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1 INTRODUCTION
This paper deals with the difference equation of the form
lAxy + aAxy §] = —Xpyi +f(xn—~N)s (11)

where 0 < g is a (small) parameter, a€R, /:R—R is a continuous
function, and Ax, =X, — x,. Equation (1.1) is easily solved for x,,,.
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106 K.L. COOKE AND A.F. IVANOV

so one has its equivalent form

Xptl = Xy + (xn N — Xp- N+l)+ f(xn N) (1-2)

+1 -[—1

Some basic preliminaries for Egs. (1.1) and (1.2) are described below
in Section 3. _

Equation (1.1) arises from Euler discretizations of the delay differen-
tial equation

elx(t) + ex(t — )] = —x(£) + flx(t — 1)). . (1.3)

The details of the discretization procedure of Eq. (1.3) and reduction
to (1.1) are given in Section 2. Equation (1.1} can also be looked upon
as a discrete analog of Eq. (1.3). Thus in these regards Eqs. (1.1) and
(1.3) are closely connected.

Equation (1.3) appears in a number of important applications and it
has been a subject of study, especially its particular case a==0, in a
number of recent publications, see for example [1,2,9,10,12—15,17] and
further references therein. One of the most significant applications, in
our opinion, is that Eq. (1.3) comes as an exact reduction of certain
boundary value problems for hyperbolic partial differential equations
with the singular term efx(¢) + ax(t — 1)} representing the small
viscosity effects in the original physical models [3,14,15,17]. Note that
the presence of the neutral term in Eq. (1.3) is essential, that is c:#0.

Even in a simpler case of the retarded type equation (1.3) when
a=0,

ex(1) = —x(t) + fx(t — 1)) )

it is a very nontrivial object to study. A natural approach to
investigate (1.4) for small £ > 0 has been to compare its dynamics with-
the dynamics of the limiting case € =0, the difference equation

x(1) = flx(t — 1)). (1.5)

The latter is completely determined by the dynamics of the one-
dimensional map f. In spite of a number of recent publications on
Eq. (1.4) (see for example [1,2,10,12,13] and further references therein)
only partial results on its dynamics have been obtained. There is a
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number of important problems about its relation to the dynamics of
the map f that still remain unanswered.

Virtually nothing is known about dynamics as t — +oco of Eq. (1.3)
with a#0. Though there is a closeness within finite time intervals
between solutions of (1.3) and (1.5) {4,5], no other rigorous results
about asymptotical behavior of solutions of Eq. (1.3), to the best of
our knowledge, are available. This leads to another approach to study
the dynamics of the processes behind Eq. (1.3) — to look at its discrete
versions or to study it numerically, In this way one comes down to the
difference equation (1.1), and it is our major motivation for its study.

We compare the dynamics as # — oo of solutions of Eq.' (1.1) with the
dynamics of the interval map fwhen the parameter p > 0 is sufficiently
small. The principal result we derive in this paper is that whenever the
map f has an attracting hyperbolic cycle the corresponding Eq. (1.1)
has stable periodic solutions “close” to the cycle (Theorem 4.3).

This has as we think several important implications:

1. The dynamics of the continuous time delay differential equation
(1.3) and its discrete version, Eq. (1.1), are, generally speaking,
different. For example, Eq. (1.3) with =0 (that is Eq. (1.4)) may
exhibit a simple dynamical behavior of all solutions (for example,
global stability) even though the dynamics of f is more complicated
(for example, the map f has attracting cycles), see examples in [10]. In
this latter situation of attracting cycles Eq. (1.1) will still have stable
periodic solutions that are “close” to the cycles. _

The numerical simulations of Egs. (1.3) or (1.4) may be showing in
some cases dynamics which are irrelevant to the actual dynamics in these
equations. That is, such dynamics may simply not exist for the delay
differential equations. The results of the present paper demonstrate this
fact if one uses the Euler discretization for the singularly perturbed
delay equations. The phenomenon is known more generally for the
numerical solution of ordinary differential equations, and is well under-
stood for example for the occurrence of the spurious fixed points in
Runge—Kutta methods (seee.g. [6,16,18] and further references therein).

