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INTRODUCTION

Advanced chronological age is one of the most salient 
factors for increased risk of multiple diseases, therefore 
research on age-related health and disease historically 
focused on adults (Kennedy et  al.,  2014). Yet, recogni-
tion of the considerable heterogeneity in disease onset 
and progression necessitated a more accurate measure 
of risk than an individual's chronological age (Baker & 
Sprott, 1988). Advances in this arena highlighted biolog-
ical age, rather than chronological age, as a more opti-
mal predictor of age-related disease risk. In this context, 
biological age is conceptualized as the progressive de-
cline in function of the body's cells, tissues, and organ 
networks, whereas chronological age is the measure of 
time since birth. Biological age can be measured at vari-
ous levels, most commonly at the level of systemic phys-
iological functioning (e.g., frailty indices, homeostatic 

dysregulation) and the cellular level (e.g., telomere length 
[TL], epigenetic age clocks, and epigenetic pace of aging; 
Jylhävä et  al.,  2017). Long-lived individuals (e.g., cen-
tenarians, super-centenarians) and their children often 
exhibit younger biological than chronological age (i.e., 
slowed biological aging); in contrast, individuals with an 
older biological age than chronological age (i.e., accel-
erated biological aging) are often diagnosed with age-
related diseases at an atypically earlier chronological  
age (Wang et al., 2018).

Exposure to early adversity (e.g., maternal psychoso-
cial stress, poverty, unpredictability, maltreatment, and 
toxic environmental factors) increases susceptibility to 
harmful health outcomes later in life, including prema-
ture mortality. This may occur in part due to biological 
aging trajectories set early in life. Critical windows of de-
velopmental plasticity occur prenatally and across child-
hood, wherein exposures to environmental stressors 
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during key phases of development have greater impact on 
the future health of an individual than exposures during 
adulthood (Wright, 2017). Research in the field of stress 
and health has produced evidence that biological aging 
trajectories may be one such factor that is constrained 
by early life conditions (George et al.,  2021), with little 
change in the rank order of biological age across adult-
hood (Benetos et al., 2019).

In this article, we offer a theoretical overview of bi-
ological aging as an adaptive response to early adverse 
environments and review evidence that exposure to 
adversity in utero, childhood, and adolescence shapes 
biological aging trajectories. We also present rationale 
and considerations for integrating biological aging con-
structs into child development research as tools to quan-
tify the impacts of early environments and the utility of 
interventions.

ACCELERATED BIOLOGICA L 
AGING AS A N A DAPTIVE 
RESPONSE TO A DVERSE 
EARLY EN VIRON M ENTS

The power of early environments to shape lifelong 
health trajectories (i.e., developmental programming) 
gained widespread research attention after the discov-
ery of the influence of mothers' prenatal nutritional state 
on their children's later risk of cardiovascular disease 
(Barker, 2007). Barker's hypothesis, called the develop-
mental origins of health and disease (DOHaD), spurred 
research on the importance of early development for 
later health outcomes and initially focused on metaboli-
cally oriented processes and outcomes (e.g., heart dis-
ease, type II diabetes). More recently, DOHaD has been 
applied to explain the contribution of early life expo-
sures to more diverse outcomes, such as biological aging 
(Vineis et al., 2016).

Evolutionary perspectives endorsing a model of 
early life sensitivity propose that during this early pe-
riod of malleability, an individual's brain and body 
are modified to maximize survival and reproduction 
in their predicted future environment (Ellis & Del 
Giudice, 2019). Individuals exposed to chaotic, threat-
ening early environments experience modifications to 
their growth and development in such a way that they 
become adults maximally capable of survival and re-
production in chaotic, threatening environments. In 
children, modifications in response to adverse early 
environments often include accelerated pubertal de-
velopment, earlier sexual functioning, heightened 
neuroendocrine stress responsivity, increased innate 
immune activity, and accelerated biological aging 
(Belsky,  2019). It seems counterintuitive to consider 
accelerated aging as an adaptive strategy—evolu-
tionary theory does not support a specific biological 
program designed to promote aging as an adaptive 

trait (Kowald & Kirkwood,  2016). Rather, acceler-
ated aging can be seen as adaptive in the sense that 
achieving milestones of growth and sexual maturity 
on an accelerated timeline in an adverse environment 
may increase the likelihood of reproduction before a 
predicted untimely death (Ellis & Del Giudice, 2019). 
Ultimately, as developmental programs responsible for 
accelerating biological aging in response to adversity 
play out across life, they may increase the risk of early 
onset age-related diseases (i.e., the programmatic the-
ory of aging; see Gems, 2022, for a review). In this way, 
development and aging may be seen as deeply intercon-
nected processes.

