, atmospheric muon
normalization, and the effective lifetime (an overall scale factor on every event)
are simply re-weighting factors on the specific event type of interest.
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6.7.2 Discrete Systematics
Six discrete systematics are used to describe the detector response: DOM effi-
ciency, hole ice, hole ice forward, hole ice model (also termed spiciness), bulk ice
scattering, and bulk ice absorption. They are called discrete systematics because
unlike the aforementioned smooth systematics, it’s impossible to find a function
that can map these detector level parameters to a high level parameter such as the
event’s reconstructed (E, cos θzen) on an event-by-event basis.

For example, DOM efficiency is a parameter to quantify the overall optical
efficiency of DOMs in IceCube. An increase of DOM efficiency will increase the
amount of light that the DOMs observe. Thus it is likely to change the recon-
structed energy of an event. But there is no function that can directly connect
the final reconstructed (E, cos θzen) of an event with the value of DOM efficiency.
Also, each event is different, there is no universal function that will work for all
events.

The only way to know for sure the effect on the final reconstructed (E, cos θzen)
is to put this increased light sensitivity into the DOM simulation step of the sim-
ulation chain (Section 4.1) and go over all the steps in the whole chain. Then we
apply the selection cuts, do the reconstructions, and produce a new data set for
each new systematic value. For this analysis, there are 32 such systematics sets
produced, among which one baseline set is produced at systematics set to values
to the best of our knowledge.

After getting the systematics sets, we construct smooth functions to parametrize
the DOM efficiency’s effect on the binned (E, cos θzen) histogram. The nominal
value for DOM efficiency is 1. Six data sets are produced with DOM efficiency set
at 0.88, 0.94, 0.97, 1.03, 1.06, and 1.12, respectively. Figure 6.8(a) shows the linear
fit to the final binned event ratios inside one bin. The fit function is y = kx + b.
Each bin has one fit. For each bin, the scale factor kix + bi is then multiplied by
the weight of each event ending up in this bin, where ki and bi are the best fit
coefficients from the linear fit. We can see that the larger the DOM efficiency, the
more events we expect to see in the bin. Figure 6.8(b) shows the same procedure
done for a single bin in (E, cos θzen) for the hole ice systematic.
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(a) Example fit for DOM efficiency. (b) Example fit for Hole ice.

Figure 6.8: The linear fit performed inside the bin cos θzen [-1,-0.75], energy [5.6,
7.5 GeV]), ∆LLH in [−3, 2]. One fit is performed in each bin. (a) The y axis is
the ratio of the event rates in the bin from all seven DOM efficiency sets to the
nominal event rate from the baseline data set (DOM efficiency at 1). The x axis
is the deviation of the DOM efficiency values from the nominal value 1. (b) The
same fits but for hole ice systematics sets.

6.7.3 Hyperplane Parametrization for Discrete Systematics
Even though a linear fit is very good at describing the effect of each discrete
systematic, the linear fit produces an offset value b for each fit. Thus, when putting
together all six fits, the offset may get large. To solve this problem, a hyperplane
fit is used instead, where the plane is in six dimensions with each dimension being
each systematic. See Fig. 6.9 for the 2-d plane illustration. Just like the linear fit,
the z axis is the ratio of the event rates in the bin from all the discrete systematics
data sets to the nominal event rate from the baseline data set. The hyperplane fit
is then a fit to the function y = ∑

i∈{discrete sys.} kixi + b. By doing the hyperplane
fit, we only have one offset value.

Figure 6.10 shows the χ2 distribution from the hyperplane fit. The expected
number of degrees of freedom (dof) is 0.78, which is calculated from dof = (32 − 7)/32,
where 32 is the total number of data points (31 systematics sets and one baseline
set) and 7 is the number of free parameters for the hyperplane function fit. The
best fit χ2 distribution’s dof is 0.75, so the fits are compatible.

Figures 6.11 through Fig. 6.16 show the projected fits for each systematic.
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Figure 6.9: 2D plane fit to the two discrete systematics. The z axis is the ratio of
the event rates from the systematics data sets with respect to the baseline set.
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Figure 6.10: χ2 distribution of the hyperplane fits (blue).
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Each plot has 64 subplots, where each subplot corresponds to one bin in the 8 by
8 (cos θzen, energy) 2d histogram in the cascade-like channel. Since the fit results
are similar for the track-like bins, only cascade-like bins are shown.

It’s worth noting that in Fig. 6.14, the spiciness parameter does not have a
physical meaning, it is merely used to represent two hole ice models. There are
six sets produced with the SpiceHD model for hole ice. The other 26 sets are
produced with the Dima hole ice model. A spiciness at one means the simulation
set is produced with the SpiceHD model, and spiciness at zero represents the Dima
model. We need this as a systematic to give a transition for the two models. See
more details in Section 7.4.2.2.

90



0.90 0.95 1.00 1.05 1.10

DOM Efficiency

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
at

io

cos(zenith):[-1.0, -0.75] E:[5.6, 7.5]

0.90 0.95 1.00 1.05 1.10

DOM Efficiency

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.75, -0.5] E:[5.6, 7.5]

0.90 0.95 1.00 1.05 1.10

DOM Efficiency

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.5, -0.25] E:[5.6, 7.5]

0.90 0.95 1.00 1.05 1.10

DOM Efficiency

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.25, 0.0] E:[5.6, 7.5]

0.90 0.95 1.00 1.05 1.10

DOM Efficiency

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.0, 0.25] E:[5.6, 7.5]

0.90 0.95 1.00 1.05 1.10

DOM Efficiency

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.25, 0.5] E:[5.6, 7.5]

0.90 0.95 1.00 1.05 1.10

DOM Efficiency

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.5, 0.75] E:[5.6, 7.5]

0.90 0.95 1.00 1.05 1.10

DOM Efficiency

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.75, 1.0] E:[5.6, 7.5]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
at

io

cos(zenith):[-1.0, -0.75] E:[7.5, 10.0]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.75, -0.5] E:[7.5, 10.0]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.5, -0.25] E:[7.5, 10.0]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.25, 0.0] E:[7.5, 10.0]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.0, 0.25] E:[7.5, 10.0]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.25, 0.5] E:[7.5, 10.0]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.5, 0.75] E:[7.5, 10.0]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.75, 1.0] E:[7.5, 10.0]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
at

io

cos(zenith):[-1.0, -0.75] E:[10.0, 13.3]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.75, -0.5] E:[10.0, 13.3]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.5, -0.25] E:[10.0, 13.3]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.25, 0.0] E:[10.0, 13.3]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.0, 0.25] E:[10.0, 13.3]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.25, 0.5] E:[10.0, 13.3]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.5, 0.75] E:[10.0, 13.3]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.75, 1.0] E:[10.0, 13.3]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
at

io

cos(zenith):[-1.0, -0.75] E:[13.3, 17.8]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.75, -0.5] E:[13.3, 17.8]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.5, -0.25] E:[13.3, 17.8]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.25, 0.0] E:[13.3, 17.8]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.0, 0.25] E:[13.3, 17.8]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.25, 0.5] E:[13.3, 17.8]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.5, 0.75] E:[13.3, 17.8]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.75, 1.0] E:[13.3, 17.8]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
at

