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Abstract. In this paper we show that first order differential delay equations with

negative feedback can possess asymptotically stable rapidly oscillating solutions.

We construct an analytically tractable example in which the feedback is plecewise

constant. In this case, the continuous-time dynamics on a proper subset of the

phase space can be reduced exactly to a three-dimensional discrete-time map. The

existence and stability properkies of the delay equation’s rapidly oscillating periodic
solutions are given by the existence and stability of one of the fixed points of

the corresponding map. When the feedback is smoothed appropriately, the stable

rapidly oscillating periodic solution is shown to persist.

1. Introduction. Delay differential equations play an important role in
attempts to model the dynamics of many control mechanisms encountered in
felds of research as diverse as physiology, nonlinear optics and economy. To
mention a few applications, the oscillations of neutrophil populations in cer-
tain cases of chronic myelogenous leukemia [7] and the dynamics of the pupil
light reflex [5} were investigated using scalar first order delay equations. Sim-
ilar models were used to explain the origin of the four-year cycle in the price
of pork-bellies [6], as well as the transmission properties of various nonlin-
ear resonant cavities [3]. Frequently, though by no means exclusively, those
systems are governed by negative feedback mechanisms, meaning that a de-
viation in the state variable from a steady state is followed by the movement
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of the system in the opposite direction (mathematically this type of feedback
is described by formula (2) below). In first order scalar delay equations with
a single delay, the presence of negative feedback implies that solutions with
consecutive zeros spaced apart by distances larger than the delay tend to be
“typical”®, or frequently encountered. Such solutions are referred to as bemg
slowly oscillating (see the exact definition below),

Recently scalar delay equations with negative feedback have been the
focus of intense scrutiny (cf. the review [4] and references therein). Their
dynamics is relatively well understood, and various phenomena characteristic
of nonlinear (semijdynamical systems, such as period doubling bifurcations,
and chaotic behavior have been observed and rigorously proved. In spite of
this theoretical activity, many mathematically challenging problems remain
unsolved. One of them is the existence of asymptotically stable rapidly
oscillating periodic solutions. In this paper we propose to prove the existence
of such solutions in a specific class of scalar delay equations.

The paper is organized as follows. Section 2 presents an overview of some
important concepts relevant to our description of delayed dynamics. The
Morse decomposition of attractors is briefly discussed. Section 3 introduces
a first order delay equation with a piecewise constant nonlinearity which is
then reduced to a three-dimensional discrete-time map, whose fixed points
represent the rapidly oscillating solution of the original delay equation. The
stability of these fixed points is then investigated in Section 4. Section 5
extends our main results to smooth feedback situations. Section 6 briefly
reflects on the numerical aspects of the paper.

2. Preliminaries and description of main result. In this paper, we
consider equations of the form

i(t) = —an(t) + Fla(t - 1)), a>0 )
where the nonlinearity F' satisfies the negative Ifeedback condition
xF(z) <0, Yz #£0. (2)

As usual, a solution of equation (1) is a continuous function on [—1,co)
satisfying (1) for ¢ > 0. For every initial function ¢ from C := C([-1,0],R)
the corresponding solution z,(t) is readily obtained by integrating (1) for ¢ >
0. A solution of equation (1} is called slowly oscillating if the time interval
between subsequent zeros is greater than the delay 1. Such solutions play an
important role in many differential delay systems because they are frequently
_encountered {a notion taken up below more precisely when we discuss the
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Morse decomposition of the attractors for delay equations). Equation (1)
can be viewed as generating a dynamical system on C' with the semiflow F*
- defined by (F*)p(s) = z,(t+3), s€ [~1,0]. A more detailed presentation
can be found e.g. in [2].

The set S of all slowly oscillating solutions of (1) is open: any sufficiently
small perturbation of an initial function for a slowly oscillating solution gives
rise to another slowly oscillating solution. The set S is also large in the sense
that any initial function ¢ € K gives rise to a slowly oscillating solution,
where K is defined by K = {¢ € C([—~1,0]) | ¢(t) has at most one zero in
[—1,0]} (one has to assume that F/(0) < —1/e to guarantee the oscillation
of all solutions of (1)).

It is also of interest to investigate the structure of the set 8¥ ¢ C of
all initial functions whose elements give rise to eventually slowly oscillating
solutions (z, (¢} is called eventually slowly oscillating if there exists time
T = T(p) such that z,(t} is slowly oscillating for all £ > T). Clearly, 8
is open in C. A solution which is not eventually slowly oscillating is called
rapidly oscillating.

Recently it was proved in [10] that the set S¥ is dense in C provided
F(z) is decreasing and either sup F(z) < co or inf F(z) > —co. This shows
that rapid oscillations are rare in delay equations with monotone negative
feedback. A natural question here is whether this resul$ holds for nonmono-
tonic negative feedback nonlinearities. Our example shows that in general
it does not, and that rapid oscillations can be typical. More specifically, a
consequence of our work is that the complementary set C'\ S¥ may contain
an open subset when F' in not monotone.

