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1. INTRODUCTION

Consider the differential delay equation

d d
(8",;[-% 1)“'(8021—,+ 1) yy=7(yt—1)), (1.1)

where fe C(R, R) and ¢ = (g, ... &,,) € R7 "' = (0, cv)”*'. Equation (1.1) is
equivalent to the system
o Xoll) + Xo(1) = x,(1)

(1.2)

£ 'i.m ]([)+xmr l(t)zxm(t)

EmX (1) + X, (1) = [xo(1 — 1)).

o1

Our objective is to give some conditions on the nonlinear function f
which will either ensure the stability of an equilibrium solution of (1.1) or
the existence of a slowly oscillating periodic solution of (1.1).

To describe the results, we need some notation. Let x=
col(xg, X1,y o X,)=col(y, z) e R™ !, where z=col(x, .., x,,)eR™. If we
define X=C([ —1,0], R)xR"™, then, for any ¥ =(¢, £)e X, there is a
unique solution x(r) = x(t, & ¥)=col(y(¢), z(¢+)) which exists for all 1=0
and satisfies the initial condition y(0)=@(0), 8e [ —1,0], z(0)=z,. If we
define y,(0)=y(r+0), 0[—1,0], and

T.(t)y =col(y,, z(1)), (1.3)
then T.(1): X —» X, 120, is a C°semigroup.
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For any interval /e R (closed or open), let X,=C([—1,0], I)x I'"". Our
first result is

THEOREM 1.1 (Positive Invariance). If I is an interval such that f(I)c I,
then T (t) X, X, for t 20,

If x, is a fixed point of f, then x} =col(x,, ..., x,) € X is an equilibrium
point of (1.2) and conversely. If x; is an attracting fixed point of f, we say
that an interval J is the maximal interval of attraction of x, if x,€J,
fihcd, f"(x)— x, as n— o for each xeJ and there is no interval J' o J
with this property. We remark that the maximal interval of attraction is
open.

THEOREM 1.2 (Stability). If x, is an attracting fixed point of f with maxi-
mal interval of attraction J, then the equilibrium solution x¥ of (1.2) is
asymptotically stable and, for each y € X, and every e€ R” ', we have

lim 7,(0) = x&

1= L

Theorems 1.1 and 1.2 are extensions of results of Ivanov and Sharkovsky
[4] for the scalar case m = 0.

We say that a continuous scalar function u: [¢,, 0) — R oscillates if it
has arbitrarily large zeros. We say that u oscillates with respect to a
constant function u, if u—u, oscillates. A continuous vector function
x: [ty, o0):> R”* " is said to be slowly oscillating if each component of x
oscillates and the distance between zeros is greater than 1.

THEOREM 1.3 (Existence of a Slowly Oscillating Periodic Solution).
Suppose that I is a bounded interval such that f(I)< I, xoe€ 1 is a fixed point
of [ with f'(xg)< —1, and (y —x){ f(y)—x,]1<0 for y+#x, (negative
feedback). Then there exists 6 >0 such that, for each c€ (0, )"t ", system
(1.2} has a slowly oscillating periodic solution.

For m=0, Theorem 1.3 has been given by Hadeler and Tomiuk [2]
and, for m=1, by an der Heiden [1] without restrictions on the
parameters ¢ except those, of course, which imply that the origin is
unstable. We prove the result for arbitrary m, but require that |¢| is small.

We remark that the above results hold true if we consider the equation

d d
(71712;-*_ am) “.<§0E+a0) _V([):f(v("_ l ))’

where each &, a; is positive. It is simply a scaled version of (1.1) with
£;=&,/a; and f replaced by f/u, ... a,,.
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2. PROOF OF THEOREM 1.1
We need the following auxiliary result.

Lemma 2.1. Suppose that I is an interval (open or closed) and
a: [0, ¢ ) = R is a continuous function with values in I. If ¢ >0 is a constant
and u(t), 1 20, is a solution of the equation

ou(t)+u(t)y=a(r) (2.1)

satisfying u(0)e I, then u(t)el for t 2 0.

Proof. Let =[x, ] and suppose that the conclusion of the lemma is
not true. Then there is a first time ¢, > 0 at which the solution leaves /. To
be specific, suppose that u(z,)=pf and every interval (¢y, t,+3), 6>0,
contains a point t such that u(t)> . This interval also must contain a
point s such that u(s) > f and u#(s) > 0. On the other hand, it follows from
(2.1) that u(s) <0, which is a contradiction. The case u(7,) = a is discussed
in a similar way to complete the proof.

