Overview

Boolean modeling: a logic-based
dynamic approach

for understanding signaling
and regulatory networks
and for making useful predictions
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The biomolecules inside or near cells form a complex interacting system. Cellular
phenotypes and behaviors arise from the totality of interactions among the
components of this system. A fruitful way of modeling interacting biomolecular
systems is by network-based dynamic models that characterize each component
by a state variable, and describe the change in the state variables due to the
interactions in the system. Dynamic models can capture the stable state patterns
of this interacting system and can connect them to different cell fates or behaviors.
A Boolean or logic model characterizes each biomolecule by a binary state variable
that relates the abundance of that molecule to a threshold abundance necessary
for downstream processes. The regulation of this state variable is described in a
parameter free manner, making Boolean modeling a practical choice for systems
whose kinetic parameters have not been determined. Boolean models integrate
the body of knowledge regarding the components and interactions of biomolecular
systems, and capture the system’s dynamic repertoire, for example the existence
of multiple cell fates. These models were used for a variety of systems and
led to important insights and predictions. Boolean models serve as an efficient
exploratory model, a guide for follow-up experiments, and as a foundation for more
quantitative models. © 2014 Wiley Periodicals, Inc.
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INTRODUCTION

key aim of Systems Biology is to elucidate the
emergent properties and behaviors of biological
systems. For example, Systems Biology aims to explain
how cellular behaviors such as movement or prolifer-
ation result from the interactions among sub-cellular
components such as proteins and small molecules.
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High-throughput and targeted experiments provide
a rich source of interactions.! Experiments should
be complemented by computational and modeling
approaches to obtain an understanding from the data?
and to generate testable hypotheses. For example, rep-
resentation as a network of nodes connected pair-
wise by edges offers a coherent representation of a
system of interacting biomolecules.!*™® Going fur-
ther, network-based dynamic models describe how the
abundances of the biomolecules in the network vary in
time due to the interactions they participate in.
Boolean dynamic models were introduced as a
prototypical model of gene regulatory networks.”$
After assembling the components of a system and their
regulatory interactions, a Boolean model describes
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each node with a binary valued state variable. The 0
(OFF) state refers to a concentration or activity that is
insufficient to initiate downstream processes and the
1 (ON) state represents a sufficient (above-threshold)
concentration or activity. Boolean models describe the
qualitative temporal behavior of the system. They can
be used to elucidate how perturbations may alter nor-
mal behavior and thus lead to testable predictions
which are especially valuable in poorly understood
large-scale systems.” Boolean models have been suc-
cessfully applied to gene regulatory networks, =12 sig-
nal transduction networks,!>'* and networks at the
physiological’®=17 or even population level.'® They
generated fruitful insights and predictions for uni-
cellular organisms,'®?! plants,?>~2* animals,'5->’ and
humans, especially human signaling networks associ-
ated to diseases.2¢™2? In this article, we describe the
key steps of Boolean modeling of biological regulatory
networks. For each step, we discuss the challenges,
decisions and revisions that may need to be made,
and illustrate them with examples from the recent
literature.

DYNAMIC MODELING OF
BIOMOLECULAR NETWORKS

When representing a system of interacting compo-
nents (e.g., biomolecules) as a network, the com-
ponents of the system become nodes (vertices), and
the interactions, and relationships among the nodes
become edges (links). Edges in the network are usu-
ally directed, indicating the orientation of mass trans-
fer or information propagation, and can also be
distinguished by a positive or negative sign to repre-
sent activation or inhibition. This network represen-
tation is the basis for structural analysis and dynamic
modeling of the biological system. Structural analysis
of the network involves the use of graph-theoretical
measures, such as centrality measures and shortest
paths.? Dynamic modeling approaches can be continu-
ous or discrete according to the characterization of the
molecular abundances by continuous or discrete vari-
ables. Continuous dynamic modeling’3%3! requires
the knowledge of mechanistic details for each interac-
tion and its parameterization with, e.g., rate constants.
Since for most systems the values of many of these
parameters are unknown and difficult to estimate,
continuous modeling is only practical for systems with
up to a few dozens of components. Discrete dynamic
modeling such as Boolean network models,3>33 mul-
tivalued logical models,>*35 and Petri nets,>%3” does
not use kinetic parameters and is able to provide a
qualitative dynamic description of the system. These
approaches are practical for systems with hundreds of
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components and have been increasingly used in mod-
eling biological networks.!428-38.39

We illustrate the transition from continuous to
Boolean modeling*® for the case of a messenger RNA
(mRNA), X, that has a single transcriptional activa-
tor, Y. A frequently used continuous model*! assumes
that the rate of mRNA transcription depends on the
concentration of the transcription factor as a non-
linear Hill function, and that mRNA degradation is
uncatalyzed. Consequently, the rate of change in the

mRNA concentration follows 94X = 71" _ y [X1,

dt ~ 7 [YI"+H"
where the square brackets denote concentration, T is
the maximal transcription rate and y is the mRNA
degradation rate. H is the transcription factor concen-
tration at which the rate of mRNA synthesis is half
of the maximal rate, and # is the Hill coefficient, giv-
ing the slope of the Hill function around the [Y]=H,
[X]=T/2 point. For simplicity of illustration we will
assume in the following that T=y =1. The blue sym-
bols in Figure 1 illustrate the time-course of [X] for a
Hill function with H=0.5 and n=35. If the Hill coef-
ficient is high (which can happen due to cooperativity
among transcription factors, for example), the syn-
thesis term can be approximated by a Boolean step
function, B([Y])=0 if [Y]<H, B([Y])=1 if [Y]>H
(see the green symbols in Figure 1). This intermedi-
ate step between continuous and Boolean modeling is
in fact a modeling approach in its own right, called
a piecewise linear or hybrid model.*? In a piecewise
linear model each node has two variables: a continu-
ous variable akin to a normalized concentration, and
a discrete variable akin to an activity. Thus our model