io

cos(zenith):[-1.0, -0.75] E:[17.8, 23.7]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.75, -0.5] E:[17.8, 23.7]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.5, -0.25] E:[17.8, 23.7]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.25, 0.0] E:[17.8, 23.7]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.0, 0.25] E:[17.8, 23.7]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.25, 0.5] E:[17.8, 23.7]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.5, 0.75] E:[17.8, 23.7]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.75, 1.0] E:[17.8, 23.7]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
at

io

cos(zenith):[-1.0, -0.75] E:[23.7, 31.6]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.75, -0.5] E:[23.7, 31.6]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.5, -0.25] E:[23.7, 31.6]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.25, 0.0] E:[23.7, 31.6]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.0, 0.25] E:[23.7, 31.6]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.25, 0.5] E:[23.7, 31.6]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.5, 0.75] E:[23.7, 31.6]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.75, 1.0] E:[23.7, 31.6]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
at

io

cos(zenith):[-1.0, -0.75] E:[31.6, 42.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.75, -0.5] E:[31.6, 42.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.5, -0.25] E:[31.6, 42.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.25, 0.0] E:[31.6, 42.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.0, 0.25] E:[31.6, 42.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.25, 0.5] E:[31.6, 42.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.5, 0.75] E:[31.6, 42.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.75, 1.0] E:[31.6, 42.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
at

io

cos(zenith):[-1.0, -0.75] E:[42.2, 56.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.75, -0.5] E:[42.2, 56.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.5, -0.25] E:[42.2, 56.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[-0.25, 0.0] E:[42.2, 56.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.0, 0.25] E:[42.2, 56.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.25, 0.5] E:[42.2, 56.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.5, 0.75] E:[42.2, 56.2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

cos(zenith):[0.75, 1.0] E:[42.2, 56.2]

DOM Efficiency

Figure 6.11: The projected hyperplane fits (for νµ CC events) onto the DOM
efficiency dimension. Each subplot is for one bin in (E, cos θzen) space.
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Figure 6.12: The projected hyperplane fits (for νµ CC flavor events) in the hole ice
dimension. Each subplot is for one bin in (E, cos θzen) space.
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Figure 6.13: The projected hyperplane fits (for νµ CC flavor events) in the hole ice
forward dimension. Each subplot is for one bin in (E, cos θzen) space.
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Figure 6.14: The projected hyperplane fits (for νµ CC flavor events) in the hole
ice model (spiciness) dimension. Each subplot is for one bin in (E, cos θzen) space.
There are six sets at one (SpiceHD model) and 28 at zero (Dima model). Each
set has different model parameters, that’s why we see there are multiple points at
spiciness = 1. Each of the 28 Dima model sets also has different DOM efficiency,
hole ice and hole ice forward values, but here only the baseline set is shown at
spiciness = 0 because the difference between the SpiceHD model sets and the
baseline Dima model set is what we care about.
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Figure 6.15: The projected hyperplane fits (for νµ CC flavor events) in the bulk ice
scattering dimension. Each subplot is for one bin in (E, cos θzen) space.
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Figure 6.16: The projected hyperplane fits (for νµ CC flavor events) in the bulk ice
absorption dimension. Each subplot is for one bin in (E, cos θzen) space.
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Chapter 7 |
Systematic Uncertainties

This chapter discusses the uncertainties associated with the systematics, their im-
pact on event distributions and the ντ (CC+NC) normalization measurement. Sec-
tions 7.1 to 7.5 cover all of them, split into five categories as shown in Table 6.2.
Section 7.6 discusses the result of the N-1 test.

7.1 Flux-Related Systematics
As mentioned in Chapter 2, there are four flux-related systematics: modification
of the ratio of the fluxes of the upward-going and horizontal atmospheric neutrinos
up/hor ratio, modification of the ratio of the neutrino to anti-neutrino fluxes ν/ν̄,
deviation of spectral index (∆γ), ratio of the νe fluxes and νµ fluxes νe/νµ. Among
them, the modifications on up/hor ratio and ν/ν̄ ratio are done based on calcu-
lations done by G.D. Barr, T.K. Gaisser, S. Robbins, and T. Stanev [45], which
takes into account the hadron production uncertainties (the main source of flux
uncertainties) and the primary cosmic ray flux uncertainties (which have smaller
contributions). The up/hor ratio compares the fluxes in two general cos θzen re-
gions: the upward-going region contain neutrinos with cos θzen < 0.6; the horizontal
region contains neutrinos with |cos θzen| < 0.3.

Figure 7.1 shows the energy and angle dependencies of the uncertainties. The
νe/νµ uses a 5% Gaussian prior, which also comes from Ref. [45].

∆γ is the change in the spectral index γ for the energy dependence of neutrino
flux E−γ; its central value is ∆γ = 0 with a Gaussian prior of 10%. The effects of
these systematic uncertainties on the final event distribution are shown in Fig. 7.2
and Fig. 7.3.
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Figure 7.1: The uncertainties of ν/ν̄ as a function of energy and cos θzen and up/hor
flux ratio as a function of energy [45].

7.2 Oscillation-Related Systematics
Three oscillation parameters are used: θ13, sin2(θ23), ∆m2

31. Figure 7.4 shows
the effect of the systematics at one σ above their nominal values, where σ is the
standard deviation value from the global fit [9]. The other oscillation parameters
are fixed since they have minimal impact on the analysis:

δCP = 0,

∆m2
21 = 7.5 × 10−5 eV2,

θ12 = 33.48°.

(7.1)
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Figure 7.2: Effect of ν/ν̄ ratio and up/hor ratio uncertainties on the nominal event
distribution shown as a percentage change.

7.3 Neutrino Interaction Systematics

MCCQE
A and MRES

A are the axial mass form factors for charged-current quasi-elastic
(CCQE) events and resonance (RES) events. A change in their values will change
the number of CCQE and RES events, thus changing the final event histogram.

GENIE [64] is the software framework used for simulating event interactions
which includes the cross section models. It provides a re-weighting package [99]
that allows modifications of the event weights by changing a scale factor for the
standard deviation of each parameter.

The nominal value of MCCQE
A is 0.99 GeV with a standard deviation of (−0.1485,

+0.2475) GeV. The nominal value of MRES
A is 1.12 GeV with a standard deviation
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Figure 7.3: Effect of νe/νµ flux ratio and ∆γ uncertainties on the nominal event
distribution shown as a percentage change.

of ±0.22 GeV.
Figure 7.5 shows the effect of the two systematics at one σ above their nominal

values. Their effects are small, which is expected because the lower bound of
the energy range of our sample is 5.6 GeV, at higher energies, the contribution of
CCQE and RES are much smaller than that from DIS, see Fig. 3.5 in Section 3.2.1.
We know the contribution of CCQE and RES are small compared to deep inelastic
scattering (DIS).