To prove Theorem 1.1, we use the assumptions that f(/)= / and Y € X,
together with Lemma 2.1 to observe that x,(z)e ! for 0 <r< 1. Using this
fact and the mth equation in (1.2), we see that x, _,(t}el for 0<r< 1.
Proceeding in this way, we observe that x,(¢)eIfor0<r<1,i=0,1, .., m.
This implies that T, ()Y e X, for 0<t< 1. The proof is completed by an
induction argument.

3. PROOF OF THEOREM 1.2
We need the following auxiliary result.

LEMMA 3.1.  Suppose that K, L are intervals in R with K < L and consider
Eq. (2.1) with a(t)e K for t 20. Let L, be any interval satisfying K< L, c L
and L # L, # K if such an interval exists. Otherwise, let L, =K. If u(t) is the
solution of (2.1) with u(0)=ugy€ L, then, there is a time ty=1ty(u,, L) such
that u(tye L, for all t = 1t,.

Proof. 1If there is a time ¢, such that u(t,)€ K, then Lemma 2.1 implies
that u(s)e K for 21, and Lemma 3.1 is proved.

Therefore, we may assume that u(¢)¢ K for all 1= 0. To be specific, let
us assume that u(r)>sup K=sup{be K} for +>0. Then (2.1) implies that
u(t) <O for all 7> 0 and, thus, u(¢) - u, as t - . If u, =sup K, the lemma
is proved. If 4, >sup K, then u(?)=[ —u(t)+ a(t)]/o < [sup K—u,]/o <0
for sufficiently large ¢ This implies that w(r) - —oc as ¢— oc, which
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contradicts the fact that u(¢)> sup K for 1= 0. The case where u(¢) <inf K
is treated in a similar way.

We now turn to the proof of Theorem 1.2. Fix ¢ For any yeX,, we
have T.(1)y € X, from Theorem 1.1.

Let a=min{min |_ ,_o@(s), X0, ., x0}, B=max{max ., ., (s),
XV, ... xU 1, let L be the minimal interval containing [«, ] such that
f(L)c L, and define K= f(L).

Our first objective i1s to prove the following Claim: For any o >0, there
is a set L, = [inf K— 9, sup K+ 9] satisfying the conditions of Lemma 3.1
and a time 1, such that T, ()Y e X, for 1 =1,

Let L, be any interval satisfying the conditions of L, in Lemma 3.1 and
consider the (m + 1)st equation of system (1.2). From Lemma 3.1, there
exists a ¢ >0 such that x,(t)e L, for all 1>1°. Now redefine K= L, and
choose L, with L > L, o K satisfying the conditions of L, in Lemma 3.1. If
we consider the mth equation of system (1.2), then Lemma 3.1 implies that
there exists 2 >0 such that x,, (1)e L, for all t=¢2 . We continue
in this way through the first equation of system (1.2} to obtain
xo(t)eL, | forallr> 15. We can obviously choose the intervals Z, so that
Licl,c - .-cL, . c[infK—3,sup K+ 5] for any fixed é > 0. If we let
re=max{r% .., 1%}, then we have proved the claim.

With the initial L as above, the attractivity of the fixed point x, of f
implies that L= f(L)y> f*(L)> --- and (),.o/f"(L)={x,}. We may
repeat the above argument with L, K replaced by f*(L), f**'(L) to obtain
an interval L, f*(L) and T/(t)yeX,, for all t>¢,. This obviously
completes the proof.

4. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 follows the standard procedure of obtaining a
mapping of a cone into itself with an ejective fixed point with some special
modifications due to Hadeler and Tomiuk [27]. We recall these concepts.

DEerINITION 4.1, Suppose that X is a Banach space, U is a subset of X,
and x is a given point in U. Given a map 4: U\{x} — X, the point xe U
is said to be an ejective point of A if there is an open neighborhood G = X
of x such that, for every ye G n U, y # x, there is an integer m =m( ) such
that A"v¢ G U.

