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Oscillations in Singularly Perturbed
Delay Equations

A.F. Ivanov, A.N. Sharkovsky

Introduction

This paper presents some recent results on the scalar singularly perturbed
differentila delay equation

vi(t) + o(t) = Flalt 1)) . (1)

The equation is of significant interest for both mathematicians dealing with
qualitative theory of differential equations and for scientists applying the the-
ory to real world problems in different areas.

Equations of form (1) have recently found a variety of applications in sev-
eral fields of natural science. For instance, they model processes in radiophysics
and optics (oscillations in linear arrays of tunnel diodes, high frequency genera-
tors, electro-optical bistable devices). In mathematical biology and physiology
they describe systems with delayed response, particularly, the regulation of
red blood cell populations, respiratory control circuits, neural interactions, etc.
They were suggested to model commodity cycles in economics. Interested read-
ers may find descriptions of applications or further references, for example in
{6, 10-11, 14, 16-17, 19-25, 36, 40-42, 45, 48, 59]. Certain non-linear boundary
value problems for hyperbolic equations are reducible to functional-differential
equations which include equation (1), Such a procedure of reduction was pro-
posed in 1936 by A.A. Vitt. Studies of nonlinear boundary value problems
based on the mentioned reduction can be found in the monograph [55].

In spite of the simple form of equation (1) ifs dynamics is very tich and
varifold. Apparently, the equation is one the most studied in the theory of
differential functional equations, as recent results of many authors show (see
list of references). These results show as well that we are rather far from a
complete understanding of the dynamics given by equation (1). There is a
series of natural and simple stated problems, which are still unsolved.

One efficient approach to equation (1) is to begin with step functions f(z).
Indeed, with f(z) being finite valued any initial condition generates a piecewise
exponential solution. For certain families of initial conditions the problem of
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the asymptotic behavior of solutions is reducible to the study of maps on finite
dimensional sets, in particular, to one-dimensional maps in the simplest cases.
This approach was used in a serles of papers, including f1-3, 18-23, 36, 40, 48,
61] with step functions or smoothed step functions F(z). Some of these papers
deal with equations of the form #(t) = f{z(t — 1)). The idea is to determine a
set @ of initial conditions consisting of functions of special type characterized
by a real parameter z € A. For any z € A and @ € & given by z there
exists #g = to(¢p) such that the segment of the corresponding solution z{tg+t),
t € [-1,0}, is again an element of & which belongs to some 3 € A. Thus, one has
an induced one-dimensional map F : z — 3 on the parameter set A. It turns
out that the map F is a continuous and piecewise Moebius transformation.
Therefore the dynamics given by equation (1) {on a subset of solutions) is as
complicated as the dynamics of the corresponding piecewise Moebius map. In
general, interval maps given by piecewise Moebius transformations may define
complicated dynamical systems (see, e.g. [34]). In particular, for the solutions
of the differential-difference equations of the form (1) and its modifications
the authors of the papers (22, 23, 61] obtained an induced map Fp(z) of the
interval {a, b] as shown in Fig. 1.

J
4

a g bo b
Fig. 1.

The map Fy has a closed invariant repelling set Ky C [ag, by} which is
homeomorphic to a Cantor set. The dynamics of Fy on the set Ky is rather
complicated (the description of the standard example is found in [65]}. If f(z) is
smoothed in a small neighborhood of the discontinuity points the new induced
map Fy is proved to coincide with Fy on the set Ky. Hence the dynamics
of equation (1) is still complicated. As shown in [18] the described dynamics
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persists under small perturbations of step functions or smoothed step functions
f(z). In some cases the map F' has an invariant measure which is absolutely
continuous with respect to Lebesgue measure [3, 19].

The existence of such a measure implies in particular a probability distri-
bution for successive maxima (or zeros) of the solutions generated by initial
functions from the parameterized set 9.

A natural approach to study equation (1) is to consider it as a singular
perturbation of the difference equation with continuous argument

o(t) = flz(t - 1)), teR,. (2)

To have a continuous solution of equation (2) for ¢ > —1 one requires, together
with continuity of f and , a so-called consistency condition lime_, _gp(t) =
fle(-1)).