1.2+

Concentration / Activity
of X (arbitrary units)

p.0 01 02 03 04 05 06 07 0.8 09 1.0
Time

FIGURE 1 lllustration of the transition between a continuous and
a Boolean description of a process through which node Y positively
regulates node X. It is assumed that the concentration of the node Y
increases linearly in time, [Y] = t. The diagram indicates the time-course
of the concentration [X] or activity X of node X as a function of time at
intervals of 0.05. Blue diamonds correspond to the case when the
regulation is described by a Hill function, i.e., % = (t)ﬂ% 5~ X1,
with n=5. Red triangles correspond to regulation described by a step
function, i.e., % = B(t) — [X], where B(t)=1if t > 0.5 and is zero
otherwise. Green squares correspond to a Boolean function X(t) = B(t).
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becomes X = Y [X], where Y =B([Y]) is the discrete
variable describing the activity of the transcription fac-
tor. When Y=0, [X] will decay to zero (or stay at
zero) and when Y =1, [X] will increase asymptotically
toward one (see the red symbols in Figure 1). The next
degree of approximation is to describe the mRNA with
a Boolean value as well. This Boolean value, X, fol-
lows the value of Y with a time delay. Denoting the X
value at a future time by X*, the Boolean relationship
between the two nodes’ states is X* =Y.

Which type of model is most suitable depends
on the quantitative detail of the available experimen-
tal data: continuous models are best when sufficient
mechanistic and kinetic information is available, dis-
crete models are most practical for poorly character-
ized systems with no kinetic information, and hybrid
models can be used when partial mechanistic and
kinetic information is available. The focus of this
overview is Boolean modeling, which as we will see
serves as a very effective first, exploratory model of
biological systems.

Each node i of a Boolean network model stands
for a sub-cellular component such as a gene, protein,
ion channel, metabolite, or signaling molecule. In
addition, biological outcomes such as apoptosis or
stomatal closure can also be represented as nodes of
the network. Each node is characterized by a binary
state (representing expression level, concentration, or
activity) S;. S;=1 (ON) means that component 7 is
expressed, has an above-threshold concentration, or
is active, and S;=0 (OFF) denotes that it is not
expressed, has a below-threshold concentration or is
inactive. It is not necessary to know the thresholds
invoked in the definition of states as long as it
can be assumed that a concentration level exists
above which the component in question can effectively
regulate its downstream targets. In Boolean models,
the future state of node i, S;", is given by a logic
statement using the current states of its regulators.
This statement, called a Boolean update function (or
Boolean rule), represents the conditional dependency
among the input (regulator) nodes in regulating the
downstream target node. This function is usually
expressed via the logic operators AND, OR, and
NOT. For example, B, =(A OR B) AND NOT Cis a
Boolean function. An additional possibility is to use a
threshold function, comparing a weighted sum of the
inputs to a node-specific activation threshold.'®20 A
Boolean update function can also be represented by
a truth table. The truth table of a Boolean function
with k regulators has k+ 1 columns (one for each of
the regulators, the last one for the target) and 2* rows
(one for each combination of state values of the k
regulators). Figure 2 sketches a three-node network
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FIGURE 2| A simple Boolean network model. (a) The directed
network associated with the Boolean model. The edges with arrows
represent positive effects. Note that the network does not uniquely
determine the Boolean updating function for node B. (b) The Boolean
updating functions in the model. Note that the network can also
support an alternative updating function, By = S, AND Sc. (c) The truth
tables of the Boolean updating functions given in (b).

and the Boolean functions that express the regulation
among the nodes.

By successively re-evaluating each node’s state by
applying the corresponding Boolean update function,
the system’s collective state, i.e., (S;(¢), S,(¢), ...,
S,,(2)), changes over time and ultimately reaches a fixed
point (steady state) or a set of recurring states. This
terminal state or set of states is called an attractor.
The attractors of biomolecular interaction networks
represent cellular phenotypes and behaviors.20:43:44
The parameter free nature and qualitative features of
Boolean modeling make it suitable for analyzing the
repertoire of behaviors of a large-scale system, such
as its possible multistability (the existence of multiple
stable steady states),* the initial conditions that lead
to one attractor versus the other, the activity changes
of components following a perturbation,*® and the
stability of cellular responses to a signal.

THE MAIN STEPS OF CONSTRUCTING
A BOOLEAN DYNAMIC MODEL

OF A BIOMOLECULAR

INTERACTION NETWORK

As illustrated in Figure 3, the model construction
starts with a compilation of a list of components
(nodes). Then, or at the same time, the interac-
tions and regulatory relationships among these nodes
need to be synthesized from the experimental litera-
ture. These interactions and relationships will become
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FIGURE 3| lllustration of the main steps of constructing a Boolean
dynamic model of a biomolecular interaction network. The directed
edges among steps indicate the order in which they may be tackled. The
dashed edges mark complementary analysis that is currently not
routinely undertaken but we expect will be increasingly used.

the edges of the reconstructed interaction network.
Graph-theoretical analysis of this network is a use-
ful follow-up, because it can identify key nodes or
interaction patterns. The model construction contin-
ues with determining the Boolean update functions for
each node based on the edges incident on the node and
also using information from the literature. A key step
is to compress the biological knowledge regarding the
concentration or activity of each node into two states,
since the model will be using binary states. The collec-
tion of the resting or pre-stimulus states of the nodes
will be used as an initial condition in the model. The
information on the steady state or long-term dynam-
ics of the system will be used for model validation.
The model construction also includes a choice for the
representation of time, which is an implicit variable in
Boolean models. This choice has a subtle influence on
certain outcomes of the model.

Having chosen the update functions, initial con-
ditions and the representation of time, the model can
be run and it will indicate how the system’s state
changes in time. This information can be summa-
rized as a set of attractors, and the initial conditions
that converge to each attractor (called the basin of
the attractor). The model-indicated attractors need to
be compared with the biological information on the
steady states and long-term behaviors of the system.