As for DIS related parameters, several parameters used in Bodek-Yang (BY)
model are also available in GENIE. Their effects on the analysis are also evaluated,
but they are so small that they are not used.
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Figure 7.4: The effect on the event distribution when setting θ23 at 43.1° instead
of 41.6°, θ13 at 8.705° instead of 8.5°, and ∆m2

31 at 2.56 × 10−3 eV2 instead of
2.52 × 10−3 eV2.
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Figure 7.5: Effect of +1σ MRES
A and +1σ MCCQE

A on the nominal event distribution.

7.4 Detector-Related Systematics

7.4.1 DOM Optical Efficiency
DOM efficiency is the systematic overall optical efficiency. Its prior is a Gaussian
prior of 10%, which is its uncertainty estimated from doing calibrations [46]. The
impact of a +10% DOM efficiency on the event distribution is shown in Fig. 7.10
(bottom).
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Figure 7.6: Effect of bulk ice absorption on the nominal event distribution.

7.4.2 Ice Properties

7.4.2.1 Bulk Ice

As described in Section 3.3, the bulk ice model uses two parameters: effective
absorption coefficient, ae (400 nm) and scattering coefficient, be (400 nm). The
uncertainties on these parameters are referred to as bulk ice scattering and bulk
ice absorption. Four systematics sets are available: the baseline set, a change of
+10% for scattering, +10% for absorption, and a change of −7% for both scattering
and absorption. The Gaussian priors used for them are 10%. The impact of a
+10%(−10%) change in the two parameters on the event distributions are shown
in Fig. 7.6 and Fig. 7.7.
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Figure 7.7: Effect of bulk ice scattering on the nominal event distribution.

7.4.2.2 Hole Ice

Hole ice is the refrozen column of ice in which the DOMs are embedded. Figure 7.8
is a simple sketch explaining hole ice and bulk ice. Hot water was used to drill the
hole. The water contains air, and when the water refreezes, there are residual air
bubbles left in the refrozen ice. The existence of air bubbles makes the hole ice more
scattering than the bulk ice, thus affecting the amount of light the DOMs receive.
Several qualitative measurements were done in AMANDA [100]. IceCube uses
flasher board data and also deploys bubble cameras designed to gather information
on the hole ice column. The Swedish Camera [101] is the second generation of
bubble cameras. They were first deployed in 2010, but stopped working in 2018.

Generally speaking, there are three generations of hole ice models used in Ice-
Cube. The H2 model is one of the earliest models [62]. The parameter used in the
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Figure 7.8: Sketch of hole ice.

H2 model is the scattering length of the bubble column. The baseline H2 model’s
scattering length is 50 cm. The other three values are 30 cm, 100 cm, and infinity
(i.e., no scattering). The parametrization of the H2 model is done through fitting
to the angular acceptance curves of the DOMs. The angular acceptance is the
probability for a photon to be accepted by a DOM based on its arrival direction
relative to the DOM surface. In Fig. 7.9, η is the arrival direction. Photons with
cos(η) = 1 have an upward-going direction going towards the DOM.

The H2 model assumes that the entire hole ice column is full of the scattering
air bubbles, which is likely wrong because according to the Swedish Camera’s
observations, the air bubbles accumulate around the center of the hole ice column
instead of filling the whole column.

A second generation model developed by D. Chirkin (named “Dima’s model”)
uses flasher data to apply changes in the sensitivity curves of DOMs. It uses a
new parameter p instead of using the traditional scatter coefficient used in the H2
model. This parameter p does not have a physical meaning, and we refer to it as
the hole ice parameter. The parametrization of the acceptance curves is:

0.34(1 + 1.5 cos η − cos3 η/2) + p · cos η(cos2 η − 1)3. (7.2)

This parameter’s nominal value is 0.25. In Fig. 7.9(a), we see in the forward
region of the DOM that there is a discrepancy between the Dima model sensitivity
curves and the H2 curves. Each model’s uncertainties are not able to cover the
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other model. To bridge the gap, a new parameter p2 is developed [102]. It simply
adds an exponential term to the Dima model parametrization:

0.34(1+1.5 cos η −cos3 η/2)+p ·cos η(cos2 η −1)3 +p2 ·exp(10(cos η −1.2)). (7.3)

The parameter p2 ranges from −5 to 2, with 0 being the nominal case. It is referred
to as the hole ice forward parameter. We use a uniform prior for it, because we
don’t know what it should be, so let the actual final data fit to tell us its best fit
value.

Figure 7.9 (b) shows the comparison of the two models in the acceptance curves.
We see that using the Dima model combined with the forward parameter, we can
cover the forward region from the H2 model up to the Dima model very well.

The SpiceHD [103] model is the newest hole ice model that uses direct propaga-
tion of photons in the bubble column, developed by M. Rongen. The fits are done
with parameters such as the radius of the bubble column, scattering length, and
individual DOM positions to compare the simulated flasher data to the real flasher
data. It does not implement changes in the DOM angular acceptance curves like
the H2 or Dima models, so it’s not shown in the acceptance curve plots. The
SpiceHD model is still undergoing development. At the time of the study, several
SpiceHD systematics sets were available. During one statistics test where SpiceHD
is used as pseudo data and fitted with the regular systematics sets (with the Dima
model for hole ice), we observed a bias in the best fit ντ (CC + NC) normalization
values. Thus, to disentangle the difference between the SpiceHD and Dima models
and the ντ (CC+NC) signal, the systematic spiciness is used to give a transition
between the two. It is not a physical parameter. All systematics sets created with
the Dima model are assigned zero, and the six systematic sets with SpiceHD are
assigned one. Similar to other discrete systematics, spiciness is added as an extra
dimension to the hyperplane fitting method. Also, similar to hole ice forward, we
use a uniform prior for it and let the final data fit tell us its best fit value. A
spiciness close to zero means the data is better described by the Dima model, a
spiciness close to one means the data is better described by the SpiceHD model.
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(a) Comparison of the H2 and the Dima model

(b) Dima model with the hole ice forward parameter p2.

Figure 7.9: Relative sensitivity as a function of the arrival direction of photons
cos(η). (a) shows the comparison between the H2 model and the Dima model. (b)
shows the change made on the Dima model by adding a forward parameter p2 in
an exponential term, allowing it to transition from to H2 model (at 50 cm) in the
forward region. Figure taken from Ref. [102].

7.5 Normalization Systematics
Figure 7.12 shows the percent change on the event distribution by shifting the ν

NC normalization by +1σ. The effective lifetime is the overall scale factor applied
to every event, so its effect is uniform. The ICC background provides the shape
estimation for background, and the atmospheric µ scale parameter only scales it
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Figure 7.10: Top: Effect of DOM efficiency (overall optical efficiency) at 10% above
nominal value on the nominal event distribution. Bottom: effect of hole ice (lateral
optical efficiency).

up and down, so its effect on the event distribution is a uniform change on the µ

background events.
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Figure 7.11: Effect of hole ice forward (head-on optical efficiency) and spiciness
on the nominal event distribution.
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Figure 7.12: Effect of ν NC normalization at +1σ on the nominal event distribution
shown as a percentage change.
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7.6 N-1 Test
The N-1 test is useful for testing the impact of the systematics on a measurement.
There are different types of N-1 test. Here the hidden potential N-1 test is done,
which checks how much better the result would be if we knew this parameter
perfectly.