Our example also provides a deeper insight into possible structure of the
Morse decomposition for differential delay equations with the negative feed-
back, which was introduced and studied in {8,9], Under certain assumptions
equation (1) has a global attractor § consisting of bounded solutions de-
fined for all £ € R, Those assumptions require, for example, that F € C%® is
bounded from below or above, and 0 is an unstable hyperbolic equilibrium
of equation (1) {for more details see [8]). The attractor Q has the Morse de-
composition =S US  US3USsU -+ USan41, So := {0}, where the Morse
sets S,k =0,1,3,5,...,2N + 1, are invariant under the semiflow defined
by equation (1). Each set Sy contains solutions which appropriately normal-
ized projections (x,(—1) = 0} onto C have exactly %k zeros; in particular,
. every S; contains a periodic solution. Every solution ,(¢) € C is attracted
by one of the sets Sy at both positive and negative (if extendable) infinity:
- w(zy(t)) C Smya(ze(t)) C S, with m < n, where w() and () stand for

w- and o-limit sets respectively. The set S; consists of slowly oscillating
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solutions while every Sg, & > 1, contains only rapidly oscillating solutions.
The Morse decomposition shows the gradient-like structure of the dynamics
of equation (1) with negative feedback: as ¢ increases the motion either stays
on one of the invariant sets or else can only go from Morse sets with larger
indices to those with smaller ones. Determining the detailed structure of
Morse sets is generally a challenging problem. In fact, at this point, little is
known besides the nonemptyness of each set and the existence of connecting
solutions {cf. {1, 11}}.

In the case of a monotone nonlinearity F, as the above mentioned result
from [10] shows, the generic motion is the one which eventually rests on the
set §;. All other motions are exceptional. Our example shows that in the
case of nonmonotone nonlinearities sets Sg, & > 1, can be large enough. In
particular, they may contain attracting periodic solutions,

In the present paper we investigate an equation of the form (1) which
possesses an asymptotically stable periodic solution which is not slowly os-
cillating: in fact, it belongs to the set S3 of the Morse decomposition.

Ag a first step in our construction, we consider a piecewise constant non-
linearity F' characterized by 6 real parameters a, b, ¢, d, 01, 82 {the exact def-
inition is given below in Section 3 and illustrated in Figure 1). This simple
functional form allows us a direct integration of the delay equation (1), and
the solutions are found to be piecewise exponential continuous functions for
all t > 0. For a specific choice of the parameters, namely a = 6, b = 14,
¢=—13.5,d = —3.85, 6, = —0: = 1/3, @ = 7.75, it is possible to define a
set I of initial functions, characterized by three real parameters, such that
corresponding solutions belong to I agaiu for some ¢ > 0.

The dynamics of the delay equation on the set ID can be explicitly reduced
to a three-dimensional discrete map @. To be more specific, let ¢ € C besuch
that also ¢ € D. Then ¢ is uniquely characterized by three real parameters
u, v, and h, and there exists a uniquely determined solution z, (2} of the delay
equation {1) through ¢ for all t > 0. For every ¢ € ID there exists first time
T = T(p) > 0 such that (FT)p(s) = z,(T + s), s € [-1,0], is an element
of B, thus characterized by 3 real parameters, say v, v', h’. We derive an
exact form for the map @ : {u,v, h) — (u/,?', #’) and prove that it possesses
an -attracting fixed point. The above map is shown to be conjugate to a
somewhat simpler map ¥ : (h,w,z) — (h',w', 2’). Its fixed points are found
from the three dimensional system: ¥(w, z,h) = (w, 2, h), which reduces to
‘a single nonlinear equation G'(w) = 0, where G{w) is a polynomial of degree
4, To prove the existence of a real solution of the latter the intermediate
value theorem is applied to G on the interval {0.05,0.2].

The fixed point of the map ¥ corresponds to a periodic solution z := p(t)
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of the original delay differential equation (1). Due to the piecewise constant
form of the nonlinearity F it follows that there is a neighborhood Ue C C of
the periodic solution p(t) such that for every ¢ € Us there exists first time
70 = Tol) = 0 such that (F™)p(s) = zp(ro+ s} €D, s € [-1,0]. This
implies that the local behavior of solutions close to the periodic solution is
entirely determined by the three dimensional map ¥.

The stability of the periodic solution in the space C follows then from the-
stability of the fixed point of the discrete map. The latter is determined by
the location of the eigenvalues of the matrix ¥ := 8% /8(h,w, z). In general
the entries for U’ can be calculated explicitly in terms of the parameters
a,b,c,d, 0,02, . Straightforward but lengthy estimates of the eigenvalues
\; of ¥ show that [\ < 1,4 = 1,2,3 uniformly for (w,z,h) € II, where
I € R® is a box containing the fixed point., The stability of the fixed point
follows.

An obvious drawback of the piecewise constant nonlinearity F is that
the solutions of the delay differential equation (1) are not differentiable at
a discrete set of points. This creates a formal difficulty with the varia-
tional equation along the periodic solution and its stability. This difficulty
is overcome by the standard by now procedure of the “smoothing” of the
nonlinearity F'. In a small neighborhood V¢ of its discontinuity set func-
tion F is replaced by a “close” function F* which is continuous (in fact can
be made C*) and coincides with F' everywhere outside the neighborhood.
It is shown then that the above three dimensional map ®., now depen-
dent on ¢, remains well defined and that it is uniformly C!—convergent to

&P, — B, 80, /0(w,2,h) — 02/ (w,z,]) as € — 0+,

3. A piecewise constant nonlinearity: reduction to a three-
dimensional map. In this section we consider the delay differential equa-

tion p
z
== ~az(t) + Flz(t — 1)) (3)
with a piecewise constaﬁt nonlinearity F' defined by
a fx<th
b if6h <z<0
F(z) = . (4)
c f0<a<,
d if © 2 92

where b >a>0>d>¢ 0 <0 <0, and & > 0. A typical F is shown in
Figure 1.
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Figure 1. The piecewise constant nonlinearity defined in (4) and used {o prove the

existence of stable rapidly oscillating solutions of equation (1)

For any continuous initial function ¢(s) € C, it is customary to denote
the corresponding solution of (3) by z,(¢). This solution is a continuous
piecewise exponential function which can be obtained from (3) by direct

integration. We note that generally, such a solution is not differentiable at’

a, discrete set of points in Ry = {¢:¢ > 0}.