356 © 2014 Wiley Periodicals, Inc.

wires.wiley.com/sysbio

If there are qualitative differences that cast doubt on
the model, the edges or update functions of the model
need to be re-checked and suitably revised. Here it
is worth stressing that the steady states or long-term
behaviors of the system cannot be used as inputs to
the model, only for model checking. The inputs to the
model are embodied in the update functions of each
node, which relate it to its closest upstream regulators.
The same way as for the modeled system, the attrac-
tors of the model are emergent properties. Qualitative
agreement between the model’s results and biological
knowledge gives confidence to the model and allows
its use to attain a higher degree of understanding and
to make new predictions. For example, an often used
follow-up is a comprehensive analysis of the effects of
node perturbations.

Also sketched in Figure 3, using dashed lines,
is a methodology to integrate information from the
network and from the Boolean update rules into a sec-
ond network, whose analysis can indicate the model’s
attractors directly, without dynamic modeling. We will
come back to this topic in the next section. In the fol-
lowing we present in detail the individual steps of the
dynamic modeling process.

Compile Components

As currently it is unfeasible to comprehensively model
the dynamics of genome-scale regulatory networks,
most models focus on a single behavior or outcome,
e.g., segmentation in Drosophila melanogaster,*1*’
or differentiation of T cells.**° The model aims to
include all the genes and gene products involved in
the relevant outcome or behavior. The modeler usually
starts from a core set known from the literature, and
expands it by including additional information. For
example, gene expression data can be used to identify
which genes are differentially expressed over condi-
tions relevant to the outcome of interest, thus indi-
cating that these genes may be associated with the
outcome. =32 Putative nodes of the regulatory net-
work can be also identified from causal experiments,
where manipulation (e.g., knockout) of an already
known component of the network leads to variations
in the expression of a gene or activity of a protein,
implying that the gene or protein should be added to
the network.%3

Construct the Interaction Network

This step involves the translation of experimental
information into edges, followed by assembly and
refinement of these edges. The most useful information
is physical or biochemical evidence indicating direct
interaction between two components, and evidence
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of the causal effect of the genetic mutation or phar-
macological inhibition of a component on another
component.’* The causal relationships can be rep-
resented as directed edges from one component to
another, and can be characterized by one of two signs:
activating (positive) or inhibitory (negative). Indirect
relationships among the nodes of a regulatory network
can be also inferred from analysis of gene expression,
proteomic or metabolomic data, using probabilistic or
deterministic methods.>3¢!

The integration of the indirect causal evidence
is often challenging, because each such relationship
may involve other, known or unknown nodes. In some
cases, evidence from multiple experiments leads to
multinode causal relationships which then need to be
broken down to putative pairwise relationships.>* Part
of this process can be formalized and is implemented
in the software package NET-SYNTHESIS,®? which
generates the sparsest network consistent with the
given causal evidence. The best use of this software
is in iteration with additional literature search until
the most appropriate network representation of the
available experimental observations is found.?®

Analyse the Interaction Network

Structural analysis of the assembled network by means
of graph-theoretical measures provides information
on the importance of individual nodes/edges, char-
acterizes network neighborhoods and sheds light on
the global organization the network. The most often
used measures include centrality measures (such as
node degree or betweenness centrality) and connec-
tivity measures (such as distance). Software packages
for network visualization and analysis include yEd
Graph Editor,®® Cytoscape,®*® CellNetAnalyzer,°¢”
NetworkX,®® and Pajek.®’

Centrality measures describe the role of indi-
vidual nodes in the network. For example, the node
degree quantifies the number of edges connected to
each node. In directed networks, the in-degree of a
node is defined as the number of edges coming into the
node and the out-degree is the number of edges going
out of the node. In particular, the nodes with only
outgoing edges (nodes with in-degree =0) are called
sources. These nodes act as initial points of the flow
of mass or information in the network. The nodes
with only incoming edges (out-degree =0) are sinks
of the network; they act as terminal points of flow.
It is also useful to identify the nodes whose degree
is highest among the nodes, termed hubs. These hub
nodes, although rare, play an important role in the net-
work. For example, their loss can break a network into
isolated clusters.> Temporal expression patterns may
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be used to further classify hubs into permanent (also
called party) hubs which interact with all of their part-
ners at the same time, and transient (also called date)
hubs which are influential in one condition but less
so in others.”%”! Permanent protein hubs have multi-
ple binding sites, while transient hubs tend to have a
single binding site.”?

Connectivity measures are based on the concept
of path, which is a sequence of adjacent edges in the
network. An undirected network is connected if there
is at least one path between every pair of nodes. A
directed network is strongly connected if every pair
of nodes (let’s call them A and B) has two directed
paths of opposite directions (one from A to B and one
from B to A). For example, the network in Figure 2(a)
is strongly connected. If a network is not (strongly)
connected, one can search for (strongly) connected
components (also called subgraphs) in the network.
The absence of strongly connected components (SCCs)
indicates an acyclic structure (i.e., the network does
not contain feedback loops), while having a large
SCC implies that the network has a central core. It
was reported that the transcriptional regulatory net-
works have only small SCCs (e.g., three-node feed-
back loops),”7* whereas a large SCC was observed in
metabolic” and signaling”® networks. A strongly con-
nected component may have an in-component (nodes
that can reach the SCC) and out-component (nodes
that can be reached from the SCC). Nodes in each
of these subsets tend to have a common task. For
example, in signaling networks, the nodes of the
in-component tend to be involved in ligand-receptor
binding and the nodes of the out-component are usu-
ally responsible for the transcription of target genes or
for phenotypic changes.”®