DEVELOPM ENT A N D BIOLOGICA L 
AGING: TWO SIDES OF TH E SA M E 
COIN?

Despite the frequency with which the term develop-
ment is used across scientific disciplines (often with-
out discussion of its conceptual boundaries), we lack 
a consensus definition as it applies to the human lifes-
pan. Spatial boundaries (i.e., where do we draw the 
line around the entity that is developing?) to the defi-
nition of development have been discussed elsewhere 
(Maienschein, 2011; Pradeu et al.,  2011); in our work, 
we emphasize considering the temporal boundaries of 
development: Does development start and stop at a cer-
tain age or stage (Gladyshev, 2021; Pradeu et al., 2011), 
or does it continue throughout life (Gilbert,  2011)? 
Similarly, disagreements about the temporal bounda-
ries of the aging process abound, precluding a consen-
sus definition of the term aging (Golubev, 2021). Here, 
we argue that one consequence of a lack of consensus 
definitions for development and aging is the f lour-
ishing of discipline-specific terminology and a lack 
of cross-discipline anchor concepts (Minelli,  2020). 
The perception that these terms represent completely 
distinct processes (i.e., development referring to early 
growth and maturation, and aging referring to grad-
ual deterioration of function toward later life) stands 
in the way of broad application of interdisciplinary 
frameworks to understand the influence of early life 
exposures on lifelong health and well-being.

Our perspective in this debate aligns closely with the 
developmental aging theory, wherein development and 
aging are viewed not as separate, distinct processes, but 
as interconnected stages of a singular continuum through 
an individual's life (Dilman,  1971; Feltes et  al.,  2014; 
Gems,  2022). The developmental aging theory posits 
that genetic programs, experiences, and influences early 
in life can set the trajectory, quality, and rate of aging 
throughout life. This perspective underscores the idea 
that developmental processes, which begin in utero and 
continue through infancy, childhood, and adolescence, 
determine the foundation upon which the process of 
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aging unfolds. In this context, the developmental aging 
theory encourages a more holistic view, challenging the 
conventional notion of distinct processes of development 
and aging.

At the cellular level, evidence exists for aging as 
a repercussion of early developmental programs 
(Walker,  2022). The timing and pace of developmen-
tal processes, as well as the stability and resilience of 
the physiological systems developed early in life (e.g., 
inflammatory immune responses, glucose metabolism, 
and epigenetic regulation), play key roles in constrain-
ing an individual's lifelong aging trajectory (Feltes 
et  al.,  2014; Lui et  al.,  2010). Biological aging occurs 
throughout life but is generally most rapid in the early 
stages, particularly during embryonic development 
and childhood (Cowell et al., 2021; Snir et al., 2019; Ye 
et al., 2023). These periods are characterized by a high 
rate of growth and development, which is captured by 
biological aging measures as an increased rate of aging 
and an older biological age.

