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Abstract

Background: Indices quantifying allostatic load (AL) and biological aging (BA) have independently received widespread use in epidemiological 
literature. However, little attention has been paid to their conceptual and quantitative overlap. By reviewing literature utilizing measures of AL 
and BA, and conducting comparative analysis, we highlight similarities and differences in biological markers employed and approach toward scale 
construction. Further, we outline opportunities where both types of indices might be improved by adopting methodological features of the other.
Methods: Using data from the National Survey of Midlife Development in the United States (N = 2055, age = 26–86), we constructed 3 AL 
indices: 1 common literature standard and 2 alternative formulations informed by previous work with measures of BA. The performance of AL 
indices was juxtaposed against 2 commonly employed BA indices: Klemera-Doubal Method Biological Age and Homeostatic Dysregulation.
Results: All indices correlated with chronological age. Participants with higher AL and older BA performed worse on tests of physical and 
subjective functioning. Further, participants with increased life-course risk exposure exhibited higher AL and BA. Notably, alternative AL 
formulations tended to exhibit effect sizes equivalent to or larger than those observed for BA measures, and displayed superior mortality 
prediction.
Conclusions: In addition to their conceptual similarity, AL and BA indices also exhibit significant analytical similarity. Further, BA measures 
are robust to construction using a panel of biomarkers not observed in previous iterations, including carotenoids indexing antioxidant capacity. 
In turn, AL indices could benefit by adopting the methodological rigor formalized within BA composites, such as applying biomarker down-
selection criteria.
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Biological aging (BA), in a broad sense, describes “the time-
dependent functional decline that affects most living organisms” (1) 
(p1194). The dependency of aging processes on time is subject to ro-
bust interindividual variation, with individuals of identical chrono-
logical age presenting a variety of endophenotypes. As a result, there 
is increased interest in identifying measures which quantify differ-
ences in the rate of aging across individuals and populations.

Various indices quantifying BA have been implemented at the 
clinical (2), physiological (3,4), and molecular levels (5,6). Composite 

indices integrating a blood-chemistry panel of systemic biomarkers 
that collectively assess the integrity of major organ systems have 
shown promise as biomarkers of aging. Measures of this sort are 
predictive of morbidity and mortality (7), show variation by young 
adulthood (8), and appear responsive to intervention (9). These sys-
temic biomarker indices are predicated on the rationale that the 
molecular changes underlying aging processes within individual 
cells ultimately manifest as organ-level physiological dysregulation, 
which in turn are linked to age-related disease and disability.
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Allostatic load (AL) is a related term employed within geron-
tological literature to describe the “wear and tear on the body and 
brain resulting from chronic overactivity or inactivity of physio-
logical systems that are normally involved in adaptation to envir-
onmental challenge” (10). Similar to blood-chemistry indices of 
systemic BA, AL measures integrate systemic biomarkers to form a 
measure of cumulative dysregulation resulting from life-course en-
vironmental risk exposures. AL indices show individual differences 
in longitudinal trajectories (11), are predictive of mortality above 
and beyond the functioning of individual organ systems (12), and 
are responsive to differences in exposures known to increase risk for 
morbidity and mortality (13).

Despite conceptual overlap between the 2 processes, explicit ap-
plication of AL as a BA metric are limited (14,15). The apparent sep-
aration of these fields may be in part due to differences in motivation 
surrounding the development of these measures. BA composites are 
goal-oriented, developed with the specific intent to serve as surrogate 
endpoints to test for intervention effects on processes of aging. By 
contrast, AL indices are process-oriented, developed to test theories 
about physiological dysregulation resulting from differences in ex-
posure to life-course risk factors.

These differences in motivation are reflected in the type of bio-
markers employed within BA and AL indices. We conducted a 
nonexhaustive review for studies employing biomarker indices of 
systemic BA (from 2013 to 2020), identifying 24 studies utilizing 
Klemera-Doubal Method (KDM) Biological Age, Homeostatic 
Dysregulation (HD), or Phenotypic Biological Age (PhenoAge). 
Study details are provided in Supplementary Table D1. Among these 
studies, a total of 88 unique biomarkers were employed, with a 
range of 6–40 biomarkers across studies (median  =  10.00). Most 
commonly employed were biomarkers indexing hepatic (albumin; 
75%), immune (C-reactive protein [CRP]; 71%), renal (creatinine; 
67%), and cardiovascular functioning (systolic blood pressure; 
63%). Lipoproteins (total cholesterol; 71%) and blood sugar in-
dicators (glucose and/or glycated hemoglobin [HbA1c]; 71%) also 
tended to be included. Notably, these biomarkers are (i) associated 
with the functioning of a major organ system or disease process, 
and (ii) measured via standardized methods as part of a blood panel 
during a physician’s visits, which align with the goal of BA indices as 
ready-to-implement surrogate endpoints.

It is important to highlight that biomarker selection methods 
among the different types of BA indices are not homogenous. 
Specifically, KDM Biological Age and PhenoAge methods rely on ex-
plicit rules for biomarker selection. For KDM Biological Age, only 
biomarkers correlated with chronological age at a magnitude of 
|r| = .1 or greater are included (4,16). For PhenoAge, biomarkers are 
selected based on associations with mortality (17). By contrast, bio-
marker selection for HD measures tends to be less straightforward, 
relying upon a combination of theory, availability, or in some cases, 
change in variance with chronological age (3). This lack of structure 
tends to increase the variety of biomarkers employed for HD meas-
ures relative to studies utilizing KDM Biological Age or PhenoAge. 
In fact, 7 of the 24 (29.2%) studies in our review that utilize only the 
HD measure account for 56 of the 88 (63.6%) unique biomarkers 
identified (Supplementary Table D1).

Similar to HD measures, biomarker selection for AL indices re-
lies on theory and/or availability in a given cohort. In a compara-
tive nonexhaustive review spanning 1997 to 2020, we identified 61 
studies implementing measures of AL (Supplementary Table D2). 
For this collection, there were a total of 63 unique biomarkers with 
a range of 6–24 per study (median = 10.00). The most commonly 

employed biomarkers were cardiovascular (systolic/diastolic blood 
pressure; 92%), blood sugar (HbA1c and/or glucose; 92%), body 
mass indicators (BMI/waist-hip ratio/waist circumference; 90%), 
lipoproteins (HDL cholesterol; 85%), and immune functioning 
(CRP; 66%). Although there was a significant quantitative overlap 
among the biomarkers employed, diagnostic biomarkers commonly 
utilized in BA composites such as creatinine and alkaline phosphatase 
are rarely observed in AL indices (11% and 5%, respectively).

AL theory is influenced by stress-related literature situating hu-
mans as sensory creatures constantly responding to external stimuli 
(18). In line with this, 41% of the studies in our review included 
proxies for the functioning of the hypothalamic-pituitary-adrenal 
(HPA) axis (Supplementary Table D2). AL theory is also concep-
tually relevant for BA processes. Psychosocial stress can accelerate 
the progression of several aging hallmarks including mitochon-
drial dysfunction, telomere shortening, and cellular senescence (19). 
Furthermore, CpG sites located within glucocorticoid response elem-
ents make up as much as 24% of the CpG sites included in epigenetic 
clock algorithms (20). Thus, an emphasis on stress-related domains 
may strengthen, rather than weaken, AL indices’ ability to approxi-
mate aging processes.

