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Abstract
Technical challenges associated with telomere length (TL) measurements have prompted concerns regard-
ing their utility as a biomarker of aging. Several factors influence TL assessment via qPCR, themost common
measurementmethod in epidemiological studies, including storage conditions andDNA extractionmethod.
Here, we tested the impact of power supply during the qPCR assay. Momentary fluctuations in power can
affect the functioning of high-performance electronics, including real-time thermocyclers.We investigated if
mitigating these fluctuations by using an uninterruptible power supply (UPS) influenced TL assessment via
qPCR. Samples run with a UPS had significantly lower standard deviation (p< 0.001) and coefficient of
variation (p< 0.001) across technical replicates than those run without a UPS. UPS usage also improved
exponential amplification efficiency at the replicate, sample, and plate levels. Together these improvements
translated to increased performance across metrics of external validity including correlation with age,
within-person correlation across tissues, and correlation between parents and offspring.
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1. Introduction

Telomeres, the repetitive nucleoprotein regions at chromosome ends, are hallmarks of biological aging
(Lopez-Otin et al., 2013). Large population studies have associated shorter telomere length (TL) with a
range of risk factors that predict health problems and shorter life expectancy (Wang et al., 2018). Even so,
technical challenges with TL measurement have led to questions regarding their utility as a biomarker of
aging (e.g. Hastings et al., 2017).

The most common approach to quantify TL in epidemiological studies is quantitative-PCR (qPCR),
which expresses telomeric content relative to a single copy gene (Cawthon, 2002). In addition to concerns
of being less precise thanmeasures generated by Southern Blot (Aubert et al., 2012), TLmeasurement via
qPCR is subject to influence by several pre-analytical factors including DNA extraction method
(Cunningham et al., 2013), sample storage conditions (Dagnall et al., 2017), and analytical factors such
as PCR mastermix (Jiménez & Forero, 2018) and well position on plate-based thermocyclers (Eisenberg
et al., 2015). However, whether power supply during the qPCR assay influences TL measurement has
remained unconsidered.
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Momentary fluctuations in power can affect the functioning of high-performance electronics,
including real-time thermocyclers. These fluctuations can be mitigated by using an uninterruptible
power supply (UPS), an apparatus capable of supplying constant, uninterrupted voltage (Aamir et al.,
2016). The current study investigated if UPS usage influenced TL assessment via qPCR across a range of
technical and external validity metrics.

2. Methods
2.1. DNA Extraction and Telomere Length Assessment

Whole blood and buccal epithelial cells were collected from 26 grandmothers (age 52.6–72.2),
106 mothers (age 29.1–43.6) and 126 children (45.4% male; age 0.5–24.9). DNA for TL analyses was
extracted from buffy coat (N=94; 12 grandmothers, 79 mothers, & 3 children) and buccal epithelial cells
(N=271; 26 grandmothers, 116 mothers, & 129 children; dataset included multiple time points for
10 mothers and 3 children) using QIAamp DNAMini Kits (Qiagen, Germany). DNA purity and quality
was assessed using 260/230 and 260/280 ratios, but no exclusionary criteria was imposed prior to assays.
DNA was stored at!80°C until TL analysis. All TL assays were performed by WJH on a Qiagen Rotor-
Gene Q thermocycler, using a qPCR protocol adapted from Cawthon (2002). Each telomere assay
comprised two qPCR runs, one run quantifying telomere content (T) and a second run quantifying
genome copy number (S) using the single copy gene 36B4.Detailed descriptions of sample handling and
processing, as well as details regarding qPCR assay and quality control are summarized in the supple-
mental material in accordance with guidelines recommended by the Telomere Research Network
(https://trn.tulane.edu/wp-content/uploads/sites/445/2020/08/TRN-Reporting-Guidelines-updated.pdf).
The same DNA aliquot was used for T and S runs. Each run hosted triplicate reactions of 22 samples,
5 standards, and 6 positive controls on 100 well disks.

Telomere length was quantified as the T/S ratio, which was calculated as T=S¼ ET
CtT

ES
CtS

! "!1
, where ET/S

is the efficiency of exponential amplification for the telomere or single copy gene respectively, andCtT/S is
the cycle at which a given replicate targeting telomeric content or the single copy gene reaches the critical
threshold of fluorescence detection. A serial dilution of five standards were used to identify a critical
threshold of detection for extraction of CtT/S values. Estimates of amplification efficiency at the replicate,
sample, and plate levels used data generated from LinRegPCR (Ramakers et al., 2003). T/S ratios were
calculated using plate-level efficiencies, which have been shown to decrease bias and variability in qPCR
data (Ruijter et al., 2009).