The procedure is as follows: First, generate pseudo data with the systematic
fixed to the baseline value (or the value to the best of knowledge). Then, in the
fitter, fix the systematic also to the baseline value. Last, perform fits and get
results.

In the last step, we can either perform two fits (one at ντ (CC+NC) normaliza-
tion at 1 and one at 0) to get the significance of the null hypothesis exclusion or do
multiple ντ (CC + NC) normalization scans to get the sensitivity (see Section 6.5).

Table 7.1 shows the result ordered by the percentage change in the significance
of the null hypothesis exclusion. The oscillation angle θ23, three ice property related
systematics, and ν NC normalization are the five most important ones.

Table 7.2 shows the result ordered by the percentage change in the ντ (CC+NC)
normalization 1σ C.I.. We see the first five most important systematics are still
the oscillation angle θ23, ν NC normalization, and three ice property related sys-
tematics, although the order is slightly different.
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N-1 test (exclusion of null hypothesis)
Systematics ∆χ2 Significance Difference Impact(%)
θ23 16.92 4.11σ 0.37σ 9.8
hole ice forward 16.6 4.07σ 0.33σ 8.7
bulk ice scattering 15.81 3.98σ 0.23σ 6.1
spiciness 15.02 3.88σ 0.13σ 3.5
ν NC normalization 14.99 3.87σ 0.13σ 3.3
DOM efficiency 14.52 3.81σ 0.06σ 1.7
ν/ν̄ ratio 14.2 3.77σ 0.02σ 0.6
atm. µ scale 14.14 3.76σ 0.01σ 0.4
nominal 14.04 3.75σ 0 0
hole ice 14 3.74σ 0 -0.1
ν/ν̄ ratio 13.99 3.74σ −0.01σ -0.2
νe/νµ ratio 13.97 3.74σ −0.01σ -0.2
∆m2

31 13.96 3.74σ −0.01σ -0.3
effective lifetime 13.95 3.73σ −0.01σ -0.3
MA (resonance) 13.92 3.73σ −0.01σ -0.4
up/hor ratio 13.91 3.73σ −0.02σ -0.5
bulk ice absorption 13.87 3.72σ −0.02σ -0.6
MA (quasi-elastic) 13.86 3.72σ −0.02σ -0.6
θ13 13.82 3.72σ −0.03σ -0.8

Table 7.1: The ∆χ2 column is the difference between the χ2 at ντ (CC+NC) normal-
ization = 0 and the best fit ντ (CC + NC) normalization (here =1). From Wilk’s
theorem, the sensitivity of excluding the null hypothesis is

√
∆χ2(ντ norm. = 0).

The “nominal” row is the nominal case where none of the systematics are fixed,
each the rest of the rows shows the result when fixing that systematic to its baseline
value. We see that θ23 has the biggest impact.
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N-1 test (expected C.I.)
Systematics 1σ Range Avg 1σ Range Difference Impact(%)
hole ice forward (0.73, 1.29) 0.28 -0.05 -14.9
bulk ice scattering (0.72, 1.31) 0.3 -0.03 -9.4
spiciness (0.71, 1.32) 0.3 -0.02 -7.3
ν NC normalization (0.71, 1.33) 0.31 -0.02 -4.7
θ23 (0.71, 1.34) 0.32 -0.01 -3.3
∆m2

31 (0.70, 1.34) 0.32 -0.01 -2.5
ν/ν̄ ratio (0.70, 1.34) 0.32 -0.01 -1.7
DOM efficiency (0.70, 1.35) 0.32 0 -1.1
∆γ (0.70, 1.35) 0.33 0 -0.9
atm. µ scale (0.70, 1.35) 0.33 0 -0.7
effective lifetime (0.70, 1.35) 0.33 0 -0.3
bulk ice absorption (0.69, 1.35) 0.33 0 -0.1
MCCQE

A (0.69, 1.35) 0.33 0 -0.1
νe/νµ ratio (0.69, 1.35) 0.33 0 -0.1
up/hor ratio (0.69, 1.35) 0.33 0 -0.1
MRES

A (0.69, 1.35) 0.33 0 0
nominal (0.69, 1.35) 0.33 0 0
hole ice (0.69, 1.35) 0.33 0 0
θ13 (0.69, 1.35) 0.33 0 0.1

Table 7.2: The 1σ Range column is the 1σ range for ντ (CC + NC) normalization
using Wilk’s theorem. Avg 1σ Range is the average of the 1σ range. The Impact
column shows the percentage change in the average 1σ C.I., the values are ordered
from the biggest impact to the smallest. The “nominal” row is the nominal case
where none of the systematics are fixed, each the rest of the rows shows the result
when fixing that systematic to its baseline value. Fixing hole ice forward makes
the 1σ C.I. shrink by 14.9%.

112



Chapter 8 |
Analysis Results

This chapter discusses the analysis results.

8.1 ντ Normalization
Figure 8.1 shows the measured ντ (CC+NC) normalization and ντ CC normaliza-
tion in comparison with the two previous experiments. The best fit ντ (CC+NC)
normalization is 0.59 with the 68% C.I. being [0.34, 0.90], i.e., 0.59+0.31

−0.25. The 90%
C.I. is [0.18, 1.12]. We do not show a combined result here because it’s not trivial
to do so since the systematics used in each experiment are different. Super-K and
IceCube/DeepCore have some common systematics, but the two experiments look
for neutrinos in different energy regions.

The best fit value of ντ CC normalization is 0.43, with the 68% C.I. being
[0.12, 0.80], i.e., 0.43+0.36

−0.43. The 90% C.I. is [0, 1.07]. Thus, the measurement is
consistent with the standard oscillation theory at 90% C.L. Super-K’s 68% C.I. for
ντ CC normalization is 1.47 ± 0.32 and OPERA’s is: 1.1+0.5

−0.4.
The significance of excluding the no-ντ -appearance hypothesis is 2.5σ in the ντ

(CC+NC) normalization fit. The significance to exclude the no-ντ CC-appearance
is 1.4σ.

8.2 Best Fit Parameters
Table 8.1 shows the best fit parameters under both fits. Most of the nuisance
parameters have an associated prior; their central value and ±1σ ranges are listed
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Figure 8.1: Result of the tau neutrino appearance measurement with three years
of IceCube/DeepCore data. Red lines are the ∆χ2 values obtained based on
the ordering principle of Feldman-cousins construction. The x axis is the in-
jected ντ (CC + NC) normalization value used in generating pseudo data. At
each ντ (CC + NC) normalization value, roughly 30,000 fits are performed. The
resulting ∆χ2 values are ordered from smallest to largest, then we find the
value below which the cumulative area of this ordered ∆χ2 distribution is 68%
(1σ), 90% and 99.73% (3σ). The black line is the measured ∆χ2 at each
ντ (CC + NC) normalization scan. The intersection of the black line and the ∆χ2

= 0 is the best fit value. Note that the 3σ line is not very smooth, because the
number of total fits is 30,000, 3σ corresponds to a percentage of 99.73%, so there
are on average only (0.27% × 30, 000 =) 81 points beyond the 3σ line at the tail
of the ordered ∆χ2 distribution.

in the Prior column.
As mentioned in Section 6.3, two oscillation parameters are left floating freely

with a uniform prior. The best fit values for θ23 are 46.1° and 45.9°, respectively.
Thus, the result prefers maximal mixing. Convert to sin2(θ23), the best fit values
are 0.519 and 0.516.