2. The delay differential equation (1.3) was derived as a continuous
time model of certain physical processes that takes into account the
small viscosity effects. Mathematically the singular terms in Eq. (1.3)
represent the small viscosity while the nonlinear map f'is expected to
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determine the asymptotical behavior of solutions as ¢t — oo. See papers
[3,9,17] and monograph [15] for the description of physical processes
and their mathematical models as well as. for further details. As
examples and rigorous mathematical results show, the dynamics of
solutions of Eq. (1.3) as £ — oo can be essentially different from that
defined by the interval map f (see [10], Sections 4 and 5, case oo =0).
The continuous time model is actually derived via a limiting transition
from a discrete one, which is in essence a difference equation. There-
fore, in some cases the difference equation (1.1) can probably be a
better mathematical model, at least as far as following the dynamics of
the map f'is concerned. ‘

2 EULER DISCRETIZATIONS

The simplest way to discretize Eq. (1.3) is to use the Euler discretiza-
tion scheme,

Assume that the delay 1 is a multiple of the discretization step, that is
h:=1/N for some positive integer N. By using the forward discretiza-
tion one has x(¢) = [x(¢ -+ h) — x(#)]/h, and Eq. (1.3) is replaced by

x(t—1+h —x(t—-1)]

£ [x(t T h})1 — (1) + P = —x(£) +f(x{t — 1)).

By introducing new notations: e/h:=pu, x(t+h):=Xu1, X(2) =X
where 1 =1, = nh, one finds that x(t — 1) =x,_y, (¢t — L + ) =Xn_n.1-
Therefore the latter difference equation becomes

(g1 — %) + (Xn—ns1 — Xnen)] = —Xn +S(Xn-n) (2.1)
or
plAXy + alxy §) = —%n + f{Xn-n),

where Ax, = X, — Xp.
Equation (2.1) is easily solved for x,,,.1:

. 1
Xni1 = Xn + @(Xy—N — Xn-n41) + p [ + )l (22)

Since we are interested in the dynamics as e » 0+ and p=e¢/h, the
difference equation (2.2) shows that the numerical solutions may easily
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“blow up” as € becomes much smaller than the chosen step # of the
discretization.

Another complication with the forward Euler discretization is that
in the simpler case of the retarded type equation (1.3), when =0,
some of its basic properties are not preserved. For example if the map
f has a closed invariant interval I the corresponding solutions of
Eq. (1.4) remain within the interval I provided the initial functions
were chosen there (see [10] for precise statements). Since the difference
equation (2.2) in this case becomes

1 \
$ut1 =%+ [ Ao (23)

again because of the blow-up phenomenon for small p, this basic
invariance property is not preserved if one replaces the differential
delay equation (1.3) with o =0 by the difference equation (2.3).

This difficulty with the forward discretization is evident from the fact
that x(7) and x(?) at the same time ¢ produce two terms involving x, and
a single forward “singular” term ux,,..;. As we show below this problem
can be fixed if one uses the backward difference [x(¢) — x(t — h)}/h for
x(¢). The difficulty is explained by the fact that the forward Euler
scheme for the singular equation (1.3) is unstable unless the step A of
the discretization is sufficiently small compared with ¢, while the
backward Euler scheme is A-stable (see e.g. [11] for more details).

Another minor problem that appears with the backward discretiza-
tion at x(t — 1) is that one obtains a term x(f-—1—h) which falls
outside the initial interval [—1,0] at t=0. x(—1— /) will have to be
defined then. An alternative possibility to avoid this i§ to use the
forward difference for x(z — 1). As it can easily be seen from what
follows, both ways to discretize x(¢ — 1) give essentially the same type
difference equation. Therefore, the forward discretization at the
delayed term x(¢ — 1) does not create the same difficulty as it does at
x(t). We proceed here by using the backward difference for x%(z) and
the forward difference for (¢ — 1). This results in the equation

x(f) — x(t — h) x(t =14+ k) —x(t—1)
P e h }

= —=x(1) +f(x(t = 1)).
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With the new notations as introduced above the latter becomes
(%0 — Xu—1) + @(Xn—ny1 — Xnei)} = —Xn +fX0n)s

which is equivalent, by associating ¢ with (n+1)h and f—1 with

(n-- N)h, to
plAx, + alxy y] = —xpe1 + fXn-n)- (2.4)

The backward difference used at both x(r) and x(r —1) gives the
following difference equation

w2 — Xn-1) + @(Xuen — Xuen—1)] = =X +(Xn-n)s

which is equivalent to

-

plAX, + QAXy_N] = —Xpi1 +ﬂxn—N+l)- (2.5)

As it can be seen from the proof of our main results in Section 4,
Eq. (2.5) exhibits the same dynamics as Eq. (2.4).