Theoretical differences affecting norms of biomarker inclu-
sion between indices approximating BA and AL are also reflected 
in the statistical operations implemented during scale construction. 
A common practice across BA indices is the use of a reference popu-
lation to define model parameters prior to their implementation in 
an analytical sample. There are distinct benefits and drawbacks to 
this approach. For example, using one or several large-scale external 
referents reduces cohort-specific biases that may limit the reliability 
and reproducibility of findings. At the same time, using historical co-
horts introduces biases related to generational effects and mortality 
selection (21–23). Moreover, an agnostic reliance upon correlations 
with chronological age to identify a biomarker panel (or CPGs for 
epigenetic clocks) may influence selection in a manner favoring those 
with little to no mechanistic links to aging processes (24).

Mathematical operations used to construct AL indices also vary 
(25), but often involve estimating physiological risk based upon 
the distribution of biomarker values within the analytical sample. 
Variation exists on whether risk is partitioned to distinct physio-
logical domains (ie, cardiovascular, immune, etc.) or assessed col-
lectively across all biomarkers, but a common interpretation is the 
operationalizing of AL as the accumulation of changes that become 
impactful only when they reach a critical threshold. When con-
structed in this manner, AL indices are susceptible to spurious associ-
ations driven by characteristics unique to that particular cohort. For 
example, the National Survey of Midlife Development in the United 
States (MIDUS) cohort, in which AL has been extensively studied, 
tends to be healthier and wealthier than U.S. population averages 
(26). As such, the critical threshold for risk, commonly defined as 
the highest or lowest quartile of the biomarker distribution, may end 
up falling at a point well within what would be considered clinically 
healthy for the general U.S. population.

To investigate the analytical overlap between indices approxi-
mating AL and BA, we utilized data from the MIDUS cohort. We 
analyzed 2 indices of systemic BA that could be quantified with 
MIDUS data, KDM Biological Age and HD, as well as 3 approaches 
toward the calculation of AL, including a common literature 
standard and 2 alternative approaches informed by our experiences 
with BA indices. Our analyses proceeded in 4 steps. First, we tested 
associations among chronological age and the different biomarker 
indices. Second, we tested associations between biomarker indices 
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and tests of functional capacities mediating age-related decline, 
hereafter referred to as healthspan-related characteristics, including 
physical, perceptual, and subjective functioning. Third, we tested the 
extent to which biomarker indices were associated with life-course 
risk factors for shorter healthspan including childhood adversity, 
low educational attainment, material resource deficits, and mental 
health problems. Fourth, we analyzed the extent to which biomarker 
indices were predictive of mortality.

Method

Sample
Data were from the MIDUS II and MIDUS Refresher Biomarker 
Projects of The MIDUS National Survey: a longitudinal survey of 
more than 7000 midlife adults in the United States. The MIDUS II 
Biomarker Project was a follow-up project involving a subsample 
(n = 1255) of the original cohort initiated in 2004, wherein partici-
pants traveled to Georgetown University, UCLA, or the University 
of Wisconsin for a 2-day visit protocol including blood draws, psy-
chometric assessments, and health examinations. Sample collection 
procedures were standardized across the 3 sites (27). The MIDUS 
Refresher Survey was implemented in 2011 with the intent to re-
plenish the original MIDUS cohort with a similar age stratification. 
The Refresher Biomarker Project follows the same design of the 
MIDUS II Biomarker Project. All MIDUS data sets and documen-
tation are available at the ICPSR website (http://www.icpsr.umuch.
edu/).

We conducted analyses to test hypotheses about measures of AL 
and BA using data from adults aged 26–86 years participating in 
MIDUS II or MIDUS Refresher Biomarker Projects and for whom all 
measures could be estimated (N = 2055, 45% male).

Allostatic Load Indices
We analyzed 3 different indices of AL. The first, ALSTANDARD, was 
computed in line with the most frequent implementation identified 
in our literature search, and utilized 24 biomarkers to quantify cu-
mulative risk across 7 physiological domains (28–36). The 7 physio-
logical domains represented were sympathetic nervous system, 
parasympathetic nervous system, HPA axis, inflammation, cardio-
vascular system, glucose metabolism, and lipid metabolism. Within 
each domain participants were assigned a score ranging from 0 to 1, 
calculated as the number of biomarkers at risk divided by the total 
number of biomarkers within that domain. Risk was defined inde-
pendently for men and women as the highest or lowest quartile for a 
given biomarker, depending on whether a higher or lower biomarker 
value conferred greater risk for morbidity and mortality. Scores 
across the 7 domains were summed to produce an AL score ranging 
from 0 to 7. Descriptive statistics for the biomarkers included in the 
calculation of ALSTANDARD are detailed in Table 1. Risk cutoffs by sex 
are detailed in Supplementary Table A2.

The second and third AL indices were alternative formula-
tions which sequentially integrated practices commonly employed 
within systemic composites of BA. Namely, imposing selection 
criteria prior to defining which biomarkers are employed in the 
algorithm, and secondly, the use of a reference population. Before 
applying these criteria, we extracted only those biomarkers which 
were measured using the same tissue/method in both MIDUS and 
NHANES (n  =  20). In this manner, we ensured the same panel 
of biomarkers could be used for a comparative AL and BA ana-
lysis. Next, we applied down-selection criteria to decide which 

biomarkers to utilize in the second AL score, ALMIDUS. Following 
previous work (4), Pearson correlations were used to assess the 
association among biomarkers and chronological age. An initial 
set of 10 biomarkers were selected based on their correlation with 
chronological age (|r| > .1). Subsequently, associations among these 
10 biomarkers were inspected to ensure independence from other 
items in the panel (|r| < .4). When 2 biomarkers were found to cor-
related at |r| > .4 we selected the biomarker with the larger sample 
size, or stronger association with chronological age if the sample 
size was equivalent. A final panel of 8 biomarkers was selected, 
which collectively assess the integrity of cardiovascular, renal, im-
mune, and antioxidant systems. ALMIDUS scores were calculated as 
the number of biomarkers that fell within high-risk quartiles div-
ided by the total number of biomarkers to produce ALMIDUS scores 
ranging from 0 to 1. For ALMIDUS, risk quartiles were defined ac-
cording to biomarker distributions within the MIDUS analytical 
sample. Descriptive statistics for the biomarkers included in the 
calculation of ALMIDUS are provided in Table 1.

The final AL score, ALNHANES, utilized the same panel of 8 bio-
markers as ALMIDUS, but integrated the use of a reference population. 
Specifically, risk cutoffs for each biomarker were defined according 
to their distribution in a reference population instead of the analyt-
ical sample. We formed this reference population from nonpregnant 
participants aged 26–84  years in NHANES III and continuous 
NHANES panels spanning 1999–2016 (N  =  56  615, 49% male; 
Supplementary Table A4). Risk cutoffs for biomarkers used in the 
calculation of ALMIDUS and ALNHANES are provided in Supplementary 
Table A5. Analyses to construct AL scores are described in greater 
detail in Supplementary Appendix A.

Systemic Biological Aging Indices
We analyzed 2 BA indices that could be quantified with MIDUS 
data: KDM Biological Age and HD.

KDM Biological Age was computed from an algorithm derived 
from a series of regressions of individual biomarkers onto chrono-
logical age in a reference population. Following previous work (37), 
we formed this reference populations from participants in NHANES 
III and continuous NHANES panels 1999–2016 aged 30–75 years 
who were nonpregnant at the time of biomarker data collection 
(N = 46 038, 49% male; Supplementary Table A7). An individual’s 
KDM Biological Age prediction corresponds to the chronological 
age at which their physiology would be approximately normal in the 
NHANES reference population. Final parameters forming the KDM 
Biological Age algorithm are reported in Supplementary Table A7.