We shall now restrict ourselves to a specially chosen set of initial functions
B C C which is characterized by three real parameters, u, v and k. It
will be shown that for any particular ¢ € ID there exists a time 7' = T[]
such that the segment of solution z,(t) defined on the time interval [T' —
1,T] belongs to the set D. Thus it is again characterized by the three real
variables, say u’,v’,h/, and the dynamics of equation (3} is reducible to a
three dlmensmnal map @ : {u,v, h) — (v,2, '). The exact functional form
of the transformation ® is derived in this Section. The existence of a fixed
point and its stability are also discussed.

3.1. The set D of initial functions. The solution of the initial value
problem

%1_: = —ax(t) + A, z(ip) =wo, A — a constant
is
— . —a(t—fg) — A .
z(t) = va + (2o —ya)e y YAS (5)

A solution of the form (5) will be referred to as the “y4-exponential.”
Since F' given by (4) is piecewise constant, the solutions to (3) will in
general be piecewise exponential continuous functions made up of pieces of
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Typical Initial Function in I}
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Figure 2, Schemgtic ilustration of the form of an initial function belonging to the
set I defined in Section 2.1

~,-exponents where k =@, b,c or d. Let

L1 gL gy = Ly e PR S

tl“ain(')'b——-ﬂg)’ ta tz-——aln( - ), 14 t3-—-aln(r¥d_01),
1. w—0 1 Yo

te ~itg = —1 fr —tg = ~1 .

6 ('Yb )’ T a‘n(’Yb—ﬂz)

Choose positive numbers u,v and A such that 0 < u,v <1 and h > 8;. We
now define the set I of initial functions ¢ as follows:

(7 —exponent for s € [~1, -1 +¢1} and ¢(—1) =0
>0y for se€ (—14+t,—~1+442) where tp ~t; = u
vg-exponent for s € [~1 12, —1 4 24]

< by for s € (—1 +t4,~1 4 t5), where t5 —~ t4 = v
Yo-exponent for s € -1+ t5, —1 + #v]

> 8y for s € (—1 + ¢7,0) and ©(0) = h.

o(s) = 4

“

In order for this definition to be meaningful for the resolution of the problem,
we further require that

0<t1+u+(t4—t2)+v+(t7~t5)<1. (6)

A typical geometric shape of an initial function ¢ € D and the meaning of
the £;,1=1,2,...,7 can be seen from Figure 2.
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3.2. Solutions for ¢ € [0,1]. For any v € D the corresponding solution
z,(t), 0 <t < 1, is a piecewise exponential function defined as follows

ye-exponent in {0,¢1], ~g-exponent in [t1, 5]

po(t) = Ye-exponent in [t, %3], yp-cxponent in [tg, t4]
¥ ~e-exponent in [t4,%s5), ys-exponent in [ts, tg}
we-exponent in [tg,27], 7ya-exponent in [t7,1].

If we now define x,(tx) = zp,_,, we get the following set of equations for
the zp, in terms of h,a,b,¢,d, and o

h— -8
g = o + L2 = 00) (7)
b
Thy, = Vd + (:L‘hu — ’Yd)(f—n“ (8)
. (mhz - 76)7d
Thy = Ye + _‘_‘"Yd _ 9'2_““ (9)
- y
s =+ (s — Y6} (Y2 — 61) | (10)
Yd
Thy = Yo + (Thg — Ya)e " (11)
. (‘Bh-; - 71})76
Ths = o T (12)
— )y — @
The = e + (mhs Y )('7b 2)
Yo

(Thg ~ Ya)vo(va — O2){7 — 61) -
Epy = Tp(1) =va+ . eutv=1)
m = @D =1t T e — ) —02) ¢

A typical solution is sketched in Figure 3. As explained in Section 3 the
reduction of the original delay eguation to a map rests on the fact that
given an “appropriate” initial function ¢ (i.e. one which belongs to D}, the
restriction of the corresponding solution z,(¢) to a time interval of length
1 at a later time also belongs to [. This results in constraints both on
the parameters of the original equation and on those describing the initial
function ¢ (i.e. {u, v, h}). To simplify our discussion, we will fix the
parameters of the equation and then examine the constraints on {u, v, h}.

Lemma 1. Leta = 6, b = 14, ¢ = —13.5, d = —3.85, o = 7.75 and
0y = —0y = —1/3. Then if the parameters u,v,h are chosen to satisfy the
inequalities ) ,

: Thy > B2, gy <B1, Thy > O, ‘ (13)
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Typical Initial Function in I Sketch of corresponding solution
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Figure 3. Schematic illustration of the form of a rapidly oscillating solution of

equation (3) with nonlinearity {4)

the corresponding solution z,(t), t € [—1 4 tg,1s] is an element of D.