Traditionally, aging in children has been measured 
according to developmental milestones and physical 
growth parameters, such as pubertal timing. Work in 
this arena has provided support for links among ad-
verse early environments, early puberty, and accel-
erated aging (Belsky & Shalev,  2016); however, such 
physiological measures cannot distinguish more nu-
anced changes to aging trajectories, especially those 
occurring prior to the onset of puberty. Incorporating 
cellular measures of biological aging within develop-
mental research can provide more detailed assessments 
of aging patterns beginning in infancy and reveal con-
sequences of these aging patterns (e.g., health and dis-
ease risk). At the cellular level, biological age is often 
measured using DNA collected from blood, buccal tis-
sue, or saliva, and quantified as the length of telomeres 
or as epigenetic age. Telomeres are protective caps on 
the ends of chromosomes that shorten with each cell 
division, eventually leading to cellular senescence (i.e., 
cessation of cell division) and cell death. TL appears to 
be set early in life through a combination of genetics, 
in utero factors, and early exposures, with very little 
change in rank order of TL between individuals across 
the decades after childhood (Benetos et  al.,  2019). 
Theory and empirical evidence indicate that children's 
telomeres are plastic during development, receptive 
to the influence of early life conditions, and particu-
larly vulnerable to environmental insults (Entringer 
et  al.,  2012; Shalev,  2012). TL shortening occurs nat-
urally throughout life (Ye et al., 2023), but TL erodes 
most rapidly in the first years of life as a result of in-
tense somatic growth (Zeichner et al., 1999) and rapid 
expansion of progenitor cells in the hematopoietic hier-
archy (Sidorov et al., 2009; Werner et al., 2015), reflect-
ing a sensitive period of development wherein adverse 
environmental exposures may be especially detrimen-
tal. Studies have shown that early life stress can lead 

to shorter telomeres in children (Coimbra et al., 2017), 
predisposing them to earlier onset health problems.

While TL has garnered much attention as a potential 
biomarker for aging, it is not without limitations (Sanders 
& Newman, 2013). For instance, a single measure of TL 
provides a snapshot of an individual's cellular age at a 
single point in time, without necessarily indicating the 
rate of aging or the cumulative impact of environmental 
stressors suffered. Also, TL features considerable inter-
individual variability, with some individuals naturally 
having shorter telomeres without any apparent health 
implications (Monaghan & Haussmann, 2006). Finally, 
certain methodological factors, such as methods of DNA 
extraction and quantification, tissue types, or the use 
of diverse assays to measure TL (e.g., qPCR, Southern 
blot), can influence measured TL, complicating its inter-
pretation across studies as a straightforward marker of 
biological age (Nettle et al., 2021; Wolf & Shalev, 2023; 
Ye et al., 2023).

Given these complexities, relying solely on TL to draw 
conclusions about the effects of early life stress on aging 
might be simplistic or even misleading. Researchers in 
this field are increasingly advocating for a multidimen-
sional approach, incorporating other indices of aging like 
epigenetic age clocks and measures of homeostatic dys-
regulation (Vaiserman & Krasnienkov, 2021). Epigenetic 
age clocks assess age-related changes in DNA methyla-
tion patterns, providing insights into cellular age and the 
potential impact of environmental exposures. Exposure 
to stress prenatally and across childhood can lead to epi-
genetic modifications that affect cellular and molecular 
processes involved in aging (e.g., DNA repair, inflam-
mation, and cellular senescence; Horvath & Raj, 2018), 
possibly via their impact on brain circuitry involved in 
emotion regulation, construction and function of stress 
response systems, and the responsiveness of the immune 
system to challenge (Chen et al., 2021; Jiang et al., 2019; 
Skyberg et al., 2023).

To capture an individual's epigenetic age, researchers 
are using epigenetic age clocks, which estimate biologi-
cal age based on the accumulation of age-associated epi-
genetic changes. Since the creation of the first of these 
clocks, several generations have been introduced (for a 
review, see Simpson & Chandra, 2021), including some 
built to predict the physiological decline and increased 
risk of mortality inherent to older chronological ages. 
In studies of racially and ethnically diverse children, the 
clocks have yielded preliminary evidence that children 
exposed to disadvantages, such as low socioeconomic 
status, may experience faster rates of biological aging 
than children without such disadvantage (Raffington 
& Belsky, 2022). Perinatal- and pediatric-specific clocks 
are also beginning to emerge (Bohlin et al., 2016; Fang 
et al., 2023; McEwen et al., 2020), though evidence sug-
gests adult-trained epigenetic age clocks have utility with 
pediatric samples (Bozack et al., 2023; Etzel et al., 2022). 
As with the early setting of TL, evidence suggests that 
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the rate of epigenetic aging (i.e., the “ticking” of the epi-
genetic age clock) across life may be set by early life con-
ditions (Vaiserman, 2018).