Homeostatic Dysregulation was computed from an algorithm 
based on Mahalanobis distance (38) for a panel of biomarkers rela-
tive to a reference population. Following previous work (37), we 
formed this reference populations from participants in NHANES 
III and continuous NHANES panels 1999–2016 aged 20–30 years 
who were not obese, nonpregnant, and for whom all biomarkers fell 
within clinically normal ranges (N = 350, 57% male; Supplementary 
Tables A8 and A9). An individual’s HD score quantifies how dif-
ferent their physiology is from this young, healthy norm.

Importantly, we calculated KDM Biological Age and HD using 
the same panel of 8 biomarkers used to calculated ALMIDUS and 
ALNHANES, namely creatinine, CRP, HbA1c, lutein/zeaxanthin, lyco-
pene, retinol, systolic blood pressure, and urinary creatinine (Table 
1). Details on biomarker measurements for the reference population 
are available from the NHANES website (https://www.cdc.gov/nchs/
nhanes/).
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Healthspan-related Characteristics
We tested associations of BA and AL indices with functional assess-
ments of capacities thought to mediate age-related disability, referred 
to here as “healthspan-related characteristics.” The functional cap-
acities included upper body strength (grip strength using a handheld 
dynameter), gait speed (time to complete 50ft walk), respiratory rate 
(breaths per minute), and visual acuity (without correction), all as-
sessed at the same time as biomarker data collection. We also tested 
associations with a MIDUS composite variable constructed as a cu-
mulative count of chronic symptoms and conditions such as heart 
disease, high blood pressure, diabetes, thyroid disease, depression, 
and alcoholism. Associations with measures of self-reported physical 
and emotional health assessed during baseline visits were also tested. 
On average, 23.7  months had passed between baseline visits and 

biomarker collection. Healthspan-related characteristics, including 
variable names of all items used in their construction, are described 
in detail in Supplementary Appendix B. Advanced chronological age 
was associated with worse performance on most healthspan-related 
characteristics except self-rated physical health, which was not as-
sociated with chronological age, and self-rated emotional health, 
which tended to increase in quality with advancing chronological 
age (Supplementary Table B1).

Life-course Risk Factors for Shorter Healthspan
We tested associations of BA and AL indices with life-course risk 
factors known to predict shorter healthspan: early-life adver-
sity, low educational attainment, material resource deficits, and 
mental health problems. We assessed early-life adversity using 

Table 1. Descriptive Statistics for Biomarkers Used to Construct Systemic Biomarker Composites Within the Final Analysis Sample 
(n = 2055)

Biomarkers by Physiological Domain

Men Women

N M SD N M SD 

Chronological age 931 56.43 12.90 1124 54.78 12.24
Cardiovascular       
Resting systolic blood pressure (mmHg) 931 132.04 15.05 1124 127.78 18.74
Resting diastolic blood pressure (mmHg) 931 79.10 9.77 1124 74.16 10.10
Resting heart rate (bpm) 762 79.01 12.51 963 82.45 13.20
Metabolic—lipids       
Body mass index 931 29.80 5.83 1124 29.96 7.71
Waist-hip ratio 930 0.96 0.08 1123 0.84 0.08
Triglycerides (mg/dL) 931 137.45 78.46 1124 110.21 60.25
HDL cholesterol (mg/dL) 928 50.00 15.91 1124 62.58 18.22
LDL cholesterol (mg/dL) 928 100.97 33.68 1124 103.83 34.10
Metabolic—glucose metabolism       
HbA1c (%) 931 5.91 1.05 1124 5.93 0.97
Fasting glucose (mg/dL) 929 104.18 23.40 1121 98.65 19.08
Insulin resistance (HOMA-IR) 929 4.29 4.44 1121 3.60 3.69
Inflammation       
CRP (mg/L) 931 2.13 2.82 1124 3.49 4.75
IL6 (pg/mL) 931 2.77 2.40 1124 2.98 2.76
Fibrinogen (mg/dL) 931 331.25 74.47 1124 358.83 80.53
sE-Selectin (ng/mL) 931 43.86 20.94 1124 40.48 19.76
sICAM-1 (ng/mL) 931 272.46 96.50 1124 276.54 107.88
Sympathetic Nervous System       
Urine Epinephrine (µg/g creatinine) 910 24.57 55.71 1102 26.82 62.95
Urine Norepinephrine (µg/g creatinine) 926 132.15 207.18 1120 146.29 265.88
Hypothalamic Pituitary Adrenal Axis       
Urine Cortisol (µg/g creatinine) 927 17.53 12.83 1116 21.01 16.70
Blood DHEA-S (µg/dL) 945 138.60 87.17 1122 89.46 62.28
Parasympathetic Nervous System       
SDRR (msec) 813 36.99 17.44 1027 35.15 16.60
RMSSD 813 22.34 14.95 1027 24.19 16.64
Low-frequency spectral power 813 487.59 574.73 1027 376.66 457.82
High-frequency spectral power 813 263.71 383.03 1027 355.38 558.75
Renal       
Creatinine (mg/dL) 931 0.99 0.19 1124 0.77 0.14
Urinary Creatinine (mg/dL) 931 106.05 61.45 1124 73.44 48.72
Antioxidant       
Lutein+Zeaxanthin (mg/dL) 931 0.34 0.18 1124 0.37 0.24
Lycopene (µmol/L) 931 0.77 0.52 1124 0.71 0.52
Retinol (µmol/L) 931 2.16 0.78 1124 1.91 0.73

Notes: Biomarkers in bold represent the set of 8 biomarkers included in ALMIDUS, ALNHANES, KDM, and HD measures. The ALSTANDARD measure was constructed 
using all biomarkers except those 5 markers in the Renal and Antioxidant domains. CRP = C-reactive protein; DHEA-S = dehydroepiandrosterone sulfate; HDL 
=high-density lipoprotein; HbA1c = hemoglobin A1c; HOMA-IR = homeostatic model assessment of insulin resistance; IL6 = interleukin 6; LDL = low-density 
lipoprotein; M = mean; N = sample size; RMSSD = root mean square of differences between successive heartbeats; SD = standard deviation; SDRR = standard 
deviation of intervals between heartbeats; sICAM = soluble intercellular adhesion molecule-1.
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the Childhood Trauma Questionnaire (39). We measured educa-
tional attainment using a 5-level categorical variable describing 
the highest level of education completed by the participant. We 
assessed material resources using household-adjusted poverty to 

income ratio. We assessed mental health problems using the Center 
for Epidemiologic Studies Depression Scale (40) and the Perceived 
Stress Scale (41). Life-course risk factors and computations are de-
scribed in Supplementary Appendix B and Supplementary Table B2.

Figure 1. (A) Associations between chronological age biomarker indices approximating biological aging and allostatic load. Lower panel illustrates scatter plots 
for full sample (n = 2055). Density distributions for each variable are illustrated on the diagonal. Upper panel provides Pearson’s correlation coefficients for the 
full sample, as well as for males and females independently. (B) Associations between chronological age and biomarker indices approximating biological aging 
and allostatic load after adjustment for chronological age. Age adjustment was performed by extracting residuals from regression models of each index onto 
chronological age. Lower panel illustrates scatter plots for full sample (n = 2055). Density distributions for each variable are illustrated on the diagonal. Upper 
panel provides Pearson’s correlation coefficients for the full sample, as well as for males and females independently. AL = allostatic load; HD = homeostatic 
dysregulation; KDM = Klemera-Doubal Biological Age.
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Mortality Data
Longitudinal mortality data were drawn from the third wave of The 
MIDUS National Survey (ie, MIDUS III). Information on vital status 
of participants in MIDUS II was obtained from data available at the 
ICPSR website. This data set includes all known MIDUS decedents 
as of March 2018, but does not include data on MIDUS Refresher 
participants.