Proof. Since z,(t) is piecewise monotone for ¢ > 0 the required condition
z, € D follows if the inequalities

Thy > Ga, Zp, < &, The < 91, Thy = 92, Thy > #a, Zpy > Oo (14)

are satisfied, see Figure 3 for the geometric meaning. From (8)-(9), zp, < Zs,
and so zp, < f; implies zp, < 61; furthermore, from (11)-(12) wn, > ap,
and so xp, > O implies z,, > f3. Note also that since v, > 02, zn, > 02
automatically if zp, > 2. As a result, the inequalities in (14) all follow
from zp, > 02, Th, < 61, and zp, > G, Solving inequalities (13) gives us the
following set of conditions

02 — e e
h>%+ﬁ(_2_’?), By Bl v) W1 —7a)
b~ 02 Yo — b2 Yo — b2

h> Y {(va — O2)lvalfa — v 4 (v = ve) (ya — O0)) +valva — 01)(ve — va)}
Ya{ve ~ O2)(va — 61)

Toy¥d — Yo

x e™™ +
Yo — 02

For the specified values of the parameters a, b, ¢, d, 61,0, o it Is straightfor-
" ward to check that the latter inequalities define a nonempty subset in the
set h > 09,0 <u < 1,0 <v < 1. Note that Lemma 1 does not include any
“nontrivial” lower bound on v. The bound is determined by {6). O

With the assumptions as in Lemma 1, there exists a sequence t},t}, £, ¢,
all in [0, 1], such that the solution z,(t), ¢ € I, has the following property:
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2,(th) = B2, T (t)) = 01, z,(t) is a yy-exponent in [t}, )], and z, () = 61,
z,(th) = B2, p(t) is a yp-exponent in [t§,47] (see Figure 3). It follows
that z, (£} > O in (17,%5] and z,(2) < 6; in (t},85). Also, z,(t) > 62 in
(=1 + t7,t1) (which includes a segment of the initial funetion ).

Note that the solution z,(t), considered within the interval [—1 + #g, £g)
as an element of C, is of the same form as the initial function ¢ itself. From
Figure 3, it is straightforward to note that new values v/, ¥/, and h’ can be
. defined for the solution x,(t) (¢t € {1+ tg,15]) in analogy to the definition
of u, v and A for the initial condition. These new values arve given by -

u' =1 (ut vty + (G —t2) + (b — ts)] + 85,

v =t —ty, N =a,. (15)
Thus (15) defines a three dimensional map @ : (v,v,h) — (,v,h') on a
subset of [0,1] x [0,1] x [¢/e, d/c].

3.3. Exact form of the map. Since z,(t) is a ya-exponent in [t1, 2],
t) is obtained from the condition z,(t}) = fy:

1 Yd — Th
H—t; = In & R0
2 : « . d 92 (16)

Hence the first equation of system (15) becomes

1 (ya — 62)* (1 — 61)

—In —u -
@ (ra—0)—0) (Ve —Tng)

W =1-

where zp, is given by (7). To compute v’ in (15) we make use of the relation
(b7 — to) + 0"+ (ty — t3) + 0"+ (87 — ) + (ta — 87) + v+ (te — 1) = 1.
But note that ¢ — 8§ = t4 — {3 and £ — £f = ty — 5, and thérefo_rg
(£7mts) o g b))V (b ts) (B —th) v+ (e —t5) = 1

‘or (tg —th) +u' + v+ (84 — t2) + 2(¢7 — t5) + v = 1. Making use of the first
relation of system (15) we obtain

(t4—t§)+[1—(t4—t2)—(t7~t5)~u-v—(t’zwtl)]+v’+(t4—t2)+2(z7-t5)+v w2l

or {tg—t4)+(t7 —t5) -+ (th—t1) ~u-+v' = 0, which we rewrite for convenience

as
v = (g - ) — (b t5) — (B — #1). (17)
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To compute (£4 — 4}, we exploit the fact that the solution is a ys-exponent
in {th,t4] and @, {ts) = xp,. It follows that £; —th = %ln =02 Clombining

'}"b—mha
the above with (16), equation {17} becomes
o = L 00— 0)(0a — o)
@ V(Yo — Thy )

where zp, and zp, are given by (7) and (10} respectively. From the form
of z,(t) in subsection 3.2 we know that it is a vy,-exponent on the interval
[ts, ts], and so zp, in (15) is easily computed in terms of zj,. Hence the map
- @ defined by system (15) assumes the form

— 0 Y2, —
wWe=l—u—v— 1 In (va — 02)*(vs — 01) (18)
a  (va— 1) — O2)("va — Tho)
L =00 — fﬂhg), B =+ Vo(Tre — W)
a Yale — Zns) Y — 61
where xp,, The, and zp, are given by (11), (10) and (7) respectively.