Network motifs, recurring patterns of intercon-
nection with well-defined topologies,”” are also infor-
mative. Frequently observed network motifs include
feed-forward and feedback loops. For example, the
network in Figure 2(a) contains both a three-node
feed-forward loop (formed by the edges C - A, A — B,
C — B) and a three-node feedback loop (formed by the
edges A— B, B>C, C— A). Feed-forward loops are
more abundant in the transcriptional regulatory and
signaling networks of different organisms than ran-
domized networks that keep each node’s degree.”””8
Feed-forward loops support several functions such as
filtering of noisy input signals, pulse generation, and
response acceleration.”” Feedback loops support mul-
tistability or oscillations.33:80

Determine the Boolean Functions
The next important step is to determine the Boolean
functions of each node. This function will depend on

© 2014 Wiley Periodicals, Inc. 357



the node’s regulators indicated in the network. In addi-
tion, the function is informed by an interpretation of
experimental observations in the literature regarding
the node and its regulators, for example the expres-
sion of the regulated node when one of its regulators
is knocked out. If a node has only one regulator, then
a single variable appears in its Boolean rule. This vari-
able is combined with a NOT operator if the regula-
tor is an inhibitor. For example, consider a protein P
whose activation (its ability to regulate downstream
processes) requires its phosphorylation. We can repre-
sent the state of protein P as S, =1 (ON) if it is pre-
dominantly in the phosphorylated form, and as S, =0
(OFF) if it is predominantly in the unphosphorylated
form. If P is solely regulated by a kinase K that phos-
phorylates it, the Boolean update function for the state
of P is Bp =Sk, where Sy is the state of the kinase.
If instead of a kinase the protein P solely interacts
with and is dephosphorylated by a phosphatase R,
the update function of P can be written as B, =NOT
Sg, indicating that in the absence of the phosphatase
protein P is active, while in its presence it is inactive.
An example of a node having a single regulator in
Figure 2(a) is node A, which is activated by node C,
resulting in the Boolean rule B, =S.

The activation of many components requires two
or more regulators. For example, the transcription
process of a gene G may be activated by a transcrip-
tional complex consisting of two proteins, P1 and P2.
This can be represented by the AND operator describ-
ing the simultaneous presence of the two proteins:
B¢ =Sp; AND Sp,. If a component, e.g., a protein with
multiple phosphorylation sites, is positively regulated
by multiple regulators and any of them can activate
it independently, the independent effects of these reg-
ulators on the target component can be captured by
the OR operator. For example, in the case of node B
in Figure 2(a) the rule By =S, OR Sc expresses that
either A or C can independently turn node B on.

For nodes with multiple regulators knowledge
of the incoming edges (positive and negative regula-
tors) does not uniquely determine the dependency rela-
tionships among node states. For example, node B in
Figure 2(a) is regulated by A and C. How can one
determine, in a real situation, if activation of both A
and C, or only one of them, is required for the activa-
tion of B? If there is experimental evidence that knock-
ing out either A or C leads to the absence of B, then
AND should be used. Conversely, if there is evidence
that only simultaneous knockout of A and C would
inactivate B, then OR should be used. When such
information is not available, one can construct several
variants of the Boolean rules and determine the one
that best reproduces the known properties of the real
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system.8! If this is not feasible, the OR operator may
be used as a default, and the model can be updated
once additional information is obtained. Alternatively,
one can employ probabilistic Boolean networks,®%-32
which incorporate uncertainty by assigning multiple
Boolean rules to a node, each with a certain probabil-
ity of being selected.

Determine the Initial Condition

Representation in a binary model requires that the bio-
logical information on the concentration or activity of
the components (nodes) is compressed into two quali-
tative states. This may be done if we know the thresh-
old concentration or activity at which the component
is effective in regulating downstream processes. Then,
below-threshold concentration or activity becomes the
0 state and above-threshold concentration or activity
becomes the 1 state. We stress that the state desig-
nated as 0 does not mean the complete absence of
that component. Since it is relatively rare to know
such thresholds, comparison (e.g., by differential gene
expression analysis) between two reference states (e.g.,
a healthy and a diseased state) can be the basis of
the state assignment. If numerous reference states or
state time-courses are available, one can cluster these
states into two groups®® and assign the state 0 to the
lower-value group.

Ideally the model’s starting state should be the
biologically relevant resting or pre-stimulus state if
it is known a priori. If the available information is
insufficient, one can exhaustively explore all initial
conditions wherein certain nodes are in a known state.
As the total number of states of m unspecified-state
nodes is 2™, it may not be feasible to try all of these
states, and sampling must be used instead. In either
case a large number of replicate simulations should be
done, and the results need to be summarized over these
replicate simulations. For example, one calculates the
fraction of realizations of a certain attractor. We can
think of these replicate simulations as a population
of cells which differ in their pre-stimulus states, and
the fraction of realizations of an attractor can be
interpreted as the probability that the system attains
the corresponding cellular phenotype.?3-2¢

Choose a Time Implementation

In most Boolean models, time is an implicit vari-
able and the passing of time is implemented via syn-
chronous or asynchronous update algorithms. Update
means the determination of a node’s next state based
on its Boolean function and on the state of its reg-
ulators. In the simplest update scheme, called syn-
chronous update, the states of all nodes are updated
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simultaneously according to the last state of the
system.3? Specifically, the state of node 7 at time step
t+1, denoted by S;(¢+ 1), is determined by the state
of its k; regulators at time ¢:
S =B (S S s St
Boolean rule for node i and Si» 1<j<k;, are the
states of its regulators. This type of update implicitly
assumes that the timescales of all biological events in
the system are similar and the state transitions of com-
ponents are synchronized. Synchronous update leads
to a deterministic state trajectory in which any sys-
tem state can have at most one successor. However,
the timescales of biological events can vary widely
from fractions of seconds to hours,! and systems
with a single timescale are rare. Asynchronous models
aim to account for timing variation by updating the
nodes in a nonsynchronous manner. There are deter-
ministic asynchronous schemes with fixed individ-
ual timescales!? or fixed time delays®* and stochastic
asynchronous schemes wherein each node is updated
with a certain probability,®S all nodes are updated
according to a random sequence,®® or one randomly
selected node is updated at a time.}” In stochastic
asynchronous models, the same initial condition can
lead to different successors due to the variability of
the update scheme. Asynchronous schemes can be
informed by existing knowledge about the relative
timescales of components.3¢-888% Updating schemes
have a considerable effect on the dynamics of the
system (see the next subsection). One can choose a
scheme that is most realistic for the biological system
of interest, or compare the results of different schemes
on the same system.** In cases where there is no infor-
mation to inform the choice of update scheme, updat-
ing one node at a time is the most effective choice.**