Statistical Analyses
Our analyses involved MIDUS participants with all covariate in-
formation and sufficient biomarker data to calculate all 5 systemic 
biomarker composites (N = 2055, 45% male; Supplementary Table 
C1). Women who were pregnant or breastfeeding at the time of bio-
marker collection were excluded from analyses.

We tested cross-sectional associations among biomarker com-
posites and chronological age using Pearson correlations. For 
cross-sectional analyses of healthspan-related characteristics and life-
course risk factors, we tested associations using linear regression (lm 
function in R statistical package) to compute standardized effect sizes 
(interpretable as Pearson’s r). For models testing associations between 
biomarker indices and healthspan-related characteristics, biomarker 
indices were specified as independent variables. For models testing 
associations between risk factors and biomarker indices, risk factors 
were specified as independent variables. To allow for comparability 
across biomarker indices and outcomes, we standardized each index, 
healthspan characteristic, and risk factor by sex within each sub-
sample to compute standardized effect sizes in all models.

Primary models include covariate adjustment for chrono-
logical age and sex. In addition to primary models, we also 
conducted analyses using a set of fully-adjusted models with 
additional covariate control for race/ethnicity and BMI. Fully-
adjusted models were added to address observed differences in 
the rate of aging among different racial/ethnic groups (42), as 
well as concerns that change in biomarker composites are driven 
by differences in body mass rather than aging (43,44). The de-
gree of attenuation was calculated as the proportional decrease 
of the standardized effect size in fully-adjusted models relative 
to base models. Associations with mortality were tested via Cox 
proportional hazard models using the coxph function from the 

“survival” package in R (45). Cox models included covariate ad-
justment for chronological age and sex.

Results

Associations Among Indices of Allostatic Load, 
Systemic Biological Aging, and Chronological Age
Chronologically older MIDUS participants had older BA and 
higher AL (Figure 1A, Supplementary Table C2A). MIDUS partici-
pants’ chronological ages were most strongly associated with their 
KDM Biological Ages (r  =  .88). Participants’ chronological ages 
were moderately associated with their HD scores (r = .31) and all 3 
indices of AL (ALSTANDARD r = .24, ALMIDUS r = .17, ALNHANES r = .20).

To investigate similarity across biomarker indices, we com-
puted correlations among these 5 indices. To focus on their ability 
to index BA, we computed associations controlling for variation 
due to chronological age using residuals of each measure regressed 
onto chronological age independently by sex. After adjusting for 
chronological age, correlations among indices were largely un-
changed relative to raw, unadjusted versions. Age-adjusted associ-
ations among indices are shown in Figure 1B and Supplementary 
Table C2B.

Associations With Healthspan-Related 
Characteristics
We tested associations between age-adjusted biomarker indices and 
healthspan-related characteristics across 3 domains: physical func-
tioning, perceptual functioning, and subjective functioning.

MIDUS participants with more advanced AL and higher BA per-
formed more poorly on tests of physical functioning. Participants’ 
KDM Biological Ages were associated with grip strength in the op-
posite direction than expected, replicating previous associations seen 
between KDM Biological Age and muscle strength in NHANES (46). 
MIDUS participants with more advanced BA and AL also tended to 
report increased chronic symptoms and conditions, as well as worse 
physical and emotional health. Participants’ visual acuity was not 
associated with any measures of BA or AL. Effect sizes for primary 

Figure 2. Associations between healthspan-related characteristics and 
biomarker indices hypothesized to index biological age and allostatic load. 
Plotted bars reflect standardized effect sizes for associations between 
biomarker indices and healthspan-related characteristics. Left to right 
order of bars within each characteristic corresponds to left to right order of 
biomarker indices listed at top of figure. Prior to analyses, all characteristics 
were recoded such that higher values indicate better performance. Thus, 
the expected direction for all associations is negative. Error bars reflect 
95% confidence interval of effect-size estimate. AL  =  allostatic load; 
KDM = Klemera-Doubal Biological Age.

Figure 3. Associations between life-course risk factors and biomarker indices 
hypothesized to index biological age and allostatic load. Plotted bars reflect 
standardized effect sizes for associations between biomarker indices and 
life-course risk factors. Left to right order of bars within each risk factor 
corresponds to left to right order of biomarker indices listed at top of figure. 
All factors were coded such that higher values indicate greater exposure. 
Thus, the expected direction for all associations is positive. Error bars 
reflect 95% confidence interval of effect-size estimate. AL = allostatic load; 
KDM = Klemera-Doubal Biological Age.
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models are shown in Figure 2 and reported in Supplementary Table 
C3.

Given the small percentage of participants reporting “Poor” 
physical or emotional health (3% and 1%, respectively), we con-
ducted sensitivity analyses to ensure associations between biomarker 
indices and subjective functioning were not biased by this small 
sample. We retested associations after integrating fair or worse phys-
ical and emotional health categories. Effect sizes were unchanged 
relative to original models (Supplementary Table C3).

We conducted analyses using fully-adjusted models to evaluate 
the robustness of findings to covariate adjustment for BMI and race/
ethnicity. Adjustment for BMI and race/ethnicity attenuated asso-
ciations between biomarker indices and most healthspan-related 
characteristics, with observed effect sizes decreasing by 15%–97% 
depending upon the composite and characteristic tested. Associations 
between ALSTANDARD were particularly attenuated, with an average ef-
fect size decrease of 50%, and was no longer associated with gait 
speed or respiratory rate at an α = 0.05. The smallest degree of at-
tenuation was observed for ALMIDUS, which decreased by 25% on 
average. With respect to specific healthspan characteristics, the lar-
gest degree of attenuation was observed for associations with gait 
speed and respiratory rate, which decreased by 50% and 52%, re-
spectively. The smallest degree of attenuation was observed for asso-
ciations with self-reported morbidity, which decreased by only 20% 
on average. By contrast, associations with grip strength increased by 
an average of 15% in fully-adjusted models. Effect sizes for fully-
adjusted models testing associations between biomarker indices and 
healthspan-related characteristics are reported in Supplementary 
Table C4.

To further explore the ALMIDUS measure constructed using a 
limited biomarker panel, we conducted a leave-one-out analysis for 
associations with healthspan-related characteristics, reconstructing 
ALMIDUS 5 different times, each time removing one of the novel bio-
markers included in the original index which was not included in 
the ALSTANDARD measure (ie, lutein+zeaxanthin, lycopene, retinol, 
creatinine, urinary creatinine). Overall, no single biomarker sig-
nificantly accounted for the utility of ALMIDUS as a proxy for func-
tional capacity. The most consistent trends were observed for the 
ALMIDUS index constructed without creatinine, for which effect sizes 
decreased by an average of 11%.

Associations With Life-course Risk Factors
We next tested whether participants with life-course risk fac-
tors for shorter healthspan exhibited more advanced BA and AL. 
Specifically, we investigated low educational attainment, material 
resource deficits, early-life adversity, perceived stress, and mental 
health problems.

MIDUS participants with lower educational attainment and 
fewer material resources tended to have higher AL and increased BA. 
Participants’ reporting increased early-life adversity and perceived stress 
also exhibited increased AL and BA. MIDUS participants’ anxiety and 
depressive symptoms were both associated with their AL scores, as well 
as with BA indices, although with smaller effect sizes. Effect sizes for 
associations with life-course risk factors in primary models are shown 
in Figure 3 and reported in Supplementary Table C5.