The asymptotic behavior of the solutions to equation (2) is determined by
the dynamics of the one-dimensional map

fraz— fz). (3)

There exists a formal correspondence between trajectories {z;, = Fxo), k =
1,2,:--} of the dynamical system given by equation (3) and step function
solutions z{t) = f*(zo), ¢ € [k — 1,k)], of equation (2), generated by ini-
tial functions @(t) = x4, ¢ € [~1,0). The asymplotic behavior of the
solutions of equation (2) depends entirely on the properties of the itera-
tion sequence {zp}, 2x11 = f(za), 2p € R where ep(tg)d:—'igmo and therefore
a(k +1ty) = f*¥(z0), k € Z,. Consequently, to see the dynamics of solutions of
equation (2) one should follow the continuum of trajectories of the map (3)
{on s 7 = flwr_1)} with @ € {z = p(t) 1 t € [-1,0)}.

At present there is a sufficiently complete theory of the continuous argu-
ment difference equation (2) based on the properties of the one-dimensional
dynamical system (3) [55]. Generically, equation (2) has continuous solutions
of three types: asymptotically constant solutions, relaxation type solutions and
turbulent type solutions. Asymptotically constant solutions have a finite limit
as ¢ — +oo. They are determined by the atiracting fixed points of the map
(3). Relaxation type solutions are undamped solutions with constant oscilla-
tion frequency on each unit time interval [k — 1,%). The Lipschitz constants
of such a solution on the intervals [k — 1,k) are unbounded as k — oo. Their
existence is tied to a repelling fixed point of the map (3), separating domains of
attraction of atiracting fixed points or splitting the domain of attraction of an
attracting 2-cycle. Turbulent type solutions are undamped solutions with un-
limitedly increasing oscillation frequency and unbounded Lipschitz constants
on {k —1,k} as k — oco. Equation (2) has turbulent type solutions if the map
(3) has periodic points with periods greater than 2. The existence of relaxation
and turbulent type solutions indicates the complexity of the dynamics given
by equation (2).
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The natural question is to what extent the dynamics of the map (3) deter-
mines properties of the solutions for equation (1)?

Solutions of equation (1) appear to have some simple properties which
are intrinsic to the dynamical system defined by the map (3). An example
is the following property of invariance. If the map f has an invariant interval
I{f(I) C I) then any initial function ¢{(t) with ¢([—1,0]) C I gives rise to 2 so-
lution with values in I for all £ > 0. This allows us to define a semiftow F*4,¢ > 0
on X = C%[-1,0}, 1), as usual, by setting (Ftp)(s) = zp”(t + s}, s € [-1,0].
Moreover, if all points = € I are attracted under f by a fixed point =, € I then
any initial function ¢ satisfying ¢(]—1,0]) C I generates a solution z for which
limy_, 00 {t) = z.. In other words, there is a correspondence between attract-
ing fixed points of the map (3) and constant solutions of equation (1} which
are asymptotically stable. This shows that asymptotically constant solutions
persist under singular perturbations of equation (2).

What happens to relaxation and turbulent solutions when equation {2) is
singularly perturbed? Clearly, the Lipschitz constant for the solutions of equa-
tion (1} can not grow infinitely. Indeed, if I is an f-invariant interval then for
any v > 0 and {t) € I, ¢ € [-1, 0] the derivative of the corresponding solution
is bounded: |&(£)] < (1/v)} — z(t) + f(z(t —1)}| < (1/v}diam I. Therefore, the
oscillation frequency of solutions with amplitudes bounded away from zero can
not increase infinitely.

With v small one naturally expects a closeness {in a sense to be made pre-
cise) between solutions of equations (1) and (2). This happens to be true within
finite time intervals provided the nonlinearity f{z) and the initial conditions
considered are continuous. In particular, if f(x} is continuously differentiable
and the (same) initial condition for equations (1) and (2) is also continuously
differentiable then the corresponding solutions remain close within a time in-
terval of length O(1/v),» — +0. This means that the solutions of equations
(1) are as complicated as the solutions of equation (2) in this time interval.

The question how the asymptotic properties for equations (1} and {2} are
related when v is small is much more difficult.

Suppose the interval map f has an attracting cyclezy — 2z — -+« — &, —
2y with components U;, i = 1,2, .+, n of its domain of immediate attraction.
Clearly, an initial condition with values in say Uy, for ¢ € [-1,0) defines a
solution of equation (2) which is necessarily discontinuous at £ = 4, i € Z,.
This solution converges as t — +o0 to a step function solution of equation (2)
defined by the initial condition ¢(¢} = z1, ¢ € [—1,0), and the convergence is
uniform on time intervals {k, co) as k — co.

Because of the closeness results mentioned above an important problem is
to find conditions for the map f which guarantee that there is a correspon-
dence between the attracting cycle of the map f and an asymptotically stable
periodic solution of equation (1}, with period close to n, for small v > 0.