), where B, is the

Attractor Analysis

The dynamic behavior of a Boolean model is deter-
mined by the Boolean regulatory functions of the
nodes and is influenced by the chosen updating
scheme. Starting from a chosen initial condition the
system’s state changes in time in discrete transitions,
and finally stabilizes in an attractor (a limited set of
states) representing the long-term behavior of the sys-
tem. Attractors can be fixed points (steady states),
wherein the state of the system does not change,
or complex attractors (also called loose attractors),
wherein the system’s state keeps revisiting the same
set of states. Each complex attractor of synchronous
and deterministic asynchronous models is a repeated
succession of states, called a limit cycle. The complex
attractors of models that use stochastic asynchronous
update or probabilistic Boolean functions may also be
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cyclic, but more often the states of the attractor are
revisited irregularly. Fixed point attractors of regula-
tory and signaling networks correspond to the steady
activation states of components associated with cellu-
lar phenotypes.?%27-?0 Complex attractors correspond
to cyclic and oscillatory behaviors such as the cell
cycle, circadian rhythms, or Ca?* oscillations. There-
fore, identifying the possible attractors is a biologically
relevant and informative goal.

Trajectories starting in different initial condi-
tions may lead the system to different attractors. Thus,
it is very informative to construct a map of the possi-
ble trajectories of the system in state space. All possi-
ble states of the system, a total of 2", where 7 is the
number of nodes, make up its state space. A compact
representation of all possible trajectories is possible
through the state transition graph, whose nodes are
the states of the system and whose edges denote the
allowed transitions among the states according to the
chosen updating scheme. The state transition graph
can be used to determine the attractors of the system,
and to find the set of initial states that leads to a spe-
cific attractor, called the basin of attraction of that
attractor. Fixed points will correspond to states that
do not have any outgoing edges (transitions), only a
loop (self-edge). Complex attractors form a terminal
SCC of the state transition graph (i.e., an SCC with an
empty out-component).’”

Figure 4 represents the state transition graph
of the network given in Figure 2 using synchronous
update (a) and when updating one node at a time
(b). In both models, states 000 and 111 are the fixed
points (steady states). Indeed, as the fixed points of
a system are time independent, they are the same for
both synchronous and asynchronous update.®¢ The
choice of updating scheme can affect the probability
with which the system reaches these fixed points
when started from a given initial condition. In the
synchronous model no other states converge into the
state 000, while in the asynchronous model states 001,
100 and 010 can lead to the fixed point 000 in one
step and states 101 and 110 can lead to 000 in two
steps. Additionally, synchronous models may exhibit
limit cycles which are not present in the corresponding
asynchronous models.**%% By comparing the state
transition graphs given in Figure 4(a) and (b), we see
that in the state transition graph of the synchronous
model, each state has a unique successor (i.e., it has
an out-degree of one), which is not the case in the
asynchronous model. Consequently, attractors of a
synchronous model have disjoint basins of attraction,
whereas the basin of attraction of different attractors
in stochastic asynchronous models may overlap. For
example, in Figure 4(b) five of the six states that are
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FIGURE 4 | State transition graphs corresponding to the Boolean
model presented in Figure 2. The symbols correspond to the states of
the system, indicated in the order A, B, C, thus 000 represents S, =0,
Sg=0, and 5. = 0. A directed edge between two states indicates the
possibility of transition from the first state to the second by updating
the nodes in the manner specified by the updating scheme. An edge
that starts and ends at the same state (a loop) indicates that the state
does not change during update. (a) The state transition graph
corresponding to synchronous update, when all nodes are updated
simultaneously. The two states that have loops are the fixed points of
the system. (b) The state transition graph corresponding to updating
one node at a time. While several states have loops, indicating that at
least one of the nodes does not change state during its update, only the
states that have no outgoing edges are fixed points of the system.

not fixed points are in the basins of attraction of both
fixed points, and only state 011 is exclusive to the
basin of 111.

An alternative method for determining the fixed
points of small Boolean networks is to remove the
time dependency from the Boolean rules and solve
the resulting set of equations B,(S;,..., S,)=S; for
all 1<i<n, where n is the number of nodes in the
network. The solutions of this system of equations
correspond to the fixed points of the Boolean model.
For example, the fixed points of the simple network in
Figure 2 can be obtained analytically by solving the
following system of equations: Sy =Sc, Sp=S5, OR
Scs Sc=Sp. Substituting the first equation into the
second and simplifying the resulting equation using
Boolean algebra results in Sy =S, which is equivalent
with the third equation. Thus all three variables need
to be equal, yielding two fixed points of the system,
000 and 111. Logical steady state analysis®’ can
find the (partial) fixed points of Boolean models of
signaling networks with sustained input signals by
propagating the value of the input signals through the
network.

360 © 2014 Wiley Periodicals, Inc.
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Several software tools are available for
Boolean dynamic modeling of biological systems.
BooleanNet’! can be used to simulate synchronous
and stochastic asynchronous models and to deter-
mine the state transition graph. The R package
BoolNet?? provides attractor search and robustness
analysis methods for synchronous, asynchronous
and probabilistic Boolean models. SimBoolNet, a
plugin to the widely used biological network analysis
tool Cytoscape,® determines state trajectories and
attractors using sequential update (starting from the
external signals).