3.4. Reduction to a conjugate map. It is possible to rewrite the
transformation (18) in a somewhat simpler form by introducing the variables

H

v =u

w=e™, z=e¢", h=h (19)
Using these (18) can be written
w = e (12— 02)* (v — 61) , (20)
(Ya — 1 )% — 02) [(ya — 7e) — Lmaedle=tallyy,
Ry Y ys—82)
7= O = 00)[(va = %) = L—%%u]w‘ B o=+ Yo(The — W)

(Y2 = 01) (76 — 2ny) Yo - 61
where zp, is given by (9). In deriving (20) from (18) we have made use of
the expressions for hg and kg given in (7) and (10) respectively. In terms of
the new variables &, w and z, the formulas (7)—(11) can be written

Thy = Ya t+ (mha - 'Ya.)z (21)
Tha =T 1+ (mhz B ryb)(lyd - 91) ] (22)
Yd
(mhx - 'Yc)'Td
Lhe = Yo + ————re 23
Thy = Y+ (The — Ya)w (24)
h—7e) (7 —
The = Ve + ( y )(’Yﬁ 2). - (25)

Yo
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Now using (21)-(25) the map (20) can be expressed directly in terms of
the parameters of the original delay equation (3) (i.e., @, a,b,¢,d,6;, and
6;). The calculations are elementary but rather lengthy, and they yield the
following expression for the map (20)

E Hw + Twh
'~ A+ B Dzwh, w' = e, 2= "
W=At+Bet Cowt Dewh, = g Geah’ * ™ T+ Kuw+ Lk
(26)
where
gz blaz0ie)
a{b—6 a)

b (ad? — adfyor + dealy — 010°clo — 0rabd + 8:0%b0; — d® + 010d?)
- a(b-6a)d(d - ba) ’

G_(d—é';a)(ca{?gﬂbd) .D:(bwﬂza)(d—ﬂla)

Toa(b-ba){d-ba) (b—01a)(d—02a)’
E__(d——Bga)g(b——Bla)be“" e (d— 8y @) (b— 8z a) (caby — bd)
_ (}.'4 1 - j 0.'4 ¥
(d— 6y ) (b— 8 a)’ _ (b—6,a)(caby — bd)
G= 3 ) H= P ’
= (b—91a)(b—92a)
- - :
7. (dz—ca()g—bd+bﬂga) (d— 6 a)b
a a3(dﬂa92) !
K_(d—ela)(caog—bd)d ,_(b=0:0)(d—06,0)d
o ad(d — aby) ’ - a?{d — abs) :

The map ¥ given by system (26} is topologically conjugate, by means of
the change of variables {19}, to the map @, hence both exhibiting the same

dynamical behavior.
‘Note that the second iteration of the map ¥ is in fact a two-dimensional

map (it does not depend on z). Considering this second iteration rather than
map ¥, however, does not simplify our principal calculations. Therefore, in
the sequel we will address the problem on the existence and stability of fixed
points of the formally three-dimensional map ¥.

3.5. Existence of a fixed point. The fixed points of the map ¥ are
found from the system:
E Hw+ Iwh

Fuz+ Gewh' ° J+ Kw+ Lwk’ (27)

h = A4-Bz+Crzw+Dzwh, w =
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By using its third equation system (27) is reducible to a two-dimensional.
system 7 .

w?(h — A)(F + Gh) = E[B + (C + Dh)w],

w3 (H -+ Ih)(F + Gh) = E[J + (K + Lh)w], (28)

which allows us to solve h in terms of w:

b F(AI + H)w® + ECIw? 4+ B(BI — K)w — EJ
- —G(AI + Hyw® — DEIw? + ELw '

Substituting this into the first equation of system (28) and using the fact
that CG — DF = 0 we obtain the following polynomial equation of degree

4:
(eraw+caw?® +aywoag)(Brw+fo) +(vow? + 1w o) (2w? +81w+dp) = 0,

where a3 = (Al + HY(AG + F), a3 == EI{AD + C), oy = E(BI — AL - K},
ap = —EJ, B = G(BI-K)+FL, fy = —GJ, 2 = BECI(1- D)~ BG(AI +
H), m = B(BI +CL—K — BDI), vo = E(BL — DJ), 82 = G(AI + H),
§, = DEI, 8y = —EL. The polynomial cquation can be rewritten as

Py(w) = bgw* + baw® + byw? + byw + by = 0,

where the coefficients b;,7 == 0,1,2, 3,4 are given by the following formulas:
by = gl +y202, bs = azfo+aefi +7201 + 1162, ba = azfo + a1 f1+ 7200 +
71181 +Yob2, by = 018 + oy + 7180 + 001, bo = a8 + Yods, and therefore
expressible in terms of the coefficients A4, B, C, D, E, F, G, H,1, J, K, I and
eventually in terms of the original coefficients a, b, ¢, d, 81,82, ¢ of the delay
differential equation. We do not include the explicit form of the expressions
here due to their length. Note that the above reduction formally leads to a
polynomial of degree 6, however, the first two coefficients before w® and w®
appear to be 0. ‘

It is straightforward to calculate that P4(0.05) > 0 and that FP4(0.2) <0,
therefore, the equation Ps(w) = 0 has a solution w* inside the interval
[0.05,0.2]. The numerical value of this solution with the accuracy of 100
can be found as w* ~ 0.0999515864. This gives the corresponding numerical
values for the other two coordinates h* =~ 0.9648653295, z* ~ 0.2744271004.
The values of the original variables at this fixed point are found then as

u* ~0,2971702382, o* 2.0.1668476936, h* =~ 0.9648653295. (29)
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4. Stability of the fixed point. Clearly, in order to prove the stability
of the fixed point (h*,w*,z*) given here, it is necessary to determine the
eigenvalues of the linearization of the map (26) about the fixed point, in
order to check that all three lie inside the unit dise. The matrix whose

eigenvalues we are interested in is:
lp, = a‘I’/a(h, w, Z)|(h*,w4,z.) = (aij), Q‘,,j — 1, 2,3_

Tt is straightforward to evaluate the derivatives of the three functions in (26)
and to obtain the entries of matrix ¥":

ay; = Pwz, a1z = Cz+ Dhz,
a3 = B + Cw + Dhwr,, as1 :_@TFG-‘;EW’
E _ E
822 = TUFz + Ghz)w?’ 98 = " Fw + Ghw)z?’
IJw+ (IK — LHw? J(H + Ih)
= sy — 0.