In the fitter, ∆m2
31 is allowed to be either positive or negative, i.e., each one
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fit performs fits under both assumptions and only returns the better fit. Table 8.1
shows the best fit values for ∆m2

32 with ∆m2
21 = 7.5 × 10−5 eV2.

The best fit values of ∆m2
32 are 2.38×10−3 eV2 and 2.34×10−3 eV2. Their values

being positive means that normal hierarchy is preferred (though only slightly).

Table 8.1: The best fit results for all parameters.

Parameter Prior Best fit (CC+NC) Best fit (CC)
Flux

νe/νµ ratio 1.0 ± 0.05 1.03 1.03
up/hor ratio (σ) 0.0 ± 1.0 -0.25 -0.24
ν/ν̄ ratio (σ) 0.0 ± 1.0 0.01 0.04
∆γ (spectral index) 0.0 ± 0.1 -0.050 -0.041

Neutrino Interaction
MA (quasi-elastic) (GeV) 0.99+0.248

−0.149 0.88 0.88
MA (resonance) (GeV) 1.12 ± 0.22 0.85 0.85

Oscillation
θ13 (◦) 8.5 ± 0.21 8.5 8.5
θ23 (◦) - 46.1 45.9
∆m2

32 (10−3 eV2) - 2.38 2.34
Detector

bulk ice scattering 0.0 ± 10% -2.6% -2.7%
bulk ice absorption 0.0 ± 10% 2.1% 1.9%
DOM efficiency (%) 100 ± 10 105 104
hole ice (σ) 0.0 ± 1.0 -0.25 -0.27
hole ice forward (a.u.) - -1.15 -1.22
spiciness - 0.02 0.07

normalization
ν NC normalization 1.0 ± 0.2 1.25 1.26
effective lifetime (yr) - 2.45 2.46
Atm. µ fraction - 4.6% 4.6%

Measurement
ντ normalization - 0.59 0.43

The “Atm. µ fraction” is the ratio of the number of atmospheric µ events to the
number of total events. In the fit, the parameters “Atm. µ scale” (see Section 7.5)
is used as the scale factor applied on the atmospheric muon background template.
Here “Atm. µ fraction” is shown as it is a more physically meaningful value to
understand.

In the fit, ∆m2
31 is used, but here in the table, we show ∆m2

32 because ∆m2
32
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is more frequently used in neutrino oscillation measurements and we can compare
with their measurements. Since we fix the value of ∆m2

21 in the fit, it is a simply
calculation: ∆m2

32 = ∆m2
31 − ∆m2

21, where ∆m2
21 = 7.5 × 10−5 eV2.

As mentioned before, this event sample was originally developed for the νµ

disappearance, here we want to compare the best fit values for the two oscillation
parameters in the νµ measurement and this ντ measurement. The best fit value for
∆m2

32 in the νµ disappearance measurement [15] (where ντ (CC + NC) normalization
is fixed to unity) was 2.31+0.11

−0.13 × 10−3 eV2 [15], with which our best fit value
2.38 × 10−3 eV2 is compatible. Both slightly prefer the normal hierarchy. The best
fit value of sin2(θ23) in the νµ disappearance measurement [15] was 0.51+0.07

−0.09, with
which our best fit value 0.519 is also compatible.

Note that, because of the apparent difference in treating ντ normalization and
other differences like some systematics were not present in the νµ measurement,
we don’t expect to measure the same values for every parameter, but we expect
them to be compatible with each other, and we have observed compatible values.

8.3 Good Runs
Three years of data are used. When selecting good data runs to use in the analysis,
we use the following criteria: First, each run livetime must be >= 1 hour. Second,
the number of active strings must be equal to 86. Third, the number of active
DOMs must be larger than 5380. Table 8.2 shows the livetime of the good runs
in each year using the above criteria. The total livetime is 8.83 107 s, equivalent
to 1022.0 days. Note, this livetime is not used in the fit, it is just the total
livetime of events that pass the good run selection mentioned above. We use an
overall normalization scale factor as a systematic, which scales all the events up
and down, and finally convert it to an effective lifetime of 2.45 (2.46) years in our
best fit.

8.4 Goodness of Fit
The minimized raw fit statistic χ2 (defined in Section 6.3) is 113.26 for the ντ

(CC+NC) normalization fit, and 112.79 for the ντ CC normalization fit. Figure. 8.2
shows the distributions from MC fits and the χ2 values for each data fit. For the
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Table 8.2: The livetime for each year.

Year Livetime
2012 2.80 107 s
2013 2.96 107 s
2014 3.07 107 s
Total 8.83 107 s

CC+NC fit, the probability of getting a χ2 larger than 113.26 is P (χ2 ≥ 113.26) =
20.3%, indicating that the fit is a good one. Similarly, for the CC-only fit, the
probability of getting a χ2 larger than 112.79 is P (χ2 ≥ 112.79) = 21.5%.

8.5 Number of Events Expected (After Fit)
Table 8.3 shows the number of events for each flavor and interaction type expected
at final level after the fit. The number of expected ντ events is 1379. The total
number of expected events (including both neutrinos and atmospheric muons) is
40,959, which is within statistical fluctuation with the number of events actually ob-
served (40,902). Table 8.4 shows the number of events for the ντ CC normalization
fit. The expected numbers of ντ CC (691) and ντ NC (764) events are different
from the CC+NC fit (with ντ CC at 934 and ντ NC at 445) because the best fit
normalization factor in CC fit is smaller than that in the CC+NC fit.

8.6 Event Distributions
Figure 8.3, Fig. 8.4, and Fig. 8.5 show the L/E distributions comparing best fit and
data. Fig. 8.6 and Fig. 8.7 are the distributions of reconstructed energy, cos θzen

and PID after fit (for CC+NC). Figures 8.8 and 8.9 are the background-subtracted
event distributions. In figures for the ντ (CC + NC) normalization fit, the ντ CC
and ντ NC events are shown in red and orange colors, respectively. In figures for
the ντ CC normalization fit, the ντ CC events are shown in red.

Figures 8.10 through 8.15 are distributions of the 11 BDT input variables (Sec-
tion 5.4). Note that we do not expect very good agreement for these variables,
because most of them are low level variables except the three track reconstruction
best fit variables.
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Figure 8.2: Distributions of the fit statistic χ2 from MC fits and the χ2 values from
the data fits. Top: ντ (CC + NC) normalization fit. Bottom: ντ CC normalization
fit. The blue histogram is the distribution from doing fits with Poisson-fluctuated
baseline MC (with ντ (CC + NC) normalization or ντ CC normalization set to 1)
as the pseudo data. The red line is the location of the minimized χ2 value after
doing the fits with data.
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Table 8.3: Number of Events from ντ (CC + NC) normalization fit.