We need also the following theorem of Nussbaum [5] (see also [3]).
THEOREM 4.2. [If K is a closed, bounded, convex infinite-dimensional set

in X, A: K\ {x,} - K is completely continuous, and x, €K is an ejective
point of A, then there is a fixed point of A in K\{x,}.
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We first construct the set K. Let I be an interval such that f(/) < I, let
xo€l be a fixed point of f with f'(x,) < —1, and f satisfies the negative
feedback condition: (x — xg)[ f(x)—x,] <0 for x# x,. Without loss of
generality, we may assume that x,=0. We now define

K={yeX,; p(—=1)=0, @(s)>0, o(s)el, o(s)e"™
nondecreasing forse [ —1,0], x,020,i=1,2, .., m}.

LEMMA 4.3. Let € K be arbitrary and suppose that the solution T (t)y
of (1.2) has the property that its first component x(t) oscillates. Then

(1) all zeros of x,(t) are simple and distances between successive zeros
are larger than 1,

(1)  between each two successive zeros o and B, « < f§, of xy(t), there
exists only one zero 7' of x,(1), i=1,2, .,m,and y'—a>1 and y" <y "' <
.« < ~,v 1;

(1) if a is a zero of xu(t), then |x(1)exp(t/ey)| is nondecreasing for
tefa, 2+ 1]

Proof. Let T>0 be fixed and consider Eq. (2.1). If 4(0)>0 and a(1)=0
for re [0, T], then it is obvious that u(r)>0 for all re [0, T]. From the
form of system (1.2) and the assumption that x,(7) oscillates, it follows that
each x,(r), i=1,.., m, must have a zero. Furthermore, 1if t?>0 1s the first
zero of x,(r), then it is easy to see that there exist 0< sy < - <t{ <t
such that x,(1/)=0, i=1,0, 1, .., m, and these are the first such zeros.

Since f(xy(t—1))<0 for te(—1,¢?), it follows that /7 is a simple zero
of x,,(1) and x,,(1) <0 for re (7, t9). Using the same type of reasoning, we
see that x,(1) <O for te(t}, 19+ 1) for each i=0, 1, .., m and each of the
zeros is simple. Since x,(z)<0 for te (19, 19+ 1), the first equation of
system (1.2) implies that (d/dr)[ x,(1) exp(t/e,)] <0, which implies that the
function |x,(¢) exp(t/ey)| is nondecreasing on [¢, t9+ 1]. This completes
the proof for the first two successive zeros of xy(¢). It is clear that the other
situations can be treated in the same way.

Lemma 44. If'(0)<0 and yf(y) <O for y #0, then there exists a >0
such that, for every ¢ satisfying 0<g; <9, i=0,1,.,m, all solutions of
Eg. (1.1) oscillate.

Proof. Suppose that x(1) = col(xy(r), x,(f), .., x,,(t)) is a nonoscillatory

solution of system (1.2). Then there must be one component of x(r), say
x,.{(1), that 1s nonoscillatory.

Claim 1. There is a 1, such that every component x,(7) of x(r) has a
fixed sign for 1 > 1,.
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To prove this, we make the following observation: If v(r) is a given
function of constant sign for large ¢ and u(r) is a nonzero solution of
du(r) + u(t)=uv(r), 6 >0, then there is a 1, such that u(s) is of constant sign
for t>1t,. In fact, if v(s) is of constant sign for r>1t, and either
u(ty) v(ty) >0 or u(ty) =0, then the variation of constants formula implies
that w(7) v(1) >0 for t>1y. If u(ty) v(ty) <0, then u(t) is strictly monotone
near t, and, therefore, either u(¢) v(r) <0 for 1> 1, or u(1,) v(s,) eventually
becomes positive and remains so.

We can now apply this remark to (1.2) to see that x, ,(¢) is non-
oscillatory. Proceeding in this way, we observe that x,(¢) is nonoscillatory.
From the (m + [)st equation in (1.2), it follows that x,,(¢) is nonoscillatory.
The proof that the other components of x(r) are nonoscillatory is
completed using the same argument as before. This completes the proof of
the claim.

From Claim 1, we know that every component of x(¢) is nonoscillatory.
For definiteness, suppose that x,(7)>0 for re(z,, oo} (the case where
Xo(1) <0 is analogous). Let x,(t), k=0, be the last component of x(r)
which is positive for large t. Therefore, x,(¢) <0 for j> k.