3 PRELIMINARIES FOR THE DELAY DIFFERENCE EQUATION

Solving Eq. (1.1) for n> 0 is straightforward if one uses its equivalent
explicit form (1.2). The iterative scheme (1.2) requires that initial data,
{X N> X—Nt1s+--»X_15 X0}, be defined. The latter will be called the
initial string and denoted by X;. It is obvious that for every initial
string Xo there exists a unique solution {x,x5,%s,...} of Eq. (1.2)
defined for all #>0. The segment of the solution made up of
{x1, %2, ..., Xn41} will be called the first string and denoted by %1, the
subsequent segment {Xy.r2,...,Xan42} — the second string X, etc. We
" say that a string %o = {x--y, X_n+1,...,%_1, Xo} belongs to aset A CR,
Xg€ A, ifx;eAforallie {—N,...,—1,0}.

Given two strings %o = {X.n, X-n+1,.--,%-1, X0} and jy = {y_w,
Vo Ngls vy Puls yg} we define the distance between them by
%0 — Foll = max{|x; — ;| —-N <i < 0}. This makes the set of all
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strings, S = {X = {x_n,.. ., x_1, X }|x; e RVie {-N,...,—1,0}}, a
normed space, '
When =0 one gets the difference equation

Xntl = f(xn—-N) (3 . 1)

from Eq. (1.1) (or (1.2)). Likewise Eq. (3.1) requires an initial string X
in order to have a solution defined for all » > 0. Given an initial string
% Eq. (3.1) is then equivalent to N-1 difference equations
Zur1 =f(2), 1 > 0, zg € Xy, The dynamics of the latter, and therefore
that of Eq. (3.1), is completely determined by the dynamics of the one-
dimensional map f. We will also have to measure the distance between
strings of Eqgs. (1.2) and (3.1). This will be done in the obvious way in
accordance with the above definition of the distance between strings.
We shall also use some standard terminology for the interval maps.
We say that x, € R is a fixed point of the map fif f{x,) =x,. A fixed
point X, is called attracting if there exists an open interval J3 x, such
that AJ)CJ and lim, _, o, /"(x)=x, for every point xe€J. Here f
stands for the nth iteration of the map f, i.e. fm=fofo-- 0of. A
\ﬁf.—/

maximal open interval about an attracting fixed point "with this
property is called the domain of immediate attraction of the fixed point.

A fixed point x, is called repelling if there exists an open interval
J 3 x, such that for every point x € J, xsx, there is a positive integer
n=n(x) such that /"(x)¢ J.

A set of points 8:= {8, Bi,...,Bm—1} is called a cycle of period m if
fBr) = Brs1, k=0,1,...,m— 1, where 3, is defined to be Fy. A cycle
g is called attracting (repelling) if §; is an attracting (repelling) fixed
point of the map /™,

Let B8={Bo, b1, -, Om_1} be an attracting cycle of the map /. Then
its domain of immediate attraction is made up of m disjoint open
intervals Uy, Uy, ..., U, and such that f{Up) = Uiy, k=0,1,...,
m— 1, where U,,:= Up. Here Uj is the domain of immediate attraction
of the fixed point By for the map /™, '