CC+NC best fit Number of Events Uncertainty
νe CC 9545 23
νe NC 923 8
νµ CC 23852 39
νµ NC 3368 17
ντ CC 934 5
ντ NC 445 4
Atm. µ 1889 45
Total Expected 40959 68
Data 40902 202

The number of events expected for each flavor and interaction type from the
ντ (CC + NC) normalization fit. The uncertainties for muons and data are Poisson
errors. The uncertainties for the six ν channels are the Monte Carlo uncertainties.
The amount of ν events simulated are equivalent to 30 years of data, they are
scaled to roughly three years in the fit, that’s why their uncertainties are much
smaller than what we expect from Poisson errors.

Table 8.4: Number of Events from ντ CC normalization fit.

CC-only best fit Number of Events Uncertainty
νe CC 9510 23
νe NC 930 9
νµ CC 23782 39
νµ NC 3398 17
ντ CC 691 4
ντ NC 764 7
Atm. µ 1882 45
Total Expected 40962 68
Data 40902 202
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Figure 8.3: Top: L/E plot for cascade-like events. Bottom: L/E plot for track-
like events. Both are after the ντ (CC + NC) normalization fit. Signal ντ CC and
ντ NC are shown in red and orange, respectively. The ratio of data to best fit is
shown in the lower part of each figure.
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Figure 8.4: Top: L/E plot for cascade-like events. Bottom: L/E plot for track-like
events. Signal ντ CC is shown in red. The other three colors are νµ CC, νµ NC,
and νall NC.
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Figure 8.5: L/E plot for cascades and tracks combined. Top: L/E from the
ντ (CC + NC) normalization fit. Bottom: L/E from the ντ CC normalization fit.
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Figure 8.6: Reconstructed energy (top) and cos θzen (bottom) distributions (cas-
cades and tracks combined) for the ντ (CC + NC) normalization fit.
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Figure 8.7: PID distributions (∆LLH) for the ντ (CC + NC) normalization fit.
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Figure 8.8: Background-subtracted event distributions for the ντ (CC+NC) nor-
malization fit. Top: reconstructed energy distributions split into cascade-like and
track-like channels. Middle: reconstructed cos θzen distributions. Bottom: recon-
structed energy, cos θzen, and particle identification (PID) distributions (cascades
and tracks combined).
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Figure 8.9: Background-subtracted event distributions for the ντ CC normalization
fit. Top: reconstructed energy distributions split into cascade-like and track-like
channels. Middle: reconstructed cos θzen distributions. Bottom: reconstructed
energy, cos θzen, and particle identification (PID) distributions (cascades and tracks
combined).
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Figure 8.10: “Total charge” and “Number of hit DOMs” distributions (cascades
and tracks combined) for the ντ (CC + NC) normalization fit. Top: “Total charge”,
it is the total charge of the SRT-TW-Cleaned DCC pulses (see Section 5.3.1 for
its definition). Bottom: “Number of hit DOMs”. It is the number of hit DOMs in
the SRT-TW-Cleaned DCC pulses.
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Figure 8.11: “CoG σz” and “Separation” distributions (cascades and tracks com-
bined) for the ντ (CC + NC) normalization fit. Top: “CoG σz” is the standard
deviation of the z position of the charge-weighted CoG of the SRT-TW-cleaned
DCC pulses. Bottom: “Separation”. The SRT-TW-cleaned DCC pulses are sorted
by time into four subsets. “Separation” (∆r) is the spatial distance between the
first and the fourth subsets of the hits.
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Figure 8.12: Top: “CoG Q1 ρ” distribution (cascades and tracks combined) for the
ντ (CC + NC) normalization fit. It is the radial distance of the CoG of the first
quarter of the time-sorted SRT-TW-cleaned DCC pulses. Bottom: “CoG Q1 z”
distribution (cascades and tracks combined) for the ντ (CC + NC) normalization
fit. It is the depth of the CoG of the first quarter of the time-sorted SRT-TW-
cleaned DCC pulses.
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Figure 8.13: Top: “QR3” distributions (cascades and tracks combined) for the
ντ (CC + NC) normalization fit. “QR3” is the ratio of the charge in the first 300ns
after the trigger time to the total charge. Bottom: “C2QR3” distributions, C2QR3
is the same as QR3, but excluding the first two pulses to reduce the impact of noise.
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Figure 8.14: “Linefit speed” and “Linefit zenith” distributions (cascades and tracks
combined) for the ντ (CC + NC) normalization fit. Top: “Linefit speed”. Bottom:
“Linefit zenith”. They are the best fit track speed and zenith from Linefit [93].
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Figure 8.15: “SPE11 zenith” distributions (cascades and tracks combined) for the
ντ (CC + NC) normalization fit. It is the best fit zenith angle from SPE11 fit [92].
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Chapter 9 |
Conclusions

IceCube can measure neutrinos in a large energy range from as low as 5 GeV up
to a few PeV. The low energy subarray DeepCore is designed with a geometry to
be able to measure neutrinos as low as a few GeV to roughly 100 GeV.

This dissertation presented a measurement of atmospheric tau neutrino appear-
ance with three years of IceCube/DeepCore in the 5.6 – 56 GeV neutrino energy
range.

The key physics parameter is ντ (CC + NC) normalization, a scale factor as-
signed to the signal ντ (CC+NC) events, varying between 0 and 1, where the value
of one corresponds to the expected rate under assuming the standard three-flavor
neutrino oscillations.

The best fit ντ (CC + NC) normalization was 0.59 with the 68% C.I. in [0.34,
0.90], i.e., 0.59+0.31

−0.25. The 90% C.I. was [0.18, 1.12]. This corresponds to 1379 ντ

events out of a total of 40,959 events (which includes 39,070 all-neutrino-flavor
events and 1,889 atmospheric muons).

To compare with the results of Super-K and OPERA, the measurement of
ντ CC normalization was also conducted. The best fit ντ CC normalization was
0.43, with the 68% C.I. being [0.12, 0.80], i.e., 0.43+0.36

−0.43, and the 90% C.I. was [0,
1.07].

Both the measured ντ (CC + NC) normalization and ντ CC normalization are
consistent with existing measurements and the standard three-flavor oscillation
paradigm at 90% C.L.
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Appendix A|
Past Work

This appendix discusses my past work related to the software and hardware de-
sign of the Precision IceCube Next Generation Upgrade (PINGU). PINGU is the
proposed low-energy extension to IceCube as shown in Fig. A.1.

Section A.1 is about the development of a faster reconstruction for low energy
events in PINGU. Section A.2 contains four projects related to the physics require-
ments of the PINGU hardware design: dynamic range of PINGU DOMs (PDOM),
DOM-to-DOM timing precision, physics requirement for the buffer length of PDOM
firmware, and a sampling rate study. PDOM is one of the proposed DOM designs
for PINGU. These five projects were all done with simulated PINGU data.

A.1 Development of a Faster Reconstruction with
HybridReco/MultiNest
The motivation of this study is to use HybridReco (discussed in Section 4.2.2) and
MultiNest [83, 84] to develop a faster reconstruction algorithm and at the same
time achieve similar reconstruction resolutions. The energy range of interest is 1
– 30 GeV.