As a Boolean network model with 7z nodes has
2" states, determining the attractor repertoire and
state transition graph of a large system is a chal-
lenging problem. For larger networks, search methods
that utilize the special features of attractors with-
out the necessity of checking all possible trajectories
have been developed.”®?3=5 An alternative solution
is to use network reduction techniques to simplify
the network while preserving its essential dynamical
properties.**?=%9 One method is to absorb a node by,
simply said, connecting its upstream regulators to its
downstream targets. Specifically, in the update func-
tion of all targets of the eliminated node one needs
to replace the eliminated node’s state by its update
function. For example, in Figure 2(a) we can absorb
node A, creating an edge from node C to node B. The
updating rule of node B then becomes By=S: OR
Sc=S¢. The network simplifies to a two-node posi-
tive feedback loop with still has two fixed points: 00
and 11. Indeed, iteratively absorbing nodes without
a self-loop was proven to preserve the fixed points
of a system®”%? (as this is equivalent with eliminating
variables while solving the set of equations B;(Sy, ...,
S,)=S,). However, this simplification may introduce
spurious oscillations into the reduced model.”” A more
conservative network reduction method was shown
to preserve both fixed points and complex attrac-
tors under stochastic asynchronous update.'”’ This
method is based on the propagation of the states of
sustained signals and on the collapsing of nodes with
in- and out-degree of one.?”**

Test the Correctness of the Model

The model must be able to reproduce prior exper-
imental observations regarding input-output rela-
tions, dynamic behaviors, and cellular responses. For
example, the model’s attractor(s) need to match the
biologically known steady state or oscillatory behav-
ior of the system. For the purpose of this compar-
ison the biological state of the system needs to be
expressed in terms of binary variables. However, com-
parison with experimental observations is not limited
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to binary variables. When performing a large number
of Boolean dynamic simulations the fraction of sim-
ulations that have a certain state is an intermediate
value between 0 and 1. The shape of the time-course
of this fraction can be qualitatively compared with the
shape of experimental time-courses.?®

If the model fails to reproduce known behav-
iors of the system, one needs to go back and check
whether some important components or interactions
are missing from the network structure, or whether
some Boolean update functions are incomplete or
wrong, e.g., use AND instead of OR or vice versa.
The failure may also arise from the use of an inap-
propriate updating scheme (if the unmatched behavior
is oscillatory) or initial condition (if a single initial
condition was studied). A few rounds of revisions usu-
ally yield a Boolean dynamic model consistent with
all known experimental observations. Many biolog-
ical systems are robust,”***7 so an indirect way to
validate the model is to test its robustness to small per-
turbations such as interchanging OR and AND rules,
switching the signs of interactions, scrambling interac-
tions, adding or deleting a component or interaction.
A good model can accommodate small perturbations,
reflecting the adaptability of the system to diverse
circumstances.

Generate Novel Predictions
While model construction and validation is time-
and labour-intensive, the finished model is very valu-
able, as it transforms a set of separate facts into a
system-level understanding. The power of Boolean
dynamic modeling is its ability to predict the outcome
repertoire of the system, generate testable hypotheses,
and direct future wet-bench experiments in an efficient
way. For example, the attractors of the system predict
the activity of components in cellular responses or phe-
notype traits.>”-?%101 By analyzing the outcomes of the
system from various initial conditions, we can under-
stand how different signals (stimuli) crosstalk and lead
to different cellular responses.

Once the attractors of the Boolean model of
a system are determined, the activity of components
in relevant cellular responses or phenotypes can be
predicted. For example, the three fixed points of a
Boolean model of a T-helper (Th) cell differentia-
tion network® recapitulated the activation patterns
of components observed in ThO, Th1, and Th2 cells,
respectively. The attractors of the T cell activation
induced cell death signaling network captured the nor-
mal (apoptosis) and disease (T-LGL) outcomes, and
the latter identified the T-LGL state of components
that were experimentally undocumented before.?”
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A Boolean model can be used to analyse the
changes in the system’s attractor repertoire in the case
of system perturbations.*>1°2 Knockout of a com-
ponent can be simulated by fixing the corresponding
node in the OFF state; constitutive expression can be
simulated by fixing the node’s state as ON. Transient
perturbations can also be studied by implementing
temporary (reversible) changes to the node’s states.
The model can predict the changes in the attractors of
the system and their basins of attraction and identify
the perturbations that lead to dramatic changes. For
example, for the model in Figure 2, knockout of node
A leads to the reduced system S, =0, By =S¢, Bc =83
which still has two attractors, the steady states 000
and 011. In contrast, knockout of node B leads to
By =S¢, Sy =0, Bo =0, which only has one attractor,
000. Knockout of node C also leads to the 000 fixed
point, while constitutively expressing any of the three
nodes leads to a single attractor, the steady state
111. Thus only one of the permanent perturbations
maintains the original system’s capacity for having
two attractors (bistability), the others destroy one of
the two attractors. Perturbation analysis can identify
the essential components that mediate phenotype
traits.!5232627 For example, dynamic perturbation
analysis for the T-LGL leukemia signaling network
led to the identification of 19 potential therapeutic
targets for the disease, more than half of which
were supported by available experimental data or by
follow-up experiments, and the rest can guide future
experiments.”’

We can also predict the biological role of reg-
ulatory interactions and feedback loops by removing
them (by deleting a term from the update function of
the target node) and comparing the dynamic sequences
before and after the perturbations.'*2%3% For example,
disrupting any of five key feedback loops in a Boolean
model of the p53 regulatory network led to the unde-
sired outcome of cell death.? In summary, the model
not only provides a systems-level understanding of the
biological process, but also can direct follow-up tar-
geted experiments.