We conducted analyses using fully-adjusted models to evaluate 
the robustness of findings to covariate adjustment for BMI and race/
ethnicity. Covariate adjustment for BMI and race/ethnicity attenu-
ated associations of most life-course risk factors and biomarker in-
dices, with observed effect sizes decreasing by 17%–78% depending 
upon the exposure and composite tested. Across exposures, the 
greatest degree of attenuation was observed for early-life adversity, 
for which effect sizes decreased by 52% on average across the dif-
ferent biomarker indices and below an α = 0.05 for all metrics except 
ALSTANDARD. By contrast, the smallest degree of attenuation was ob-
served for associations with poverty, which decreased by only 23% 
on average. Across biomarker indices, covariate adjustment for BMI 
and race/ethnicity had the largest impact on associations with KDM 
Biological Age, for which associations with early-life adversity, per-
ceived stress, and depression were attenuated below an α  =  0.05 
level. Although ALMIDUS exhibited the smallest degree of attenuation 
at 25%, only ALSTANDARD remained significantly associated with all 
life-course risk factors following adjustment for BMI and race/eth-
nicity. Effect sizes for fully-adjusted models testing associations be-
tween life-course risk exposures and biomarker indices are reported 
in Supplementary Table C6.

To further explore the ALMIDUS measure constructed using a 
limited biomarker panel, we conducted a leave-one-out analysis for 
associations with life-course risk factors as described above. Overall, 
no single biomarker significantly accounted for the utility of ALMIDUS 
as an indicator of life-course risk exposure. The most consistent 
trends were observed for the ALMIDUS index constructed without 
lycopene or without creatinine, for which effect sizes decreased by 
an average of 7% and 3.5%, respectively.

Associations With Mortality
A total of 130 participants in the analytical sample died between 
MIDUS II biomarker collection and March 2018 (most recent death 
recorded), with an average duration of 10.80 years between these 
events. MIDUS participants with higher AL scores tended to exhibit 
increased risk for all-cause mortality across the follow-up period, 
and all 3 AL indices, as well as HD scores, were significantly associ-
ated with all-cause mortality. MIDUS participants’ KDM Biological 
Ages were not significantly associated with risk for all-cause mor-
tality. Results for associations between AL scores, BA indices, and 
all-cause mortality are given in Table 2.

Discussion

We studied 5 biomarker indices proposed to index BA and AL in 
a cohort of 2064 MIDUS participants of mixed chronological age. 

Table 2. Hazard Ratios From Cox Regression Models Investigating 
Differences in Mortality as a Function of Biological Age and 
Allostatic Load

Predictor Hazard Ratio* (95% CI) p Value

KDM 1.12 (0.95, 1.33) .18
HD 1.57 (1.29, 1.90) 5.56E−06
ALSTANDARD 1.45 (1.21, 1.74) 4.70E−05
ALMIDUS 1.64 (1.37, 1.96) 7.40E−08
ALNHANES 1.60 (1.34, 1.91) 2.20E−07

Notes: AL = allostatic load; CI =  confidence interval; HD = homeostatic 
dysregulation; KDM = Klemera-Doubal Biological Age.

*All composite indices were standardized prior to running models. Thus, 
hazard ratios reflect the increased odds of mortality per standard deviation 
increase in allostatic load or biological age after adjustment for chronological 
age and sex.
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Specifically, we quantified KDM Biological Age and HD, 2 blood-
chemistry indices hypothesized to index BA by quantifying decline in 
system integrity. We compared these 2 indices with 3 different imple-
mentations of AL, a process reflecting the cumulative wear and tear 
on biological systems from repeated exposures to biopsychosocial 
stressors. The first implementation, ALSTANDARD, was constructed per 
literature norms, while the other two, ALMIDUS and ALNHANES, are 
novel applications that integrate methodological practices seen in 
the construction of composites approximating BA.

All 5 indices were correlated with chronological age (Figure 1A). 
Participants’ exhibiting advanced AL and BA performed worse on 
tests of physical functioning, reported worse physical and emotional 
health, and exhibited greater numbers of chronic symptoms and 
conditions (Figure 2). In parallel, participants with life-course risk 
factors for shorter healthy lifespan exhibited advanced AL and BA 
as compared to peers of the same chronological age with decreased 
life-course risk exposure (Figure 3). Higher AL and HD scores were 
also associated with increased risk for mortality across a 10-year 
follow-up period.

Our findings suggest hitherto unobserved similarities and differ-
ences between biomarker indices approximating BA and those ap-
proximating AL. Associations between AL indices and measures of 
systemic BA remained relatively unchanged following adjustment for 
chronological age, implying a shared quantification dysregulation 
above and beyond those changes explicitly related to chronological 
age (Figure 1B). This observation is contrary to associations between 
epigenetic-based measures of BA and AL indices, which significantly 
diminished following adjustment for chronological age (47). Similar 
differences were observed between biomarker composites indexing 
systemic BA and cellular-level measures like epigenetic age and 
telomere length (37,46,48). Taken together, these findings suggest 
patient-level processes of “biological aging” and “allostatic load” 
may exhibit significant quantitative similarities, and may both be 
distinct from cellular-level processes of BA.

Literature in the social and behavioral sciences has emphasized 
AL as an outcome responsive to risk factors such as poverty, life 
stress, and negative health behaviors (49,50). By contrast, biomarker 
indices approximating BA are often judged with respect to their 
ability to predict physical and cognitive functioning and serve as 
proxies for healthspan (51). Our current findings support a role for 
AL in both domains, and give preliminary evidence for superior mor-
tality prediction: a pillar for the validity of BA metrics. Nonetheless, 
a lack of analytical consistency has limited the generalizability of 
AL-related findings (52). Our results support the strength of AL 
measures in these associations but were equivocal on whether they 
can be improved by adopting more rigorous approaches employed in 
the construction of BA composites. For example, although previous 
studies have found value in using an external referent to define model 
parameters, in our analyses using a reference population to define 
risk thresholds for ALNHANES provided no additional benefit beyond 
that observed by restricting the biomarker panel. Further, while ef-
fect sizes for ALMIDUS were similar to those observed for ALSTANDARD, 
both tended to be larger in magnitude than associations observed 
for ALNHANES. Importantly, that ALMIDUS exhibited similar utility to 
ALSTANDARD, and was more robust to covariate adjustment, despite 
using one third of the biomarkers, supports the use of biomarker 
down-selection prior to model building. Doing so may reduce the 
variability of biomarkers employed across studies, as was observed 
for measures of KDM Biological Age and PhenoAge in our literature 
review. Ultimately, we believe the best approach will be to identify 
an initial panel of theory-driven biomarkers to assay, followed by 

quantitative screening to ensure parsimony and predictive value be-
fore combining into a composite index. Screening biomarkers based 
on processes of change in longitudinal cohorts and/or associations 
with mortality may further enhance current approaches (53). The 
MIDUS cohort offers a unique opportunity to test this approach as 
waves of data collection continue.