91 = T T Kw+ Lwh)? T [T+ (K + Lhywl?’

The numerical value at the parameters for which the delay equation (3)
yields the solution of Figure 3 is:

0.0037180093  0.0438895824  0.1088367774
U = | --0.0847127965 -1 —0.3642190814
0.2374628028  2.8031515040 0

Since second iteration of ¥ is a two-dimensional map, at least one eigenvalue

of matrix U, say Ay, is zero (for all values of (b, w, z)). Additionally, the de-
terminant of matrix ¥’ can be expressed explicitly in terms of the coefficients

A, B,C,D,E, F,G,H,I,JK,L and then eventually in terms of the original _
parameters a, b, e,d, 01,02, . The formulas are too lengthy to be included = . |
here, however, the direct evaluation of the determinant at the parameter !
values ¢ = 6, b= 14, ¢ = —13.5, d = —3.85, a = 7.75 and 6 = 0 = —1/3
shows that det ¥ = 0. Two other eigenvalues can be found by solving the
corresponding quadratic equation obtained from the characteristic equation

of matrix U’ by dividing by A. With accuracy of 10710 one finds

Ma,a & —0.4981400953 + 0.86427549401, and  [Ag] = 0.9951165807. |

We shall show next that there exists a box Il € R3 containing the fixed ‘
point (h*,w*,z*) such that for every (h,w,z) €1I all eigenvalues of matrix |
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U’ lie strictly inside the unit disc. Before giving more specific detail on the
proof we note that the statement is in fact obvious due to the continuous
dependence of the eigenvalues on the coefficients a;; which in turn depends

continuously on (h,w,z).
Since A; = 0 it follows that Az - Ag = @11623 — 21202 — 013031 — 023032,
In view of | A2} = |As] and using the explicit form of the coefficients a;; one

easily finds:

Dasft = —PF GE(C + Dh)
’ (F+Ghyw ~ (F+ Gh)?w
_ (B+Cw+ Dhw)[IJw + (IK — LH)w?| ‘ (30)
(J + Kw + Lhw)?
EJ(H +Ih)
22w(F + GhY[J + (K + Lh)w]?’

+

One can formally differentiate the expression on the right of (30) to show
that it is monotone with respect to each of the variables i, w, and z. More

specifically
- it is monotonically increasing for h € [h* —2-107% h* +2-107]
- it is monotonically decreasing for w € {w* —2- 10“4,w +2.107Y

- it is monotonically decreasing for z € [#* — 2-1074,2* +2-107].
We do not include the exact expressions for the partial derivatives and their
estimates here due to their length.

Since Ay = 0 for all (h,w,z) € II := [h* —2.107%h* + 2. 10“4] X
[w* — 21074 w* +2- 1074 x [z* —=2.107%,2* +2- 10"‘4] it follows that
the maximum of the absolute value of the eigenvalues As 3 is attained when
he=h*+2-107%, w = w* —2. 1074, 2, = 2* —2-10™%, It is straightforward
to evaluate the numerical value of the above expression for Ag 3 at (hc, Wes %)
in order to get |Az,3|* = 0.598638301.

Since all the eigenvalues evaluated inside the box II, which obviously
includes the fixed point, lie inside the the unit disc, we have proved that at
the parameter values 2 = 6, b= 14, ¢ = —13.5, d = —-3.85, = 7.75, 6, =
—0y = —1/3, the map ¥ given by (25) has an attracting fixed point.

4.1. Stability in the delay equation. Fixed point (u*,v*, h*) of the
map (15) corresponds to_a rapidly oscillating periodic solution . := p(t})
of the original delay differential equation. Since the corresponding initial
function @, € D has three zeros, this periodic solution belongs to the set Sa
of the Morse decomposition (see Section 2 and [8]). To show that the periodic
solution p(t) is asymptotically stable in the phase space ¢ = C[~1, 0] we need
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to prove that there exists a neighborhood Us C C of the periodic solution
such that for every ¢ € Us the corresponding solution z, :== (Fe)(s) gets
attracted by z,. This fact follows from the following statement.

Lemma 2. There ezists a neighborhood Us C C, § > O of the initial function
v, € D such that for every @ € Us the corresponding solution z,(t) has the
property: ‘
a) there exists first time tg = tg(pp) > 0 such thot z,(ts +5) € D,s €
[(—1,0], and
b) te(ip) — telps) as 6 — 0.

The proof of this statement is trivial and it follows immediately, due to the
continnous dependence of solutions of the delay differential equation (3) on
the initial conditions and the fact that the values of 2*(¢) at the discontinuity
set (7 points on the period, see Fig. 3) lie outside the discontinuity set of
the nonlinearity F. Small perturbations in C of the initial function ¢, €
result in piecewise exponential solutions which are close to z. (t) and made
up of the same type exponents.

Lemma 2 implies that for ¢ € Us the local dynamics of the semiftow
(Ftp)(s), s € [-1,0] as £ — o0 is governed by the three-dimensional map ¥.
This in turn implies that the periodic solution z,(t) is asymptotically stable.