Claim 2. Every component x,(t) of x(r) approaches 0 as t— oo and
there is a 7, such that each x,(¢) is strictly monotone for 7> ¢,.

To prove this, let us first suppose that Kk =m. From (1.2) and the fact
that f(x(t—1))<0 for t>1t,+1, it follows that x,(r) is a strictly
monotone decreasing function. This implies that there is a constant ¢ such
that x,,(t) — ¢ as 1 — oc. From (1.2), this implies that all x, (1) > ¢ as 1 —»
for all 0 < j<<m. On the other hand, using the last equation in (1.2), we see
that x,,(7) — f(&) as t — oo, Thus, (&)= &, which implies that {=0.

Since x,,(¢) is strictly monotone for large 1, we see that x,, ,(7) is strictly
monotone from the following fact: if the function v(t) has fixed sign and is
strictly monotone, then every solution of the equation du(r) + w(¢)=v(t) is
eventually strictly monotone. If this statement were not true, then we
would have two distinct points 7, > 1, such that u(z,)=v(t,), u(ty) =v(ty).
For definiteness, suppose that v(¢) >0 and v(s) < v(s) for all ¢ > 5. Using the
variation of constants formula, we have

b 1 |
e° Yy to)u([])= U(’o) +_“[ o’ (s ""U(s)ds
0 n
>v(ty) +v(t,)[e° Yoo _ 1,
and this last relation leads to the contradiction v(z,) > v(t,).

We can now use the same argument to see that each component of x(7)
is eventually strictly monotone.
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If k<m, then x,(r) is eventually strictly monotone since
Xi(1) x,, (1) <O for large 1. Now we can use the same argument as in the
previous case to see that x,(7) is eventually strictly monotone for 0 < j<k.
Since x,(t1)—0 as r— o« and f'(0)<O0, it follows that the function
Slxo(t—1)) is eventually strictly monotone. Therefore, we will have that
x,,(t) 1s eventually strictly monotone. Now we can continue the argument
to complete the proof of Claim 2.

Claim 3. 1If x,(¢t} and x,, (t) eventually have the same sign, then there
is a 14 such that Jx, (1) > |x,, (1)) for t=1,.

To be specific, suppose that x,(7)>0, x,,,(r)>0, and that both are
strictly monotone decreasing for t>1¢,. Then the variation of constants
formula for x,(¢) implies that

1 1 ¢ 1
x;()=x,(t)e “ “"'”—l——' e Ut Vx (s)ds
&ivn

2 \'-(l|)€ £, '11 - r|;+xi+ l(t)-l're rl;l"ir .\'ids
M
& "

=x, () + [x 1) —x,, ()] e
>x|+ l(t)

for large t since x;, (71)—0 as t— o0 and x;(f,)>0. This completes the

proof of Claim 3.
Claim 3 implies that x,(r)>...>x (1) >0>x,(1)>...>x; ,,(¢) for all
t = ¢, with ¢, sufficiently large. Therefore,

gk'x.-k(t) +xk(r) =xk+ l(t) <xm(’) =_f(x0(’_ I )) _Em"em(t)

<f(r\'0(’ - 1))<f(xk+ 1“_ ).

Therefore, there is an # >0 and a t, such that a= f'(0})+#n <0 and, for
t=1,, we have

X (D) x (1)< ax, (1 —1)

Using the variation of constants formula on the interval [¢, t + 1], we have

! ! i
X (t+ 1)< x(tye Vo4 — aJ- et Dy (s) ds,
&g r-l

which clearly contradicts the fact that x,.(¢) >0 if ¢, is small enough. This
completes the proof of Lemma 4.4.
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Our next objective is to define a map A: K— K. From Lemma 4.4, we
know that x,(¢) oscillates. From Lemma 4.3, we have —T,(+{+ 1)y e K. If
#9 is the second zero of x,(¢), then T,(t3+ 1)y € K. Therefore, we define

Ap=T,(2+ 1) for yek {4.1)

It is natural to extend the definition of 4 to the closure K of K by setting
A0 =0.