A solution {X_y, X_nyt1s. .. sX 1, X0, X1 ..., %N Xni1s - - OF either
Eq. (1.2) (or (1.1)) or Eq. (3.1) will be called slowly oscillating with
respect to cycle B={Bo,..., B m.1} if X € Uk+p(mod,,;0 my for some
nonnegative integer p and all k > 0. Here X is the kth string of the
corresponding solution.
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An important class of equations, for both Eq. (1.3) and Egs. (1.1)/
(1.2), is that with the nonlinearity f of the negative feedback type:
x - f(x) <0 for all x € R, x#0. The negative feedback condition implies
that x, =0 is a fixed point of the map f, and that all of the Egs. (1.1)—
(1.3) have the trivial zero solution. A solution of any one of the
equations will be called slowly oscillaring if its consecutive strings
alternate sign. For cxample, all elements of X, are positive, all elements
of %, are negative, etc., or the other way around. ‘

Let B={Bo, B1- -, Bm-1} be a cycle of the map f. By §; we denote
a string each element of which is By, that is, B = {Be, ..., Bk}, k=0,
1,...,m—1. "

Finally we use the notions of stability of a constant solution and
stability with the asymptotic phase of a periodic solution of Eq. (1.2)
in a standard way. ‘

A constant solution {x,, x,,...} of Egs. (1.1), (1.2), or (1.3) will be
called stable if Ve >0, 36 > 0 such that for every initial string Xp with
%0 — %.]] < & one has |[%x— %|| <¢ for all k>0. The constant
solution will be called asymptotically stable if it is stable and
limy 00 ”fk — f*” ={.

A periodic solution pyr = {p1,p2,. .., PasP1: 02, -}, M 2 N+,
will be called asymptotically ‘stable with the asymptotic phase if
there exists §>0 such that for every initial string ¥ ={x_n,
XoNgls - s X1, X0} With (P15« oy Pvct) — (X -+« » X0)]| < 6 the corre-
sponding solution ¥ := {x_n,..., X0, X1, %2, ..., Xn, ...} has the prop-

certy: limy oo |EY — Paryill =0 for some je{0,...,M -1}, where
fgf = {xM(k_1)+1, —— ka}, and PMH = {pj.|.1, e s DM P - ,pj}.

4 MAIN RESULTS

41 Continuous Dependence onthe Parameter

THEOREM 4.1 (Continuous dependence on p) Let I:=[a,b] be a
closed interval and let f{I):=[c,d]. For every o>0 there exists
pio= jio(0") such that for every initial string Xo = {X—_n,.. ., %1, xp} €1
the first string % = {x1,%a,...,Xns+1} has the property %1 € [c— o,
d+ gl for all 0 < pp < pg.
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Proof We estimate first the difference x; —f{x_p). From Eq. (1.2)
one finds: ' ‘

%1~ f{x-n)]
B i ap
= Xo +—fAx_n}— X_ —Xx_n)—flx_
=t w) #+1( Nt ~) —Sx-n)
lorlps 7
< Nl — X — e <u- M,
_#_HIXNH xN|+u+1’x0 fx_w)| < p

where M >0 is a constant depending on «,a,b,¢,d only. In the same
way one derives |x, 1 —fAx,_n)| <p-M,n=1,2,...,N. The last step
in this demonstration (that is, for n=N) is slightly different from the
others, because from (1.2) it is seen that xy,, depends on x; as well as
on values in the initial string. The statement of the theorem follows.

CoRrOLLARY 4.1 (Invariance Property) Let I be a closed interval such
that I CintI, where int I is the interior part of 1. There exists >0
such that for every initial string {x_y, ..., x_1, Xg} €I the corresponding
solution x, of Eq. (1.1) has the property: x, €1l for all n > 1 and any
ke (Os NO]'

Proof This follows from Theorem 4.1 with I:=[a, ], fI):=[c,d],
and the fact that [¢, d]C (a, b). o of Theorem 4.1 can be chosen then as
o:=min{c—a,b—d}.

COROLLARY 4.2 Let I be an arbitrary closed interval. For every positive
integer m and o >0 there exists pg = pofc, m) such that for every initial
string X = {X_n,...,X_1,X%} €I one has. X, € [inf{/(D}—o,
sup{ (D)} + a], where X, is the mth string of the corresponding solution
and [ is the mth iteration of the map f.

Proof It follows from Theorem 4.1 and the induction argument.