Our results are also unclear on whether or not there is a “best” 
approach for quantifying aging. Differences in the analytical ap-
proach used to generate each measure are indicative of differences in 
how each method conceptualizes BA. KDM Biological Age measures 
are constructed using multivariate regression, and biological age is 
the average change in physiology occurring with increased chrono-
logical age. By contrast, HD measures are constructed using multidi-
mensional distances that conceptualize BA as the deviation from an 
ideal physiological state attained in young adulthood. Finally, AL is 
reflected as the accumulation of physiological changes that manifest 
only when they reach a critical threshold. Based on the current ana-
lyses, it seems apparent that a reliance upon chronological age during 
parameterization can weaken the ultimate product, as exemplified 
by diminished effect sizes for our KDM Biological Age measure and 
null association with mortality. It is important to note that BA may 
not occur at a linear rate. In support of this idea, nonlinear changes 
in the plasma proteome across the lifespan have been reported, in-
stead occurring at distinct phases in the fourth, seventh, and eighth 
decades of life (54). A common feature of HD and AL measures is 
the use of a static reference point, whether that point is an ideal state 
or a critical threshold. However, they are agnostic to the patterns 
of change between individual values and that referent. This may 
perhaps allow them to account for nonlinear changes in biomarker 
values more easily than the regression-based KDM measure.

We acknowledge limitations of this research. First, our analysis 
did not include cellular-level measures of BA, which are becoming 
increasingly robust. Genomic data necessary to calculate these items 
are not yet available in MIDUS. This is an important avenue for 
future research, as previous work has demonstrated the potential 
for BA measures implemented at different levels of analysis to cap-
ture distinct aspects of the aging process. For example, analyses from 
the Dunedin birth cohort and Framingham Offspring Study demon-
strated minimal overlap between epigenetic clocks and biomarker-
based indices of BA (37,48). Similar weak correlations (r = .26–0.38) 
were observed between epigenetic clocks and AL within The Irish 
Longitudinal Study on Aging cohort (47). Notably, the strongest 
correlations were observed between AL and the Levine epigenetic 
clock, which was trained to predict a biomarker-based BA score 
(PhenoAge) rather than chronological age (55). Thus, future studies 
investigating the relationship between cellular-level measures and 
measures of systemic BA would benefit from inclusion of AL-based 
measures, which remain largely neglected in this literature. Second, 
key biomarkers commonly present in BA composites were not avail-
able in MIDUS. For example, the lack of complete blood count data 
and alkaline phosphatase limited our ability to assess functioning 
of the immune and hepatic systems, respectively. Our panel did in-
clude creatinine, a theory-driven biomarker of renal integrity, which 
demonstrated a marginal but consistently positive impact on the 
utility of the ALMIDUS measure in leave-one-out analyses. Further, we 
supplemented our measures using carotenoids indexing antioxidant 
capacity, including lycopene, which had a marginal but consistently 
positive impact on the utility of the ALMIDUS measure as an indicator 
of life-course risk exposure. We also included the carotenoids ret-
inol and lutein, both of which have been shown to modulate stress 
reactivity in animal models (56,57). That effect sizes observed here 
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are similar to those in our previous work using a more traditional 
panel (46), combined with the influence of stress-related processes 
on aging biology (19), highlights the potential of carotenoids for use 
in future biomarker indices. Third, MIDUS participants tended to be 
more educated, wealthier, and are more likely to be White than the 
general U.S. population, thereby limiting the generalizability of find-
ings presented here (26).

Overall, our findings highlight similarities between indices approxi-
mating AL and systemic BA, with inter-item associations seemingly 
reflecting variability not related to chronological age (Figure 1). Our 
results also demonstrate the robustness of existing approaches toward 
the measurement of systemic BA, which predicted functioning, ex-
posure, and mortality despite being constructed with a nontraditional 
biomarker panel highlighted by indicators of antioxidant capacity and/
or the HPA axis. Moreover, comparing between the different AL im-
plementations demonstrates the benefit of implementing a rigorous 
down-selection process to determine which biomarkers are included in 
the panel, as well as urge caution when comparing biomarker distribu-
tions across cohorts. Finally, we highlight a potential shortcoming of 
parameterization approaches which rely on the assumption that BA is 
a linear process. Future gerontological work would benefit by consid-
ering these dimensions when approaching sampling design and statis-
tical analyses in relation to systemic biomarker indices.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.

Author Contributions
W.J.H., D.M.A., and I.S. conceived the original study. W.J.H. conceived analyt-
ical approach, conducted analyses, and drafted manuscript under the supervi-
sion of D.M.A. and I.S. All authors approved the final manuscript.

Funding
The work was supported by the National Institute on Aging (T32AG049679 
to W.J.H.); and the National Institute of Environmental Health Sciences 
(U01ES030949 to I.S.). Since 1995 the MIDUS study has been funded by John 
D. and Catherine T. MacArthur Foundation Research Network and National 
Institute on Aging (P01-AG020166 and U19-AG051426). Biomarker data 
collection was further supported by the NIH National Center for Advancing 
Translational Sciences (NCATS) Clinical and Translational Science Award 
(CTSA) program as follows: UL1TR001409 (Georgetown), UL1TR001881 
(UCLA), and UL1RR025011 (UW).

Conflict of Interest
None declared.

References
 1. López-Otín  C, Blasco  MA, Partridge  L, Serrano  M, Kroemer  G. 

The hallmarks of aging. Cell. 2013;153:1194–1217. doi:10.1016/j.
cell.2013.05.039

 2. Kim  S, Myers  L, Wyckoff  J, Cherry  KE, Jazwinski  SM. The frailty 
index outperforms DNA methylation age and its derivatives as an in-
dicator of biological age. Geroscience. 2017;39:83–92. doi:10.1007/
s11357-017-9960-3

 3. Cohen AA, Milot E, Yong J, et al. A novel statistical approach shows evi-
dence for multi-system physiological dysregulation during aging. Mech 
Ageing Dev. 2013;134:110–117. doi:10.1016/j.mad.2013.01.004

 4. Levine  ME. Modeling the rate of senescence: can estimated biological 
age predict mortality more accurately than chronological age? J Gerontol 
A Biol Sci Med Sci. 2013;68:667–674. doi:10.1093/gerona/gls233

 5. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic 
clock theory of ageing. Nat Rev Genet. 2018;19:371–384. doi:10.1038/
s41576-018-0004-3

 6. von  Zglinicki  T, Martin-Ruiz  CM. Telomeres as biomarkers for 
ageing and age-related diseases. Curr Mol Med. 2005;5:197–203. 
doi:10.2174/1566524053586545

 7. Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMedicine. 
2017;21:29–36. doi:10.1016/j.ebiom.2017.03.046

 8. Belsky DW, Caspi A, Houts R, et  al. Quantification of biological aging 
in young adults. Proc Natl Acad Sci USA. 2015;112:E4104–E4110. 
doi:10.1073/pnas.1506264112

 9. Belsky DW, Huffman KM, Pieper CF, Shalev  I, Kraus WE, Anderson R. 
Change in the rate of biological aging in response to caloric restriction: 
Calerie Biobank analysis. J Gerontol A Biol Sci Med Sci. 2018;73:4–10. 
doi:10.1093/gerona/glx096

 10. McEwen BS. Stress, adaptation, and disease: allostasis and allostatic load. 
Ann N Y Acad Sci. 1998;840:33–44. doi:10.1111/j.1749-6632.1998.
tb09546.x

 11. Karlamangla AS, Singer BH, Seeman TE. Reduction in allostatic load in 
older adults is associated with lower all-cause mortality risk: MacArthur 
studies of successful aging. Psychosom Med. 2006;68:500–507. 
doi:10.1097/01.psy.0000221270.93985.82

 12. Castagné R, Garès V, Karimi M, et al. Allostatic load and subsequent all-
cause mortality: which biological markers drive the relationship? Findings 
from a UK birth cohort. Eur J Epidemiol. 2018;33:441–458. doi:10.1007/
s10654-018-0364-1

 13. Danese  A, McEwen  BS. Adverse childhood experiences, allostasis, 
allostatic load, and age-related disease. Physiol Behav. 2012;106:29–39. 
doi:10.1016/j.physbeh.2011.08.019