The set K is closed bounded and convex. Following the same proof as in
Hadeler and Tomiuk [27], we see that A4 is a completely continuous map
on K. As a first step in showing that 0 is an ejective fixed point of 4, we
need specific information about the characteristic equation

(e A+ 1) (6gh+1)—ae *=0, a= f'(0), (4.2)

corresponding to the linear variational equation of (1.1) about the origin:

d d
(t:,,,~a,—[+ 1) - --(sOE+ l) y()y=ay(t—1). (4.3)

LemMMA 4.5, There exists a 0>0 such that, for every ¢ with 0 <¢g, <6,
=0, 1, ... m, the characteristic equation (4.2) has a solution iy= p+ iv with
u>0, o<v<m

Proof. For £¢=0, there is a solution of (4.2) with z=1n |a|, v=n. This
solution also is simple. By Rouché’s Theorem, there exists a 4 >0 and a
neighborhood U of u+iv in the complex plane such that, for 0 <g, <4,
i=0,1, .., m, there is a unique solution y(e)+ iv(e) of (4.2) in U. To show
that v(e)<n for & sufficiently small, it is enough to show that
(&v/3e,)(0) <0 for all i. Setting A= pu(e) + iv(e) in (4.2), differentiating with
respect to ¢;, and setting £ =0, we deduce that the imaginary part of the
resulting expression satisfies

~

v(0) + ae "%(cos v(0)) ;—‘ (0)=0.
e,
Since ae *““(cosv(0))=1, this implies that (0v/@¢,)(0)= —n<O,

i=0, 1, .., m This completes the proof.

LEMMA 4.6. There exists a >0 such that, for every ¢ with 0 <g; <9,
i=0,1, .., m, the fixed point 0 of A is ejective.

Proof. To prove the ejectivity of the fixed point 0 of 4, we plan to use
some general results from [3, Chap. 11]. To do this, we need some specific
but elementary facts about the linear equation (4.3).
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We may write (4.3) as a system of equations

X(1y=Cx(t)+ Dx{t—1), (4.4)
where
— —_ — ... 0 0
£, &g —0 0 - 0 07
1 1 0o 0 -.
0 0 B 00
£ 3
moo 1 Em Il _a_ 0 0 O
O 0 0 o _gm et
b 8'?1

The equation adjoint to (4.4) (see [3]) is

(-;d—w(s) = —w(s) C—w(s+ 1)D, (4.5)
s

where we (R”* ")* is an (m + 1)-dimensional row vector. From the form of
the matrix D, the initial data for (4.5) is taken in the space X* = (R")* x
([0, 1], R).

For any ¢*= (5, {)e X* and any ¢ = (¢, £) € X, there is an associated
bilinear form

sl

(¥*, ¢)=y¢*(0) y(0) +_|0 C(a)(afe,,) ploa—1) do. (4.6)

Let 4, be the solution of (4.2) guaranteed by Lemma 4.5. A few computa-
tions show that a corresponding eigenfunction of (4.5) is given by

l//:)(g) =e )-(“[80(81 ;'() + l) e (8111/:() + ] )9 8](82;'() + 1) e (8177;‘() + 1 )# ey gm:l'

The results in [3, Lemma 4.4, Chap. 11] imply that the fixed point 0 of A
1s ejective if

inf{[(y*. ¢¥): ek, |yl =1}>0, (4.7)
where, for y = (¢, {), {=col(x,, .., x,,), we define
Y| =max{ fn<ax<0 lo(sH, 1x ]y s | X0 3

409 173 213
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For any y € K, we let (Y%, y)=R(y)+il(y), where R(y) and I(y) are
real. Using (4.6) and the expression for ¥¥, we see that (we have put
0(0) = x,)

IW)="Tegle,+ ...+, xpo+e (et ...+e, )X+ €, (Ea%, 1] vu(0)

+a Jl e sin(v(0)a) (2 — 1) da + O(Jg]).
[}

)

We claim next that there exists an index ie {0, 1,..,m} such that x,>
exp{ —1/e;}. In fact, since || =1, it follows that either x,=1 for some
ie{l,2,..m} or max |_,_.,l@(s}{=1. In the first case, the claim is
obvious. In the second one, since @(s)exp{s/s,} is increasing, we have
Xo=0(0)2max | .,co@(s)exp!—1/e,}. This proves the claim.

Finally, since the kernel in the integral term of /(y) is positive, we have
HYy)=c=c(e)>0, for |e] <J and Y| = 1. This obviously implies that (4.7)
is satisfied and completes the proof of the lemma.

Theorem 1.3 is now a consequence of Theorem 4.2.
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