INTEGRATED STRUCTURAL
AND LOGICAL ANALYSIS OF
BIOMOLECULAR NETWORKS

Boolean modeling allows the systematic identifica-
tion of the dynamic repertoire of biological systems.
However, for large systems that also lack timing
information mapping of the state space is computa-
tionally expensive. Network reduction methods can
help by reducing the size of the networks while pre-
serving essential dynamic properties. Alternatively,
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FIGURE 5 | Illustration of methods that integrate the structure and logic of regulatory interactions. (a) A hypothetical signal transduction network
and Boolean model corresponding to it. The Boolean update rules that are not completely determined by the network are indicated next to the

relevant nodes. (b) The expanded representation of the network, which includes three complementary nodes, indicated by prepending the node name
by ~, and two composite nodes, indicated by small black filled circles. (c) The stable motifs of the expanded network in the case of a sustained input
signal (S, = 1). The first stable motif corresponds to the state 11101 (in the order I, A, B, C, 0), while the second stable motif corresponds to the state

11011.

several methods have been developed to use the
information encapsulated in the Boolean functions
to enrich and improve structural analysis, potentially
bypassing dynamical analysis.

One possibility, implemented in the software
CellNetAnalyzer,°® is to represent a biological net-
work by a logical interaction hypergraph whose
hyper-edges connect two sets of nodes instead of two
nodes.®”-193 This way the relationship B =S, AND S
can be represented by a hyper-edge that starts from the
node set {A, B} and ends in C. An application of this
hypergraph is in the identification of minimal interven-
tion targets. A minimal intervention target is defined
as a minimal set of nodes whose simultaneous manip-
ulation satisfies a goal such as the permanent deactiva-
tion (off state) of the output node. These interaction
targets are usually determined by systematic search,
but analysis of the hypergraph can reduce the pool by
eliminating candidate targets that cannot be successful
and by grouping equivalent targets.

Our group developed an expanded network
representation that integrates negation and condi-
tional dependency among regulators into the network
topology.*”-19% Specifically, the method introduces a
complementary node for each node that is impacted
by negative effects, and introduces a composite node
for each set of interactions with conditional depen-
dency. The new representation, wherein all interac-
tions represent activation and all composite nodes
indicate conditional dependency, facilitates a better
functional interpretation of structural analysis. For
example, the expanded network of the segment polar-
ity genes provided important insights into the identifi-
cation of coexpressed genes.*” For example, it showed
that the cells expressing en and hbh never express wg,
ptc, or ci, a well-known polarization that is the basis
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for the name ‘segment polarity genes’.!% Figure S

illustrates the expanded network representation of a
hypothetical signal transduction network composed
of the input node I, intermediary nodes A, B, C and
the output node O (Figure 5(a)). The Boolean update
functions of the two nodes that have more than a sin-
gle regulator are indicated. The expanded network
(Figure 5(b)) is composed of two components that
are disconnected from each other. The first compo-
nent starts with the input node I ends in the output
node O, and contains A, B, the complementary node
of C, denoted as ~C, and a composite node shown as a
black dot. The second component is made up by four
complementary nodes, node C and a second compos-
ite node.

The new concept of elementary signaling mode
was defined as the minimal set of components
able to perform signal transduction independently.
Figure 5(b) contains two elementary signaling modes
that connect the input to the output: the path TAO,
and the subgraph that contains the nodes I, A, ~C,
the composite node (black dot) upstream of B, B, and
O. We hypothesized that the signaling components
whose disruption (and its cascading effects) eliminates
the majority or all of the elementary signaling modes
are essential. For example, in Figure 5(b) the loss of
node A eliminates both elementary signaling modes
between I and O, but the loss of node B leaves one
of the elementary signaling modes intact. Validation
on several signaling networks showed that this aug-
mented structural method and essentiality criterion
are in strong agreement with the results of dynamic
simulations.?”-104

The expanded network can also be used as a
basis for network simplification. A structural criterion
can be used to identify network motifs (subgraphs)
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that stabilize in a fixed state regardless of the rest of the
network.1%¢ Specifically, a stable motif is the smallest
strongly connected component in the expanded net-
work which (1) does not contain both a node and its
complementary node, and (2) if it contains a compos-
ite node, it also contains all of this node’s input nodes.
For example, in Figure 5(b) the nodes ~B and C form
a stable motif. The fixed state of the nodes in the sta-
ble motif can be directly read out from the expanded
network: if the stable motif contains a node, the node
stabilizes in the ON state, and if the stable motif con-
tains a complementary node, the corresponding node
stabilizes in the OFF state. The fixed state of a net-
work motif can be used for network simplification in
a similar way as the sustained presence of a signal
can. Iterative searching for stable motifs and network
simplification leads to one of two possible outcomes:
either there are no more nodes with unknown states,
in which case a fixed point of the system is identified,
or no new stable motifs are found, in which case the
remaining nodes are expected to oscillate.

As an example of network simplification and
attractor detection, let’s consider the sustained pres-
ence of the input signal (S;=1) in Figure 5. The sus-
tained signal leads to the stabilization of S, =1, and
consequently of Sy =1, while the regulation of B sim-
plifies to By =not S and similarly B =not S. The
expanded representation of this mutual inhibition net-
work consists of two disconnected positive feedback
loops: one formed by B and ~C and the other by ~B
and C (see Figure 5(c)). Both of these feedback loops
are stable motifs, the first corresponding to Sy =1 and
Sc =0 and the second to Sy =0 and S = 1. Thus there
are two fixed point attractors for this system which
differ only in the state of nodes B and C.

Taken together, these integrated Boolean—
structural studies revealed that while some properties
of a dynamic model depend on initial conditions and
individual timescales, other properties are encoded in
the combinatorial regulations represented by Boolean
rules and do not depend on the details of the dynamic
simulation. Therefore, these integrated methods are
fruitful as exploratory analysis of large networks
where dynamic modeling is computationally imprac-
tical, or as a first step that guides follow-up targeted
computational or experimental studies.