2.2. Sample Overview and Statistical Analyses

The present work summarizes data generated from TL assessments of 2,221 replicate reactions across
34 qPCR runs (17T&17 S) as part of a larger investigation into intergenerational transmission of trauma,
as previously reported (Etzel et al., 2020). Sample-level analyses used the standard deviation and
coefficient of variation across replicate CtT/S values, natural log transformed T estimates (Ln ET

CtT
# $

),
and natural log transformed S estimates (Ln ES

CtS
# $

). Due to potential differences in reaction chemistry,
telomere and single copy gene reactions were analyzed independently. A full break down of sample flow
and subsets used in each analysis is provided in Figure 1. Results described in the main text represent
combined analyses of leukocyte and buccal samples. Independent analyses within each tissue are
reported in Supplemental Tables S1-S5. Two telomere samples failing to reach the threshold of detection
were removed from analyses. A UPS (Back-UPS Pro 700; APC) was utilized on approximately half of the
runs (N=18; 9 T & 9S). All samples which had T run with the UPS also had their corresponding S
reaction also run with the UPS. The runs utilizing the UPS were situated within the middle of the assays
(i.e., 5 T runs and 5 S runs without the UPS followed by 9T runs and 9 S runs using the UPS followed by 4
T runs and 4 S runs without the UPS). Differences in group means were assessed using t-tests.
Homogeneity of variances between reactions assessed with and without the UPS was tested using
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Levene’s test. In instances where group variances were significantly different, the Welch t test was
conducted in lieu of the Student’s t test (Welch, 1947).

To better understand howUPS usage would influence the findings derived from telomere length data,
we compared how samples assessed on runs with and without a UPS varied in their correlation between
T/S ratio and external validity metrics including age, across-tissue within person, and among parents and
offspring (Eisenberg, 2016). Differences in T/S ratio correlation coefficients were evaluated based on
overlap of 83.4% confidence intervals (Knol et al., 2011). Samples with T/S ratios more than 3 standard
deviations above themeanweremarked as outliers and removed from analyses (N(+)UPS = 5; N(!)UPS = 4).
Statistical analyses were conducted with IBM SPSS Statistics 26. Sample size estimates for reported power
calculations were performed in Stata 15.1 using the ‘power onecorrelation’ command with power = 0.80
and α=0.05, and effect size equal to the observed correlation coefficient.

3. Results

The standard deviation and coefficient of variation were significantly lower across replicate CtT values
and natural log transformed T estimates for samples assessed on runs utilizing a UPS relative to those run
without a UPS (Figure 2A;Table 1:). Estimates of amplification efficiency at the replicate, sample, and
plate level were also significantly improved on runs using a UPS, situating them closer to desired
population doubling (Figure 3A; Table 1:). Similar patterns were observed for reactions targeting the
single copy gene (Figure 2B;Figure 3B;Table 2:).

UPS status improved all metrics assessing the external validity of T/S ratios (Table 3:).Within-person,
cross-tissue correlations were significantly higher for samples assessed with a UPS relative to those
without. The correlation between age and T/S ratios and between parent and offspring T/S ratios were
also improved for samples assessed with a UPS, but not to a significant extent. Similar patterns were
observed when leukocyte and buccal samples were analyzed independently (Supplemental Table S5).

To explore power gains yielded from using the UPS, we compared the sample sizes needed
to distinguish UPS versus no-UPS TL external validity correlates as significantly different from zero

Figure 1. Sample flow and subsets used for analyses. 1A. 2,221 replicate reactions comprising the full sample. 1B. Replicate
reactionswere distinguished by amplification target and analyzed separately due to concerns in reaction chemistry. Replicate
reactions were used in analyses of replicate level efficiencies as a function of UPS utilization. 1C. Technical replicates were
clustered by sample ID for analyses of standard deviation and coefficient of variation across replicate level efficiencies,
replicate T-estimates, and replicate S-estimates. Differences in sample level efficiencies, calculated as the average efficiency
across replicates, were also conducted within this subsample. The two additional data points for single copy gene data
correspond to the two telomere samples that did not amplify as described in main text. 1D. Calculated T-estimates and
S-estimates were used to calculate T/S values for 363 samples. Original T/S values for the 9 samples that were rerun were not
included in analyses of T/S ratio data. Neither were the 9 T/S values marked as outliers, bringing the final sample size for
external validity correlates to 354.
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Figure 2. Differences in assay precision as a function of UPS usage delineated by PCR amplification target. 2A: Average
standard deviation and coefficient of variation across replicate CtT values and T estimates for samples assessed with (N = 196)
and without (N = 176) the use of a UPS. 2B: Average standard deviation and coefficient of variation across replicate CtS values
and S estimates for samples assessed with (N = 198) andwithout (N = 176) the use of a UPS. Error bars reflect standard error of
the mean. SD = Standard Deviation. CV=Coefficient of Variation. ***p < 0.001.

Table 1. Comparing Features of T-Estimates by UPS Status

(!UPS) (+) UPS Test Statistic p-value

Standard Deviation Across Replicate Ct Values 0.14 (0.09) 0.10 (0.07) t322.038 = 4.555 p < 0.001

CV Across Replicate Ct Values 0.49 (0.32) 0.38 (0.25) t330.442 = 3.829 p < 0.001

Standard Deviation Across Replicate Natural Log
Transformed T-Estimates

0.07 (0.04) 0.05 (0.03) t329.618 = 4.294 p < 0.001

CV Across Replicate Natural Log Transformed T-Estimates 0.41 (0.26) 0.31 (0.20) t331.142 = 3.909 p < 0.001

Replicate Level Efficiency 1.88 (0.08) 1.89 (0.05) t921.119 =!3.571 p < 0.001

Standard Deviation Across Replicate Level Efficiencies 0.05 (0.03) 0.04 (0.02) t293.912 = 5.979 p < 0.001

Coefficient of Variation Across Replicate Level Efficiencies 2.79 (1.51) 1.88 (0.97) t292.945 = 6.131 p < 0.001

Sample Level Efficiency 1.88 (0.05) 1.89 (0.04) t311.781 =!2.963 p = 0.003

Plate Level Efficiency 1.87 (0.03) 1.89 (0.02) t15 =!2.430 p = 0.028

*Test statistics reported from independent samples t-test. Values reported are Mean (Standard Deviation). CV = coefficient of variation.