HybridReco was designed with fitting with 8 parameters for each event hy-
pothesis (x, y, z, t, zenith, azimuth, Ecascade, Ltrack). MultiNest is used as the
sampling algorithm, where the number of active points can be tuned along with
other parameters. A smaller number of active points means fewer likelihood calls
and less reconstruction time. But it can’t be too small, because a very small num-
ber of active points means the fitter won’t be able to sample enough points in the
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likelihood space and thus might miss the minimum point. Generally speaking, a
number of 75 is a suitable number, and was used in the standard 8D fit. Also, the
boundaries for each parameter can be varied. For example, the boundary for each
parameter can be set to a smaller interval to reduce reconstruction time.

The average time of doing one event reconstruction using the standard 8D fit
was 15 minutes.

One way to speed up the reconstruction is to reduce the dimensions of the
parameters given to the fitter. The idea is to use a combination of two lower-
dimension fits, where the second fit can utilize the information from the first fit.
Different combinations were tested. For example, one early design was a combina-
tion of a 5D fit and a second 4D fit.

The final resultant algorithm is a 5D+seeded-8D fit described as follows: First,
fit with 5 parameters: (x, y, z, t, Ecascade). The track length Ltrack is fixed to 0,
zenith and azimuth are fixed to values from a first guess fit MPEFit [92]. The SRT-
TW-cleaned pulses are split into three subsets ordered by time. Only the 1st third
of the SRT-TW-cleaned pulses are used in this 5-D fit, because they are the earliest
pulses that are less likely from scattered light, thus are more likely to be located
near the event interaction vertex. Second, fit with 8 parameters: use the (x, y, z, t)
result from the 5D fit as the seed, where only a narrow dynamic boundary is allowed
around the seed. Assume the best reconstructed position and time from the 5D fit
are (x0, y0, z0, t0), and we use a dynamic boundary (bp) for the position (x0, y0, z0)
and a boundary (bt) around the time t0, i.e., the 8D fit’s fitting boundaries for the
position and time are [x0 − bd, x0 + bd], [y0 − bd, y0 + bd], [z0 − bd, z0 + bd], and [t0 −
bt, t0 + bt]. The other four parameters (zenith, azimuth, Ecascade, Ltrack) still have
the original boundaries: [0, π], [0, 2π), [0, 100 GeV], [0, 300 m]. Here the full SRT-
TW-cleaned pulses are used, since we need the full information for reconstructing
the angles and energy. The output best fit is then used as the result.

Simulated PINGU events are used to compare this 5D+seeded-8D algorithm
and the original full 8D algorithm. The choice of dynamic boundaries and the num-
ber of active points were tuned. Table A.1 shows four examples of different values
for the number of active points and the position boundary bd and the corresponding
average total reconstruction time.

The final settings (with one other reconstruction setting and a quality selection)
used are:
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Settings (x, y, z)
Boundary bp

t
Boundary bt

Active Points
for 8D fit

5D fit
Time

8D fit
Time

Total
Time

1 5 m 25 ns 75 1.2 8.9 10.1
2 5 m 25 ns 50 1.1 6.3 7.4
3 10 m 25 ns 50 1.2 8.2 9.4
4 10 m 25 ns 35 1.1 6.4 7.5

Table A.1: Average reconstruction time per event under different settings for the
5D+seeded-8D fit.

• Dynamic boundary: bp = 10 m, bt = 25 ns.

• Number of active points are: 75 for the 5D fit, 50 for the 8D fit.

• Quality cut: (1) PINGU containment cut; (2) the best fit LLH - noise LLH
>10.

• Time limits: a maximum of 75 minutes for both fits.

Under this setting, the reconstruction time of the first 5D fit is an average of
1.2 minutes; the second seeded 8D fit takes an average of 8.2 minutes (Fig. A.2
(a)), altogether the 5D+8D fit takes an average of 9.4 minutes, which is faster than
the full 8D fit with an average of 15 minutes (Fig. A.2 (b)). Figure A.3 shows the
resolutions, which are comparable with the original full 8D fit.
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Figure A.1: The proposed PINGU detector at the time of the study. Its proposed
geometry consists of 40 strings, each with 60 PDOMs on it.
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(a) Time from the 5D+seeded-8D fit.
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Figure A.2: (a) The reconstruction time distributions for the first 5D fit (top) and
the second seeded 8D fit (bottom) using a bd = 10 m and 75 active points for
the 5D fit and 50 active points for the 8D fit. The average times are 1.2 and 8.2
minutes, respectively. (b) The reconstruction time distributions for the full 8D fit.
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Figure A.3: The resolutions of x, y, z, t, zenith, and energy as a function of true
neutrino energy. The red line is the median value at each energy bin. The median
resolutions of the position parameters (x, y, z) are all around 3 m. The median
resolution of time t is around 15 ns. For zenith angle, the median resolutions are all
below 20 ° (at energies larger than 10 GeV, less than 10°). The median resolution
of fractional energy ( fractional energy = (Ereconstructed − Etrue)/Etrue) is about 0.2.
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A.2 PINGU Hardware Studies

A.2.1 Dynamic Range of PDOM
PDOM was one of the proposed DOM designs for PINGU. The dynamic range of
IceCube DOMs is 400 PE/15ns, i.e., the maximum charge in a 15 ns window is
400 PE, this study examines the required dynamic range for PDOM if we aim to
achieve a similar performance from PDOMs and IceCube DOMs.

The procedure to get this value is:

1. With IceCube data, get the fraction of DOMs with charge larger than 400 PE
within 15 ns in respect to the total number of DOMs.

2. Estimate the charge distribution in PDOMs. The charge distribution is the
maximum pulse charge inside each PDOM.

3. Use this charge distribution to find the charge value corresponding the same
fraction.

In the first step, the fraction is measured to be 2 × 10−6, this means there are
two in one million DOMs that have more than a charge of 400 PE within 15 ns.
The data run used was burn sample data at low energy L3 (run 118400), the data
used in the second step is simulated PINGU data (PINGU geometry V15) and
CORSIKA run 9775. Figure A.4 shows the results.

We draw the conclusion that the dynamic range required by PINGU DOMs is
425 ± 25 PE/15 ns, so two in one million PDOMs have more than a charge of 425
PE within 15 ns, which is not significantly different from the current performance
of IceCube DOMs (400 ± PE/15 ns).
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Figure A.4: Top: The distribution of maximum charge within 15 ns inside IceCube
DOMs. Bottom: The distribution of maximum charge within 15 ns inside PDOMs.
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A.2.2 DOM-to-DOM Timing Precision
This study evaluated the impact of the DOM timing precision on event reconstruc-
tion resolutions to characterize the requirement for DOM design in PINGU.

As mentioned in Section 4.2, the “RecoPulse” or “reco pulse” (meaning “recon-
structed pulses”) are what’s used in event reconstruction. Each reco pulse contains
three parameters: the pulse time, pulse charge and pulse width.