FROM BOOLEAN TO
MORE QUANTITATIVE
MODELING FRAMEWORKS

The use of Boolean modeling is most natural when the
system’s outcomes can be unambiguously categorized
into two classes. Naturally, many applications exist
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where a binary outcome is a gross simplification and
a continuous or multistate representation is needed.
Indeed, there are multiple ways in which Boolean
modeling can be improved. The construction of these
improved models has similar steps as described earlier.
The Boolean update functions are replaced by multi-
state or continuous functions, and in certain models
time is continuous as well.

Several methods exist to connect between contin-
uous and Boolean modeling. As we have seen before,
piecewise linear models are a hybrid of Boolean
and continuous models.*” An example of a piece-

wise linear model is % = B, <S,-1, Sis e Sik,) - yl-/S\l-,

0, §,» <6
1, S, >0,
(e.g., concentration) associated with node i, ; is the
discrete variable of node i, y; is a decay rate and 6,
is a threshold parameter. These types of models have
been fruitfully applied due to their attractive combi-
nation of continuous time, quantitative information,
and few kinetic parameters.!%107:108 The parameters,
such as activation thresholds, are at a higher, more
coarse-grained level than the kinetics of elementary
reactions. The software packages Genetic Network
Analyzer'” or BooleanNet’! can be used to simulate
piecewise linear models. Piecewise linear models
retain the steady states of the corresponding Boolean
model, and yield damped or sustained oscillations
in cases where the Boolean model has a complex
attractor.*” Figure 6 illustrates the piecewise linear
model of a negative feedback loop and compares it
with a synchronous Boolean model in which all the
nodes are updated at the same time. The synchronous
Boolean model has two limit cycles, one containing
six states and one containing two states (Figure 6(b)).
In the piece wise linear model the decay rate of each
node is assumed to be y=1 and the threshold is
0=0.5. Figure 6(c) indicates the time-courses of the
continuous variables of the three nodes starting from
the initial state S, = S = S = 1. The sustained oscil-
lations exhibited by all three variables agree with the
six-state Boolean limit cycle of Figure 6(b). Indeed,
first S5 decays below the threshold (equivalent with
the state 011), followed by Sp, then Sc (equivalent
with the state 000), then §A comes back above the
threshold (state 100), and so on.

The hybrid formalism called standardized quali-
tative dynamical system, implemented in the software
SQUAD, "0 starts with a standardized Boolean update
function for each node, which is then translated into
a continuous sigmoidal function of weighted acti-
vating and inhibiting interactions. The steady states
of the Boolean model are used as starting points

, where S; is the continuous variable

Si=
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FIGURE 6| lllustration of the dynamics of a piecewise linear model. (a) The directed network associated with the model forms a negative
feedback loop. The Boolean update functions are completely determined by the network. (b) The state transition graph of a synchronous Boolean
model of the network. The symbols correspond to the states of the system indicated in the order ABC. The Boolean model has two limit cycle
attractors (sustained oscillations). (c) The time-course of the continuous variables associated with nodes A (green triangles), B (blue circles), and C
(red squares) according to a piecewise linear model with y =1 and 6 =0.5. The sustained oscillations agree with the six-state limit cycle of the

synchronous Boolean model.

in the iterative numerical solution of the differential
equations of the continuous model; typically yielding
steady states that are close to the Boolean model’s.
This model has been applied to the regulatory net-
work of helper T cells and has reproduced the molec-
ular profiles corresponding to several helper T cell
types. Another software, ODEfy,!!! converts Boolean
regulation into Hill functions by multivariate polyno-
mial interpolation. This transformation preserves the
Boolean model’s steady states. ODEfy models can be
exported to other software such as the MATLAB Sys-
tems Biology Toolbox.!!?

Multistate discrete dynamic models can also
be constructed to model biological systems. For
example, in a three-state model, nodes can be assigned
three states (e.g., —1, 0, 1 or 0, 1, 2) to represent
under-activity (downregulation), normal activity, and
over-activity (upregulation). As with Boolean models,
truth tables can be constructed to represent the regula-
tory relationships among nodes. The future value of a
regulated node will depend on the logical constraints
designated by the modeler in the truth tables. Multiple
alternative mathematical formalisms exist for a more
compact representation of multistate discrete mod-
els: logical models,''3 implemented in the software
GINSim''* and polynomial dynamical systems!!®
implemented in the software ADAM.!'® The logical
functions used in the logical model framework specify
the conditions for which the regulated node’s state is
different from the baseline.!!3 Polynomial dynamical
systems represent each truth table by a polynomial
function. Polynomial algebra can then be used to iden-
tify the steady states of the model. One disadvantage
of this method is that the polynomial representation
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(even for Boolean models) is less intuitive than logical
models.'

CONCLUSION

Computational modeling of biological processes plays
an important role in systems biology and enables
efficient in silico experiments whose predictions
greatly improve the design of wet-bench experiments.
Although Boolean network models have a limited
capacity to describe the quantitative characteristics
of dynamic systems, they do exhibit considerable
dynamic richness and were proven effective in
describing the qualitative behaviors of biological
systems. In addition, Boolean models were proven
successful in predicting the key components of signal
transduction and gene regulatory networks, and in
proposing effective intervention strategies. The fact
that Boolean models do not require the knowledge
of kinetic parameters makes them a practical choice
as well for systems where these parameters have not
been measured. Thus Boolean models pass the two
key tests: they are useful,!'” and they increase the
understanding of the systems for which they were
formulated.> The success of Boolean models illus-
trates that in at least a subset of biological systems
the organization of network structure plays a more
important role than the kinetic details of the individ-
ual interactions.?%*” This inference can be fruitful in
the context of understanding the functional and evo-
lutionary constraints of biomolecular networks, and
indeed Boolean models have been used to investigate
these issues.!18-117
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In practice, qualitative and quantitative models
are complementary. The choice between qualitative
models like Boolean network models and quantitative
models described by differential equations depends
on the availability of kinetic information, the size
of the systems, and the types of questions to be
addressed. Boolean networks can serve as a founda-
tion of modeling regulatory and signaling networks on
which more detailed continuous models can be built
as kinetic information and quantitative experimental
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