Mechanistically linking biological aging metrics, 
such as TL and epigenetic age, to development and aging 
is an open issue for the field. While TL has been linked 
with processes of development and aging via cellular se-
nescence and regulation of the genome (for a review, see 
Etzel & Shalev, 2021; López-Otín et al., 2013), mechanis-
tic links between specific methylation sites included in 
many epigenetic age clocks and development and aging 
are for the most part unknown.

Setting of TL and epigenetic age are mechanisms 
hypothesized to transmit early environmental stress 
into later disease risk via setting of aging trajectories 
(e.g., starting rank order of biological age and the rate 
at which biological aging will occur across life; see 
Figure  1). Measuring these factors in childhood offers 
a unique opportunity to provide critical information 
about the ways early experiences may set parameters for 
deteriorating health despite the fact that clinical signs 
of disease may not be evident until adulthood (Coimbra 
et al., 2017). Although gerontological research is begin-
ning to acknowledge the need to measure aging early in 
life, prior to onset of disease, much of this work is still 
relegated to adulthood. Such work is critical and should 
begin already in childhood. Including biological aging 
measures in child development research, particularly in 
longitudinal studies, can provide important insights into 

mechanisms linking early life stress to accelerated aging 
and moderators of this association, as well as highlight 
effective interventions and preventive measures for fu-
ture age-related diseases.

EN VIRON M ENTA L STRESS 
SH APES BIOLOGICA L AGING 
TRAJECTORIES IN UTERO, 
CH ILDHOOD, A N D ADOLESCENCE

Exposure to stress in utero

Prenatally, features of the external environment are trans-
mitted to the fetus through the maternal–fetal interface. 
Stressors, such as maternal health behaviors, adverse ex-
posures, and socioeconomic factors, can be passed to the 
fetus via substances crossing the placenta (e.g., increased 
cortisol) or through changes in maternal physiology that 
affect the fetal environment (e.g., constricted blood flow, 
lower blood oxygen). Such stress exposures have been 
linked to accelerated biological aging in newborns of 
Black and White mothers, measured as shortened TL 
(Entringer et  al.,  2013). Maternal prenatal anxiety, de-
pression, and exposure to intimate partner violence have 
also been associated with shortened TL in newborns 
(see Ridout et al., 2018, for a review), suggesting a pro-
gramming effect of diverse intrauterine stress exposures 
on newborns' biological aging systems. Reinforcing the 
idea that the intrauterine environment plays a key role in 
biological aging trajectories, in a longitudinal prospec-
tive study measuring TL in a cohort of primarily White 
adults, perinatal stressors predicted shorter midlife TL 
despite controlling for many potential lifespan factors 
(e.g., lifetime stress, socioeconomic factors, and adult 
health behaviors; Shalev et al., 2014). Similarly, in a study 
of older White adults exposed in utero to the socioeco-
nomic strain of the Great Depression, lower family wages 
were associated with accelerated epigenetic ages in later 
life (Schmitz & Duque,  2022). Longitudinal work with 
more diverse cohorts examining TL changes postnatally 
and throughout childhood is needed to clarify what role 
such associations play across development.

Exposure to stress in early childhood and 
adolescence

Exposure to environmental stress during childhood and 
through adolescence has also been shown to affect bio-
logical aging. Across childhood, exposure to maternal 
depression/anxiety and stress, low family socioeconomic 
status, and parental conflict have all been linked to ac-
celerated aging in children (see Ridout et al., 2018, for a 
review). Longitudinal examinations of TL in children are 
sparse, particularly for the earliest years; however, in one 
study on the amount of time Romanian children spent in 

F I G U R E  1   Biological aging trajectories. (a) Normative rate 
of biological aging across life, and (b) normative biological aging 
trajectory across life. Both the rate and the trajectory of biological 
aging are hypothesized to be altered due to early stress exposure and 
postexposure interventions.
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institutional care, children with greater exposure to insti-
tutional care had significantly shorter TL at both base-
line (1–2 years old) and follow-up (4–5 years old) than did 
those with less exposure (Drury et al., 2012). Similarly, 
in another study, 5- to 10-year-old White children ex-
posed to violence had faster rates of telomere shortening 
than did peers who were not exposed to violence (Shalev 
et al., 2013).