The procedure of the study is:

1. Inside each PDOM, shift the time of every reco pulse by the same amount,
this time shift is sampled randomly from a Gaussian distribution. For any
given DOM, the time shift of each pulse is the same, but different DOMs
will in general have different time shifts drawn from the same Gaussian dis-
tribution.

2. Do a full 8D HybridReco/MultiNest reconstruction, compare the resultant
resolutions with the resolutions using the original reco pulses (i.e., σ = 0 ns).

Here, I used four Gaussian distributions with the σ = 6, 12, 24, 48 ns, respec-
tively. So, there are five different reconstructions in total, including the original
data that has no time shift. Figures A.5 and A.6 show the zenith and energy
resolutions under these five settings.

To better quantify the effects generated by the different time shifts on the
resolutions, a Gaussian fit was done on the energy (or zenith) distributions in each
energy bin in Figs. A.5 and A.6. There are 15 energy bins in each subplot, so in
total (15 × 5 =) 75 Gaussian fits were performed for both the energy resolution
and the zenith resolution. Figure A.7 shows the Gaussian fits inside each energy
bin for the no-time-shift case. The plots for the other four time shifts were similar
so not shown here. From the fits, we see that the standard deviation of the best
fit Gaussian function is a good representation of the quality of reconstruction
resolution.

So, all the Gaussian standard deviations (σ) from the Gaussian fits were gath-
ered into Fig. A.9. As expected, zenith resolution gets worse when we increase the
time shifts from a σ at 0 ns to 48 ns. The energy resolution stays about the same
even when the time shift with the σ increases to 12 ns. This result agrees with
our expectation, since the energy reconstruction mainly depends on the amount of
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Figure A.5: The zenithreco − zenithtrue as a function of true neutrino energy, from
these 5 reconstructions. The plot in the top-left corner (0 ns) is no-time-shift case.
We see the reconstruction gets worse when we increase the Gaussian σ value from
0 to 48 ns. See more detailed comparison in Fig. A.9
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Figure A.6: The Ereco −Etrue as a function of the true neutrino energy from these 5
reconstructions. We see similar results for energy reconstruction, so the time shifts
do not influence the energy reconstruction much. See more detailed comparison in
Fig. A.9
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Figure A.7: Gaussian fits inside the 15 energy bins of the zenith resolution plot
(Fig. A.5) with no time shift (0 ns). The x-axis name contains the energy bin
range. This plot shows the distribution of zenithreco − zenithtrue in each energy
bin can be fitted by a Gaussian function well, so the standard deviation of the
best fit Gaussian function is a good representation of the quality of reconstruction
resolutions, the comparison of all the Gaussian standard deviations is shown in
Fig. A.9.

charge observed by the DOMs and less influenced by the timing precision, whereas
the zenith reconstruction needs good timing information.

In conclusion, from this study, we learned that a time shift sampled from the
σ = 6 ns Gaussian distribution makes the zenith resolution worse by about 2 to 3
degrees. For the time shifts at Gaussian σ at 6 and 12 ns, the energy resolutions
stay about the same. We currently can achieve less than 6 ns precision.
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Figure A.8: Gaussian fits inside the 15 energy bins of the energy resolution plot
(Fig. A.6) with no time shift (0 ns). The x-axis name contains the energy bin
range. This plot shows the first 9 bins (energy range: 0 – 18 GeV) can be fitted by
a Gaussian distribution well, but the rest 5 bins don’t have enough statistics, so it’
s better to only compare standard deviations for the first 9 bins. The comparison
of the Gaussian standard deviations is shown in Fig. A.9.
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Figure A.9: The fractional energy resolution (left) and the zenith resolution as
a function of true energy. The resolutions are represented by the the standard
deviations of the best fit Gaussian functions in each energy bin. The red line is
the no-time-shift case, the green, blue, magenta, black lines represent the σ = 6,
12, 24, 48 ns case, respectively. From 0 to 48 ns, the zenith resolution gets worse,
when σ = 6 ns, the zenith resolutions decreases by about 2 to 3 degrees; energy
resolution stays about the same when σ = 6, 12 ns.
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A.2.3 Physics Requirement for the Buffer Length of PDOM
Firmware
The PDOM firmware’s proposed buffer length at the time of the study was 27
microseconds. We investigated the requirement for the PINGU DOM buffer length
using the most energetic high-energy starting events (HESE) events and simulated
monopole events. The procedure is to plot the FADC raw count vs time and
determine the pulse length in the DOM with the longest pulse.

Results are shown in Fig. A.10 and Fig. A.11. For observed HESE events, most
of the DOMs have either 6.4 µs or 12.8 µs readout. For simulated monopoles, the
longest readout can be 192 µs. So the conclusion of this study is: For the observed
HESE events, a 27 µs long buffer length is enough. For simulated slow monopoles,
full readout needs longer than 27 µs. Note that zero-suppression was not included
here. With zero-suppression, less buffer length will be required. This needs further
investigations.
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Figure A.10: FADC counts vs time for one DOM (Run 116528), each one dot is
one FADC sample, there are 256 samples, the FADC bin size is 25 ns, thus the
total time is 256×25 ns = 6.4 µs.
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Figure A.11: The raw FADC readout for one DOM of a simulated monopole event
(β = 0.0001, λ = 0.1 m). It has a (30 × 25 ns =) 192 µs long FADC readout. The
top figure shows all the readout, the bottom figure is a zoomed-in figure of the
same event inside a smaller time range.
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A.2.4 Sampling rate study
IceCube uses two digitizers (300 MHz ATWD and 40 MHz FADC). This study
investigates the impact on data quality if simply using pulses from the slower
ATWD. If we can use a slower ADC, we can reduce power consumption and simplify
hardware design.

DOMLauncher [104] is the IceCube module to do the simulations of the be-
havior of the DOM mainboard, including launching and digitization. It takes the
PMT responses as input, simulates the discriminators, local coincidence logic and
digitization, and produces the digitized ATWD and FADC signals as output.

The first step of the procedure is to modify the DOMLauncher module so that
it can produce digitized signals with different ATWD sampling rate at 250 MHz,
200 MHz, 150 MHz and 100 MHz. The second step is to send the output digitized
signals into the next steps in the simulation chain, do reconstructions using the
5D+seeded-8D fit (described in Appendix A.1). Finally, we compare the resultant
resolutions.

The changes made by slower ATWD sampling rates on the raw data are shown
in Fig. A.12. The resolution comparisons from using the above four different
sampling rates are shown in Fig. A.13.

The conclusion from Fig. A.13 is that for the simulated PINGU νµ CC events in
the energy range (1 – 80 GeV), changing the ATWD sampling rate from 300 MHz
to 100 MHz or 200 MHz doesn’t change the zenith and neutrino energy resolution
too much.
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Figure A.12: The blue dots are the output DOM launches using the original
300 MHz ATWD sampling rate, the magenta triangles are the new ATWD data
points.
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Figure A.13: The median zenith and fractional energy resolutions using different
ATWD sampling rates. Data used here: PINGU simulated νµ CC events. The
blue bins are with the original 300 MHz sampling rate. We see the resolutions
between a 300 MHz rate and 200 MHz (also 100 MHz) rate are comparable.
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