Figure 3. Differences in amplification efficiency as a function of UPS usage delineated by PCR amplification target. 3A:
Average replicate, sample, and plate-level efficiencies for telomere reactions assessed with and without the use of a UPS. 3B:
Average replicate, sample, and plate-level efficiencies for single copy gene reactions assessed with and without the use of a
UPS. Efficiencies derived from LinRegPCR. Error bars reflect standard error of the mean. SD = Standard Deviation. CV=Coeffi-
cient of Variation. ***p < 0.001; **p < 0.01; *p < 0.05.
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(α=0.05, power = 0.80.) For example, to detect the correlation of TL across tissues without a UPS (r =
0.62) requires a sample size of 18, while a sample of 7 is required to detect to detect with a UPS (r = 0.92).
This equates to being able to detect a significant effect with a 61% smaller sample size. Using the same
procedure for age and parent-offspring correlations yields estimates of 25% and 8% smaller samples, for
an average ability to detect an effect with a 31% smaller sample.

4. Conclusions

TL assessment via qPCR is subject to bias from a host of analytical and pre-analytical factors (reviewed in
Lin et al., 2019), leading some to challenge the utility of telomeres as a biomarker of aging (Boonekamp

Table 2. Comparing Features of S-Estimates by UPS Status

(!UPS) (+) UPS Test Statistic p-value

Standard Deviation Across Replicate Ct Values 0.13 (0.09) 0.09 (0.06) t321.314 = 4.571 p < 0.001

CV Across Replicate Ct Values 0.49 (0.33) 0.37 (0.26) t332.150 = 3.804 p < 0.001

Standard Deviation Across Replicate Natural Log
Transformed S-Estimates

0.07 (0.05) 0.05 (0.03) t324.946 = 4.267 p < 0.001

CV Across Replicate Natural Log Transformed S-Estimates 0.40 (0.27) 0.31 (0.21) t332.144 = 3.818 p < 0.001

Replicate Level Efficiency 1.93 (0.08) 1.96 (0.06) t976.353 =!7.431 p < 0.001

Standard Deviation Across Replicate Level Efficiencies 0.05 (0.03) 0.04 (0.02) t318.043 = 4.672 p < 0.001

Coefficient of Variation Across Replicate Level Efficiencies 2.57 (1.37) 1.94 (1.01) t318.327 = 4.955 p < 0.001

Sample Level Efficiency 1.92 (0.05) 1.96 (0.04) t328.426 =!6.365 p < 0.001

Plate Level Efficiency 1.92 (0.03) 1.95 (0.02) t15 =!2.841 p = 0.012

*Test statistics reported from independent samples t-test. Values reported are Mean (Standard Deviation). CV = coefficient of variation.

Table 3. Comparing Metrics of External Validity by UPS Status

Leukocyte-Buccal Correlation of Plate-Level T/S Ratios

r (p-value) 83.4% CI

(!) UPS 0.62 (<0.001) [0.47, 0.74]

(+) UPS 0.92 (<0.001) [0.88, 0.95]

*Correlations controlled for sex and age

Correlation Between Age and Plate-Level T/S Ratios

r (p-value) 83.4% CI

(!) UPS !0.13 (0.085) [!0.23, !0.02]

(+) UPS !0.15 (0.048) [!0.26, !0.05]

*Correlations controlled sex and tissue (leukocyte/buccal)

Parent-Offspring Correlation of Plate-Level T/S Ratios

r (p-value) 83.4% CI

(!) UPS 0.74 (<0.001) [0.65, 0.80]

(+) UPS 0.78 (<0.001) [0.70, 0.84]

* Correlations controlled for sex, parental age, offspring age, and tissue (leukocyte/buccal)
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et al., 2013). Nevertheless, TL measurement via qPCR remains widely used in epidemiological research.
Thus, elucidatingmeasurement practices which enhance reproducibility and precision is of great interest.

Our results demonstrate substantial improvements to qPCR assay precision and measures of external
validity through the utilization of an uninterruptible power supply. Further, findings suggest utilization
of a UPS increases power in a manner equivalent to a 31% increase in sample size, although the degree of
such improvement may differ with the baseline electric power quality and type of thermocycler
employed. We frame our findings in the context of literature on TL assessment given the aim of the
assays comprising our sample. However, the results are likely applicable to qPCR more broadly, and
demonstrate the importance of considering power supply when conducting biological assays that rely on
high performance electronics.
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