Though limited, work has also examined accelerated 
epigenetic aging due to stress exposures in childhood. 
Exposure to threat, violence, and other types of ad-
versity during childhood have all been associated with 
accelerated epigenetic aging (Colich et al., 2020; Palma-
Gudiel et al., 2020). For instance, greater socioeconomic 
disadvantage seems to confer a faster pace of epigenetic 
aging among Latinx, White, and mixed-ethnicity 8- to 
18-year-olds (Raffington et al., 2021).

LOOK ING AH EA D

Research on the impact of adverse early environments on 
biological aging in children will benefit immensely from 
the use of prospective longitudinal designs and the applica-
tion of frameworks, theories, and knowledge from the field 
of child development. Although research suggests that the 
impact of accelerated aging trajectories set in childhood 
can profoundly affect future health and disease risk, ex-
pected effect sizes during childhood are often small, ne-
cessitating careful consideration of several aspects of study 
design, including selection of theories (e.g., differential sus-
ceptibility, cumulative stress hypothesis, adaptive calibra-
tion model; see Ellis & Del Giudice, 2019, for a review of 
pertinent theories) and potential moderators.

Potential moderators of the relation between early life 
stressors and biological aging are diverse and may com-
pound across early development. In work on accelerated 
biological aging early in life, researchers have identified 
several key factors that may increase risk of or confer 
protection against accelerated aging (e.g., see Table  1). 
But we lack a complete understanding of the impact of 
each moderator, as well as the mechanisms and intersec-
tionality of multiple moderators. This research, which is 
in its infancy, is ripe with new and exciting opportunities 
for exploration.

CONCLUSION

Building understanding of how aging trajectories are 
set early in life and when they are most malleable is a 
topic of interest to researchers spanning developmen-
tal and aging specialties. To facilitate a robust under-
standing of the mechanisms and consequences of early 
exposure to stress on lifelong health, existing and new 
measures of biological aging should be included in de-
velopmental research. The prenatal period through 

childhood reflects a time of heightened vulnerability 
to environmental inputs. This critical window coin-
cides with the period when biological aging appears 
to occur most rapidly and when parameters restricting 
future aging trajectories are likely set. Understanding 
biological aging across the earliest stages of life can 
provide insights into the impact of social determinants 
of health, such as poverty and discrimination, on aging 
and disease processes. Measuring biological aging in 
children is feasible (see Fang et  al.,  2023; Horvath & 
Raj, 2018; Ryan, 2021; Wolf et al., 2023, for recommen-
dations on incorporating biological aging measures 
into research) and may allow researchers to quantify 
the impact of early intervention programs aimed at re-
ducing suboptimal health outcomes, particularly for 
vulnerable groups, such as those with early exposure to 
adversity and systematically disenfranchised or mar-
ginalized populations. Overall, the study of biological 
aging early in life has important implications for re-
search and clinical practice, and offers valuable oppor-
tunities to improve health and promote healthy aging 
for individuals and populations across the lifespan.
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TA B L E  1   Factors that may moderate the impact of early 
adversity on accelerated aging.

Time frame Moderators to consider

Prenatal •	 Maternal exposure to trauma (Epel, 2020; 
Nwanaji-Enwerem et al., 2021)

•	 Type and timing of exposure (Carroll 
et al., 2020)

•	 Fetal sex-dependent effects (Bosquet Enlow 
et al., 2018)

•	 Maternal racial/ethnic identity and experiences 
of discrimination (Drury et al., 2015)

Childhood •	 Early parenting (Nelson et al., 2018)
•	 Type and timing of exposure (Dunn et al., 2019; 

Marini et al., 2020)
•	 Duration and intensity of exposure (Berens 

et al., 2017)
•	 Number of exposures (Felitti et al., 1998; Mayer 

et al., 2019; Wallander et al., 2021)
•	 Developmental stage during exposure (Marini 

et al., 2020)
•	 Dimension of exposure (e.g., threat vs. 

deprivation; Colich et al., 2020; McLaughlin 
et al., 2021)

Adolescence •	 Parenting (Brody et al., 2015)
•	 Peer bullying (Zarate-Garza et al., 2017)
•	 Experiences of discrimination (Argabright 

et al., 2022)

Note: These are moderators that have been researched at specific 
developmental stages, though future consideration of the impact of 
moderators should span all developmental time frames.
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