5, Smoothed piecewise constant nonlinearity: Persistence of
dynamics. In this section, we consider the equation

dx L
= —ax(t) + F{z(t — 1)), (31)
where the nonlinearity F is a continuous function which is close to the non-

linearity F of the previous sections. More precisely, P is defined as follows:

(a ifx <@
a+t[(b—a)/ 2z ifzelly—¢c b +¢
b ifze (6 +e —¢) |
F={ b4[(c-b)/2%lz ifze][-g¢
c ' ifz ¢ (e,60, —€)
c+[{d~c)f2lz ifzclfs—e,b+ ¢
L d ifx>68s+e.

Hence, I is chosen so as to be piecewise constant and coinciding with I
everywhere except in e-neighborhoods of 81, 0, and 0, in which it is piecewise

linear.
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_ If¢ is small enough, we say that F is close to F. Note also that in general
F can be made arbitrarily smooth by appropriately defining the “matching”
in the s-neighborhoods of the discontinuity points of F.

5.1. A set of initial functions. Fix small € > 0, and define the set D,
of initial functions ¢ as follows
(75 — exponent for s € [~1,—1+ s3] and p(—1) =0
>0y +eforse(—1+s1,—1+82) where s —s1 =u
vg-exponent for s € {—1 + 53, -1 + 54}
< 0y —¢ for s € (—1+ 84, —1 -+ s5), where 85 — 84 =
~yy-exponent for s € [—1 + s5, —1 + s7]
| >0+efor se{—1+4s7,0) and 9(0) =
Note that when u,v, and h are fixed, all the s; are determined uniquely,

since the initial function is piecewise exponential between the levels #; — &
and 0 + €. It is therefore straightforward to obtain

p(s) = J

1 Yo 1, va—(02+¢)
si=—-In————, s3—~8=—In—— £,
17 vp — (f2 +€) 3 2T o Yd

1 Y 1, m—(6—¢)
—ga = = — gk == —Ip a2\ E
84 83 an’Yd—(el—E)’ 36 S5 0“:n - s

1 Yo
s7— 8 = —In ——r— .
TR T = (0 +e)
Given these preliminaries, we are now ready to proceed as in Section 3, by
reducing (31} to a discrete time map.

5.2. Reduction to a three dimensional map. In this section, it
is shown that if £ > 0 is small enough, choosing u, v and h appropriately
allows us the reduction of the continuous time dynamics to a discrete-time
map in a manner analogous to the way in which we obtained (15) in the
previous section. This follows from the fact that as ¢ — 0, the solutions of
(31) converge to those of (3) (¢f. Lemma 3 below).

Let ¢ € D,, and denote by @. (%, p) and z(t, p) the correspondmg solutions
of (31) and (3) respectively.

Lemma 3 {continuous dependence on €). z.(t,) — x(t, ) as e — 0 uni-
formly for t € [0, 1].

Proof. Let r; = éln Yo/ (v — €). 71 is the first point larger than -1 at
which ¢ = €. Since F' and F are different in a small neighborhood of the
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discontinuity points of F and coincide elsewhere, it is sufficient to show that
solutions z.(t,¢) and z(t,¢) are uniformly close in [0,7;). The uniform
closeness in [0, 1] then follows by induction arguments.
The solution z{t, ) on {0,71] is a y-exponent and is given by
: 2(t,0) = %+ (h = yw)e
The solution z.(¢, ) is given explicitly by

ze(t, ) = [h-f— /; %E—b) (e* —1): ds} e,

Clearly, 2(t, @) < z:(t,¢) < h. Since 2(0,9) = z.(0,¢) = hand r; — 0 as
¢ — 0, the uniform closeness in [0, 7} follows. O
Lemma 3 implies that if h, u, and v are chosen close to the fixed point
(B, s, Us) Of the map @, then if £ is small enough, one can define 2/, u' and
v in a manner which is analogous to their definition in Section 2. We now
introduce the following notations:
5% : first time in [0, 1] at which z.(¢,@) =62+ ¢
s5 : first time in [0, 1] at which . (¢,¢) =0
sy : first time in [0, 1] at which z.(¢,¢) =61 —¢
sk . second time in [0,1] at which z.(t, ) =6 — &
s : second time in [0,1] at which z.(t,¢) =0
sh: second time in {0, 1} at which z.(t,) = 62 + €.
The existence of the s;’s is a consequence of the continuous dependénce of
the solution of (31} (with nonlinearity F) on €, and the explicit solution
of equation (3) (with nonlinearity F given by (4) (cf. Figure 3). Moreover,
the solution @s{f,) is a ~s-exponent in [sh, 5], a yp-exponent in [s3, s,
and a g-exponent in [sf,s7]. Thus one can define the discrete time map
@, : (u,v,h) = {o',2, k') as follows:
W=1-[utv+s+ (s —_32) + (57 — 85)] + 55
v = 8§ — sy h = zpy, (32)

where x5, = zc{S6, ¥)-

5.3. Cl-closeness between ®. and ®. In this section, we shall show
that the map ®, is Cl-close to the map ® which was derived in Section
9. From this property, one deduces that the map ®. possesses a fixed point
(ut, v2, h¥) close to the fixed point (u*,v*, &) of the map ®. Thus, the delay
equation (31) with the continuous nonlinearity F' possesses an asymptotically
stable rapidly oscillating periodic solugion. '
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Thebrem 1. &, = & and ®. — @' ase — OF,