 14. Levine ME, Crimmins EM. A comparison of methods for assessing mor-
tality risk. Am J Hum Biol. 2014;26:768–776. doi:10.1002/ajhb.22595

 15. Shirazi TN, Hastings WJ, Rosinger AY, Ryan CP. Parity predicts biological 
age acceleration in post-menopausal, but not pre-menopausal, women. Sci 
Rep. 2020;10:20522. doi:10.1038/s41598-020-77082-2

 16. Klemera P, Doubal S. A new approach to the concept and computation 
of biological age. Mech Ageing Dev. 2006;127:240–248. doi:10.1016/j.
mad.2005.10.004

 17. Liu  Z, Kuo  PL, Horvath  S, Crimmins  E, Ferrucci  L, Levine  M. A 
new aging measure captures morbidity and mortality risk across di-
verse subpopulations from NHANES IV: a cohort study. PLoS Med. 
2018;15:e1002718. doi:10.1371/journal.pmed.1002718

 18. McEwen BS. Protective and damaging effects of stress mediators. N Engl J 
Med. 1998;338:171–179. doi:10.1056/nejm199801153380307

 19. Shalev I, Hastings WJ. Psychological stress and cellular aging. In: Braddick 
O, ed. Oxford Research Encyclopedia of Psychology. Oxford University 
Press: 2017. doi:10.1093/acrefore/9780190236557.013.131

 20. Zannas  AS, Arloth  J, Carrillo-Roa  T, et  al. Lifetime stress acceler-
ates epigenetic aging in an urban, African American cohort: relevance 
of glucocorticoid signaling. Genome Biol. 2015;16:266. doi:10.1186/
s13059-015-0828-5

 21. Yashin  AI, Manton  KG, Vaupel  JW. Mortality and aging in a het-
erogeneous population: a stochastic process model with observed 
and unobserved variables. Theor Popul Biol. 1985;27:154–175. 
doi:10.1016/0040-5809(85)90008-5

 22. Finch CE, Crimmins EM. Inflammatory exposure and historical changes 
in human life-spans. Science. 2004;305:1736–1739. doi:10.1126/
science.1092556

 23. Moffitt TE, Belsky DW, Danese A, Poulton R, Caspi A. The longitudinal 
study of aging in human young adults: knowledge gaps and research 
agenda. J Gerontol A Biol Sci Med Sci. 2017;72:210–215. doi:10.1093/
gerona/glw191

 24. Nelson PG, Promislow DEL, Masel J. Biomarkers for aging identified in 
cross-sectional studies tend to be non-causative. J Gerontol A Biol Sci Med 
Sci. 2020;75:466–472. doi:10.1093/gerona/glz174

Journals of Gerontology: MEDICAL SCIENCES, 2021, Vol. XX, No. XX 9

Copyedited by: NI

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glab187/6310485 by Pennsylvania State U
niversity user on 08 Septem

ber 2021

https://doi.org/10.1016/j.cell.2013.05.039
https://doi.org/10.1016/j.cell.2013.05.039
https://doi.org/10.1007/s11357-017-9960-3
https://doi.org/10.1007/s11357-017-9960-3
https://doi.org/10.1016/j.mad.2013.01.004
https://doi.org/10.1093/gerona/gls233
https://doi.org/10.1038/s41576-018-0004-3
https://doi.org/10.1038/s41576-018-0004-3
https://doi.org/10.2174/1566524053586545
https://doi.org/10.1016/j.ebiom.2017.03.046
https://doi.org/10.1073/pnas.1506264112
https://doi.org/10.1093/gerona/glx096
https://doi.org/10.1111/j.1749-6632.1998.tb09546.x
https://doi.org/10.1111/j.1749-6632.1998.tb09546.x
https://doi.org/10.1097/01.psy.0000221270.93985.82
https://doi.org/10.1007/s10654-018-0364-1
https://doi.org/10.1007/s10654-018-0364-1
https://doi.org/10.1016/j.physbeh.2011.08.019
https://doi.org/10.1002/ajhb.22595
https://doi.org/10.1038/s41598-020-77082-2
https://doi.org/10.1016/j.mad.2005.10.004
https://doi.org/10.1016/j.mad.2005.10.004
https://doi.org/10.1371/journal.pmed.1002718
https://doi.org/10.1056/nejm199801153380307
https://doi.org/10.1093/acrefore/9780190236557.013.131
https://doi.org/10.1186/s13059-015-0828-5
https://doi.org/10.1186/s13059-015-0828-5
https://doi.org/10.1016/0040-5809(85)90008-5
https://doi.org/10.1126/science.1092556
https://doi.org/10.1126/science.1092556
https://doi.org/10.1093/gerona/glw191
https://doi.org/10.1093/gerona/glw191
https://doi.org/10.1093/gerona/glz174


 25. Howard  JT, Sparks PJ. Does allostatic load calculation method matter? 
Evaluation of different methods and individual biomarkers functioning by 
race/ethnicity and educational level. Am J Hum Biol. 2016;28:627–635. 
doi:10.1002/ajhb.22843

 26. Radler  BT, Ryff  CD. Who participates? Accounting for longitudinal re-
tention in the MIDUS National Study of Health and Well-Being. J Aging 
Health. 2010;22:307–331. doi:10.1177/0898264309358617

 27. Dienberg  Love  G, Seeman  TE, Weinstein  M, Ryff  CD. Bioindicators 
in the MIDUS national study: protocol, measures, sample, and 
comparative context. J Aging Health. 2010;22:1059–1080. 
doi:10.1177/0898264310374355

 28. Brooks KP, Gruenewald T, Karlamangla A, Hu P, Koretz B, Seeman TE. 
Social relationships and allostatic load in the MIDUS study. Health 
Psychol. 2014;33:1373–1381. doi:10.1037/a0034528

 29. Friedman EM, Karlamangla AS, Gruenewald TL, Koretz B, Seeman TE. 
Early life adversity and adult biological risk profiles. Psychosom Med. 
2015;77:176–185. doi:10.1097/PSY.0000000000000147

 30. Wiley  JF, Gruenewald  TL, Karlamangla  AS, Seeman  TE. Modeling 
multisystem physiological dysregulation. Psychosom Med. 2016;78:290–
301. doi:10.1097/PSY.0000000000000288

 31. Rodriguez  JM, Karlamangla  AS, Gruenewald  TL, Miller-Martinez  D, 
Merkin SS, Seeman TE. Social stratification and allostatic load: shapes of 
health differences in the MIDUS study in the United States. J Biosoc Sci. 
2019;51:627–644. doi:10.1017/S0021932018000378

 32. Karlamangla AS, Miller-Martinez D, Lachman ME, Tun PA, Koretz BK, 
Seeman TE. Biological correlates of adult cognition: midlife in the United 
States (MIDUS). Neurobiol Aging. 2014;35:387–394. doi:10.1016/j.
neurobiolaging.2013.07.028

 33. Mori T, Karlamangla AS, Merkin SS, et al. Multisystem dysregulation and 
bone strength: findings from the study of midlife in the United States. J 
Clin Endocrinol Metab. 2014;99:1843–1851. doi:10.1210/jc.2013-3908

 34. Seeman  M, Stein  Merkin  S, Karlamangla  A, Koretz  B, Seeman  T. 
Social status and biological dysregulation: the “status syndrome” 
and allostatic load. Soc Sci Med. 2014;118:143–151. doi:10.1016/j.
socscimed.2014.08.002