4.2 Existence of Slowly Oscillating Periodic Solutions

Throughout this subsection we assume that the function f{(x) satisfies
the negative feedback condition:

xf(x} <0 forall x€R, x#0. (nf)




114 K.L. COOKE AND AF. IVANOV

Condition (nf) implies that x, =0 is the only constant solution of
Eq. (1.1). Note that the negative feedback condition with respect to a
non-zero constant solution can be reduced to the above form of (nf)
by an appropriate change of variables.

THEOREM 4.2 Assume that the map [ has an invariant closed interval I
such that f{iI) Cint I and x=10 is a hyperbolic repelling fixed point, that
is, f1(0) < —1. There exists j1o> 0 such that for every p € (0, po} £q. (1.1)
has a slowly oscillating periodic solution.

Proof Let I:=[a,b] be the invariant interval with f{[a, b)) C (a, b).
Condition (nf) implies that @ <0 < b. Condition f'(0) < —1 implies that
there exists >0 such that f[6,5]) C (a, —8), fla, —6]) C(6,b). Con-
sider the set of initial strings defined by

| Sp i= {%o = (X_n, X_Ny1s - - s X_1,X0) | Xi € [6, 0]

Vie {-N,...,—1,0}}.

Obviously Sy is a compact convex set.

Let % = %a(%o) := {Xns2,...,X2n43} be the second string of the
solution corresponding to the initial string %o. Define a mapping F of
the set Sy into itself by

F(J—Co) = X3.

Obviously Fis a continuous mapping.

Coroliary 4.2 implies that there exists yo > 0 such that %, € {4, b] for
every 0<p < po. Therefore, F indeed maps Sp into itself. By the
Schauder fixed point theorem F has a fixed point %5 € So. Clearly, %5
generates a slowly oscillating periodic solution of Eq. (1.1).

4.3 Existence and Stability of Periodic Solutions
" Corresponding to Attracting Cycles of the Map f

TUEOREM 4.3 Assume that the map f has a hyperbolic attracting cycle
of period m: B={Bo, 1, ... Lm-1}, SJIB)=LBir1, i=0,1,...,m—1
(m:=0), \:=1f"(B) f(B)- ... [ (Bm-1)| <1. There exists jio>0
such that for every p€(0, o} Eq. (1.1) has a slowly oscillating with
respect to cycle 3 periodic solution which is asymptotically stable with
the asymptotic phase.
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Proof The existence part repeats the proof of Theorem 4.2 with the
cycle of intervals of period two being replaced by the cycle of intervals
of period m. Indeed, since 8 is a hyperbolic attracting cycle, there exists
a closed interval [a, b] about point Sg such that f7([a, b]) C(a, b). Now
one defines Sy in a similar way based on the interval [a, 5], and also
defines the mapping F by taking the mth string of the solution, and then
applies the Schauder fixed point theorem. We leave details to the reader.

Stability of the periodic solution will be proved by using two facts:
(a) the closeness of the corresponding strings of the periodic solution
to the cycle 4, and (b) linearization of the difference equation along
the periodic solution.

(a) Let the periodic solution be determined by the initial string
%o € [a, b], where [a, b] is the interval containing 5, from the existence
part. Then, due to the continuous dependence on u, Corollary 4.2, for
every o>0 there exists po>0 such that ||%x — B¢} <o for all
0<k<m—1and 0 <p< g, where Xy is the kth string of the periodic
solution and f; is the string with all elements equal to fi. In
particular, the interval [, b] and o can be chosen in such a way that

L' (z0) - S (z) oo 1 (zm-1)| <6 <1
for all z ef*([a,b]), k=0,1,...,m—1.

(b) The difference equation (1.1) is equivalent to the following
(N + 1)-dimensional map:

7 |
F: 130 4 E I
(}’0 »1 yN) (#+IYO+M+1f(yN)

o _
+ _H(J’N yN—l):yOaYb---;J’Nq)-
The periodic solution of Eq. (1.1), made up of the strings

% ={ Osxla N

C Xt = {JC:)n_I:x'In_la- . -,x}t’r—]}:

corresponds to a cycle of period (N + 1)m of the map F.
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The cycle is made up of the set of points {J;:= F'(%),i=
0,...,(N+ 1)m— 1}, Tts stability is determined by the location of the
eigenvalues of the corresponding linearized map along the cycle:

Ay, v= i m— or ),

| oy ™"
where OF/8y is the Jacobian of the map F.
One has:
or _
dy
[u/ptl 0 0 . —ap/(pt1) (1/(pt1)) -f'Ow) e/ (pr1))
1 0 0 0 0
0 1 0 0 ' 0
) 0 1 0 0

K 0 0o 0 ... 1 0 . )
Set A 1= 8F/8y|,_; . Then A, = r{ ™14,

We shall use next the fact that eigenvalues of 4, depend continu-
ously on p at =0, Let p=0. Then

0 0 0 0 f(w)

1 0 0 0 0
B—F =0 1 0 0 0
Y |0

0O 0 0 ... 1 0

From the matrix’s characteristic equation X' —f’(y,)=0 it follows
that any eigenvalue ) satisfies the inequality |\ <] f"(yN)}]/ (V)

Therefore, since Ag in the hypothesis of Theorem 4.3 is less than 1, any

cigenvalue A of matrix 4y = ﬂggg l)m_IA? satisfies the inequality

A
USRS GR) o GRS x) S ) S ) S RO

< §M < 1.

This completes the proof of the stability part.
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4.4 Further Remarks,Conclusion, and Future Directions

1. We first note that the periodic solution of Theorem 4.3 is not a
unique periodic solution of Eq. (1.1) that is close to a particular cycle
B={Bo, ..., m—1}. The nonuniqueness follows from a simple observa-
tion that in the proof of the existence part the initial string %o =
{x_N,X_N41,...,%_1,X0} in general does not have to belong to a
sufficiently small neighborhood of a single point of the cycle 8. If, for
example, parts of the initial string X, are chosen to belong to
sufficiently small neighborhoods of two different points of the cycle 8
the corresponding solution will converge as n—oo to a different
periodic solution. To obtain the latter periodic solution one has to
construct an appropriate set of initial strings, and to apply the
Schauder fixed point theorem in essentially the same way as it was
done in Theorem 4.2/Theorem 4.3. The periodic solution obtained is.
asymptotically stable with the asymptotic phase — the proof of this
fact repeats the main points of the stability part in the proof of
Theorem 4.3.

Now it is rather obvious that any combination of the elements of
the initial string ¥, belonging to the appropriate neighborhoods of
two or more points of the cycle § will result in, generally speaking, a
different periodic solution. The periodic solution can be proved to be
asymptotically stable with the asymptotic phase.

2. Our main results, Theorems 4.2 and 4.3, also remain valid for the
difference equation (2.5). This fact follows from the analysis of the
corresponding proofs — their basic steps remain the same.

We note that the same resulits as described by Theorems 4.2 and 4.3
can be obtained for a difference equation resulting from the backward
Buler discretization of (1.3) at x(¢), and any Euler discretization at
%(t — 1) (backward, forward, or symmetric) with the same discretiza-
tion step.

3. Our third remark is about the asymptotic shape as 4 — 0+ of the
periodic solution in Theorem 4.3. As it can be easily seen from the con-
struction of the mapping F (see proof of Theorems 4.2 and 4.3), and the
continuous dependence on the parameter p (Theorem 4.1) the periodic
solution of Theorem 4.3 converges as p— 0+ to a periodic function
B defined by the consecutive sequence of the strings Gy, Bi, .+« - » Bt

thatis, 5 := {Bos--sB0> Brs---sBrs-s Buts- > Bus }- The function

o

N1 N+1 N+




118 K.L. COOKE AND A.F. IVANOV

B is a periodic solution of the limiting (2 =0) Eq. (3.1). Likewise, a
corresponding convergence takes place for any other periodic solution
described in Remark 1 of this subsection.

A principal implication of the results of this paper is that the
dynamics of singularly perturbed delay differential equations of the
form (1.3) and (1.4) are generally speaking essentially different from
those determined by their Euler discretizations, the corresponding
difference equations (1.1). This in turn implies that in some cases the
results of numerical simulations of Egs. (1.3) and (1.4) may be
irrelevant to the actual dynamics in the differential equations. This is
true at least for the Buler numerical schemes. An important question
of interest here is whether this phenomenon persists for other standard
numerical schemes of solving delay differential equations.
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