Proof. We shall prove the convergence for the first component of the map
®,. For other components, the proof is analogous. To obtain the expression
for this first component of the map, we note that

1 -
351_3"2334.__32ma1 Mj:_s_)

Ya— (01 —¢)’
7 —(f1—¢€)

!¢l — _ — =
8y — 85 = 87— 85 aln 7{)__(92_!_6),

and, as calculated earlier, sy = LIn i1y To find 55, determine (%, ¢)
explicitly. For ¢ € [0,71], me(t,tp) is the solution of the following initial value

problem:
dz(t)

dt

which can be written

dz(t)
Tdt

since ¢(8) = v5 — e~ for s € [-1, —1 + 7). Therefore,

= _ Twle=b) as gy, g 6
h::r;e(n,tp)—{h-i—j; (e 1).0!3] Pt (33)

~a(t) + %m(t ~1), =(0)=

—az(t) + ij__gé (v —me ), =(0) =

2e

Let mg(sl,cp) = zp,. Since z.(t,) is a y.-exponent for £ € [r1,31] and
ln T2 it is straightforward to obtain

S1 =T = Yp—E—02
7 T—th—¢ '
Zhy = Yo+ (b~ Ye) —(——— (34)
. Yo — &
Finally, sh— s is found from the fact that z. (¢, ) is a ys-exponent in [sy, s5},
where s — 81 = éln%_“s—,y— Substitution into the first equation of (32)
yields

—1 (ra—2—¢e)(v—6 +e)(92 + &~ 7a)

(’Yd —t e} 02— eXzhy — Ya) —u-v (35)

w =1~

where 3, is given by (34) and h by (33). Direct evaluation of (35) and its
partial derivatives when € = 0 and comparing with the first equation in (15) -
concludes the proof of the convergence for the first component of ¥..
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Typical Initial Function in I Sketch of corresponding solution
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fa—tead M =

iy Tap

Y

Figure 4. [lMustration of the position of the @, 's which are used to derive the map
(36)

6. Numerical aspects. In the above proof of the existence and stability
of a fixed point several numerical calculations were employed. Specifically,
we have determined the location of the fixed point (R*, w", z*} with accuracy
10-19. Likewise, we gave an upper estimate on the location of the eigenval-
ues of the linearization of the map ¥ about the fixed point (I, w*, =%).
The choice of this accuracy is arbitrary, and we could have illustrated our
analysis with numerical results of precision 1075 or 107 (the latter was
actually used to do some additional numerical check). Clearly, in principal
these computations can be carried out manually, but the help of a symbolic
manipulator greatly accelerates the process, _

It should be noted that the map (26) above is not the only possible choice
for our description of the rapidly oscillating solution of Figure 3. As an
alternative, one can choose the following system, which is much more cums-
bersome to treat analytically but which provides us with an independent
“check” for the algebra above (it is obtained by considering Figure 4 rather

than Figure 3):

1 [(zhe —va)(v — 01)
Uyl = U + s Int [(’)’b - $h3t)(92 - 'Yd)} ’ (36)

Py = = In [ (@hre —va)(f1 — 1) ¥a } hest = 7o — Yo(zhiot — V)
B0 [0y - va) (whes — ve)(va = 02) ) (v — 61)

where the following relations, obtained from a careful consideration of Figure
4, implicitly define the dependents of the variables hyp1,us41, %41 on their
preimages:

i (zhey — 6){ya — 01)
Vd

—aly
H

zhigs = Yo + (Thot — Ya)e Thot == Yo
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Thy — A
:EhSt = 'Yc + ( 4 "Y'_C)’Yd :Uh?t =4 .+. (mhﬁt — 7d)e—aTu
(’}’d - 92)
(zhst — ¥e) (e — 62) Yo(zha — )
:'Bh = Ye + , wh — + LA S S R A
" " “ET T )
—aw hat — -8
Thys = Yo + (mhaa —’}'a)e 3 zhas = 75 + (Gﬂ at ’}2(% 2)
Ya(zhit — 7e) _
cho = Ye + ————5~, zhyy = +{xhg — e a“t,
2t = 7Y, (72 — 61) 1t = Ya + (zhot — Ya)

T (e = ve) (v — 61) T, = :Eln (va — zhae)w ]

hor = 3
zhot = Ye o ¢ o [(61 — ya){xhas — 75)

[ (va — 02)* (1 — 01) ]
(Ya — shod) (v — 82)(va — 1)}

Once again, it is possible, wsing a symbolic manipulator, to determine the
fixed points of the three dimensional map (36), but the closed form expres-
sion of this fixed point is too lengthy to be printed out in the scope of a
paper. It is possible however to evaluate this expression at specific param-
eter values to an arbitrary degree of accuracy. For the parameters given
above, the fixed point {h, 4, ) of map (36) is

1
Ti=1—w—v,—=-In
o

2 0.9648653295, it ~ 0.2971702382, & ~ 0.1668476936,

and as expected it coincides with that given in (29).

As an additional check, it is possible to integrate the original delay differ-
ential equation using a simple integration scheme, which is very inefficient,
but is known to converge to the solution of the delay equation as the integra-
tion step is going to 0. This gives a third way to check the results presented
here, which yields a numerical check of accuracy 10™° which agrees with
(29). It is not feasible to increase the accuracy of this third check because
the computing times required become prohibitively large.
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