 35. Gruenewald TL, Karlamangla AS, Hu P, et al. History of socioeconomic 
disadvantage and allostatic load in later life. Soc Sci Med. 2012;74:75–83. 
doi:10.1016/j.socscimed.2011.09.037

 36. Hamdi  NR, South  SC, Krueger  RF. Does education lower allostatic 
load? A  co-twin control study. Brain Behav Immun. 2016;56:221–229. 
doi:10.1016/j.bbi.2016.01.014

 37. Belsky  DW, Moffitt  TE, Cohen  AA, et  al. Eleven telomere, epigenetic 
clock, and biomarker-composite quantifications of biological aging: do 
they measure the same thing? Am J Epidemiol. 2018;187:1220–1230. 
doi:10.1093/aje/kwx346

 38. Mahalanobis  PC. Mahalanobis distance. Proc Natl Inst Sci India. 
1936;49:234–256.

 39. Bernstein DP, Stein JA, Newcomb MD, et al. Development and validation 
of a brief screening version of the Childhood Trauma Questionnaire. Child 
Abuse Negl. 2003;27:169–190. doi:10.1016/s0145-2134(02)00541-0

 40. Radloff  LS. The CES-D scale: a self-report depression scale for re-
search in the general population. Appl Psychol Meas. 1977;1:385–401. 
doi:10.1177/014662167700100306

 41. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. 
J Health Soc Behav. 1983;24:385–396.  doi:10.2307/2136404.

 42. Liu Z, Chen BH, Assimes TL, Ferrucci L, Horvath S, Levine ME. The role 
of epigenetic aging in education and racial/ethnic mortality disparities 
among older U.S. Women. Psychoneuroendocrinology. 2019;104:18–24. 
doi:10.1016/j.psyneuen.2019.01.028

 43. Newman AB. Is the onset of obesity the same as aging? Proc Natl Acad Sci 
USA. 2015;112:E7163. doi:10.1073/pnas.1515367112

 44. Belsky DW. Reply to Newman: quantification of biological aging in young 
adults is not the same thing as the onset of obesity. Proc Natl Acad Sci 
USA. 2015;112:E7164–E7165. doi:10.1073/pnas.1518878112

 45. Therneau  T. A package for survival analysis in R. 2020. https://cran.r-
project.org/package=survival

 46. Hastings  WJ, Shalev  I, Belsky  DW. Comparability of biological aging 
measures in the National Health and Nutrition Examination Study, 1999-
2002. Psychoneuroendocrinology. 2019;106:171–178. doi:10.1016/j.
psyneuen.2019.03.012

 47. McCrory C, Fiorito G, McLoughlin S, et al. Epigenetic clocks and allostatic 
load reveal potential sex-specific drivers of biological aging. J Gerontol 
A Biol Sci Med Sci. 2020;75:495–503. doi:10.1093/gerona/glz241

 48. Murabito  JM, Zhao Q, Larson MG, et  al. Measures of biologic age in 
a community sample predict mortality and age-related disease: the 
Framingham offspring study. J Gerontol A Biol Sci Med Sci. 2018;73:757–
762. doi:10.1093/gerona/glx144

 49. Suvarna  B, Suvarna  A, Phillips  R, Juster  RP, McDermott  B, 
Sarnyai  Z. Health risk behaviours and allostatic load: a systematic 
review. Neurosci Biobehav Rev. 2020;108:694–711. doi:10.1016/j.
neubiorev.2019.12.020

 50. Beckie TM. A systematic review of allostatic load, health, and health dispar-
ities. Biol Res Nurs. 2012;14:311–346. doi:10.1177/1099800412455688

 51. Justice J, Miller JD, Newman JC, et al. Frameworks for proof-of-concept clin-
ical trials of interventions that target fundamental aging processes. J Gerontol 
A Biol Sci Med Sci. 2016;71:1415–1423. doi:10.1093/gerona/glw126

 52. Johnson  SC, Cavallaro  FL, Leon  DA. A systematic review of allostatic 
load in relation to socioeconomic position: poor fidelity and major in-
consistencies in biomarkers employed. Soc Sci Med. 2017;192:66–73. 
doi:10.1016/j.socscimed.2017.09.025

 53. Elliott ML, Caspi A, Houts RM, et al. Disparities in the pace of biological 
aging among midlife adults of the same chronological age have impli-
cations for future frailty risk and policy. Nat Aging. 2021;1:295–308. 
doi:10.1038/s43587-021-00044-4

 54. Guerrera IC. Undulating changes in human plasma proteome across life-
span. Nat Med. 2020;36:841–844. doi:10.1051/medsci/2020150

 55. Levine  ME, Lu  AT, Quach  A, et  al. An epigenetic biomarker of aging 
for lifespan and healthspan. Aging (Albany NY). 2018;10:573–591. 
doi:10.18632/aging.101414

 56. Marissal-Arvy N, Hamiani R, Richard E, Moisan MP, Pallet V. Vitamin 
A  regulates hypothalamic-pituitary-adrenal axis status in LOU/C rats. J 
Endocrinol. 2013;219:21–27. doi:10.1530/JOE-13-0062

 57. Zeni  ALB, Camargo  A, Dalmagro  AP. Lutein prevents corticosterone-
induced depressive-like behavior in mice with the involvement of anti-
oxidant and neuroprotective activities. Pharmacol Biochem Behav. 
2019;179:63–72. doi:10.1016/j.pbb.2019.02.004

10 Journals of Gerontology: MEDICAL SCIENCES, 2021, Vol. XX, No. XX

Copyedited by: NI

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glab187/6310485 by Pennsylvania State U
niversity user on 08 Septem

ber 2021

https://doi.org/10.1002/ajhb.22843
https://doi.org/10.1177/0898264309358617
https://doi.org/10.1177/0898264310374355
https://doi.org/10.1037/a0034528
https://doi.org/10.1097/PSY.0000000000000147
https://doi.org/10.1097/PSY.0000000000000288
https://doi.org/10.1017/S0021932018000378
https://doi.org/10.1016/j.neurobiolaging.2013.07.028
https://doi.org/10.1016/j.neurobiolaging.2013.07.028
https://doi.org/10.1210/jc.2013-3908
https://doi.org/10.1016/j.socscimed.2014.08.002
https://doi.org/10.1016/j.socscimed.2014.08.002
https://doi.org/10.1016/j.socscimed.2011.09.037
https://doi.org/10.1016/j.bbi.2016.01.014
https://doi.org/10.1093/aje/kwx346
https://doi.org/10.1016/s0145-2134(02)00541-0
https://doi.org/10.1177/014662167700100306
https://doi.org/10.2307/2136404
https://doi.org/10.1016/j.psyneuen.2019.01.028
https://doi.org/10.1073/pnas.1515367112
https://doi.org/10.1073/pnas.1518878112
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survival
https://doi.org/10.1016/j.psyneuen.2019.03.012
https://doi.org/10.1016/j.psyneuen.2019.03.012
https://doi.org/10.1093/gerona/glz241
https://doi.org/10.1093/gerona/glx144
https://doi.org/10.1016/j.neubiorev.2019.12.020
https://doi.org/10.1016/j.neubiorev.2019.12.020
https://doi.org/10.1177/1099800412455688
https://doi.org/10.1093/gerona/glw126
https://doi.org/10.1016/j.socscimed.2017.09.025
https://doi.org/10.1038/s43587-021-00044-4
https://doi.org/10.1051/medsci/2020150
https://doi.org/10.18632/aging.101414
https://doi.org/10.1530/JOE-13-0062
https://doi.org/10.1016/j.pbb.2019.02.004