It appears that, in general, there is no such correspondence. This is shown
by the following simple example. Let fo{z) be a smooth function mapping
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the interval [—1,1} into itself such that fo(z) = 0 for fzf < b3 < h < 1,
and fy has no fixed points outside the set {x € R : [¢} < h}. In addition
fo(z} may be chosen in such a way that it has an attracting 2-cycle generating
relaxation type solutions, and a cycle of period > 2 generating turbulent type
solutions for equation (2). With fo(z) chosen in such a fashion, the difference
equation {2} has continuous solutions of three possible types: asymptotically
coustant, relaxation, and turbulent ones. However, the asymptotic behavior of
the solutions for equation (1) {with f = fq) is very simple for any v > 0: all
solutions satisfy limy.,o #{¢) = 0. This phenomenon of simplification for the
asymptotic behavior of the solutions of equation (1) is caused by the existence
of an atfracting fixed point z = 0 of the map with “large” domain of immediate
attraction, '

Similar phenomena arise in more general cases. If an invariant interval
Iy attracts an interval Jy : Ig[), 5 f7{Jo), and the part I\Jy which is not
attracted is small enough compared to Jy\I and does not contain fixed points-
then every solution z of equation (1) satisfies z(t) € Jy, t > g, for some tg
depending on the particular solution. Thus, an attractor with sufficiently large
domain of immediate attraction “attracts” all solutions of equation (1).

Another aspect of the problem is an increase in complexity for the asymyp-
totic behavior of solutions of equation (1) compared to the dynamics given by
the map (3) (or equation (2)). Consider equation (1) with f(z) = —sign(z) for
lz| > Rk, 0 <h <1, f(z) = —asign(z) for [¢| < h, @ > 1. Then there exists an
open set of parameters (a, k) so that the corresponding equation (1) has a set
of solutions which are governed by a quasi-random variable as ¢ — oo. This
means for instance that successive maxima of the solutions (or distances be-
tween zeros) have a probability distribution with a density which is absolutely
continuous with respect to the Lebesgue measure. Note that in this case the
map (3) has a cycle of period two given by —1 and 1 and this cycle is glob-
ally attracting. This implies that the increase in complexity occures in a small
Hausdorff neighbourhood of the generalized 2-periodic solution of equation (2)
defined by po(t) = 1, £ € (0,1), po(t) = —1,t € (1,2) po(0) = po(1) = [—a,a].
Moreover, the size of this neighbourhood goes to zero as v — +0.

Very important are bifurcation problems for equation (1) when the non-
linearity f(x) is parameter dependent. Bifurcation problems for interval maps
are rather well understood (see, e.g. [54]). For some families of interval maps
(including the well-known family fi(z) = Az(l — ), 0 < X < 4) the most
important changes arise through period doubling bifurcations. The first bi-
furcation gives rise to a globally stable 2-cycle with a repelling fixed point in
between. The previous example suggests that solutions of equation (1) which
remain close to this 2-cycle may be very complex.

For equation (1) the problem of how the dynamics of its solutions mimics
the dynamics of the interval map (3), when a parameter A changes, was not
in fact under systematic investigation. Computer simulations with equation
(1) for different choices of fy indicate a correspondence between bifurcations




Oscillations in Singularly Perturbed Delay Equations 169

for one-parameter families of equations (1) (with small v) and one-parameter
families of maps (3) [6]. In particular, for the family fi = Az(1 — @) there
is evidence that, for v sufficiently small, one has a correspondence hetween
attracting cycles of period 2%, n < np(v) and attracting periodic solutions of
equation (1) with period approximately 2". Unfortunately, there is no rigorous
result available so far.

The most natural approach to prove existence of periodic solutions for
equation (1) is by the use of interval cycles for the map (3). In the simplest
case, when the map f has two intervals interchanged by f and a repelling fixed
point in between, the existence of a periodic solution was shown in [16].

The existence of an attracting cycle of intervals does not necessarily pro-
duce the existence of periodic solutions for equation (1) as the previous ex-
ample with f = f, shows. This implies that a cycle of intervals should be
subjected to additional assumptions. Some sufficient conditions are given be-
low which guarantee the existence of a periodic solution for equation (1) when
the map f has an attracting cycle of intervals.

The paper is organized in the following way.
In Chapter 1 difference equations with continuous argument are considered.

Simple properties of the solutions needed later are discussed. Preliminary basic
notions on interval maps are given.

Chapter 2 deals with the simplest properties of equation (1} defined by the
interval map (3).

Continuous dependence results showing closeness within finite time inter-
vals between sclutions of equations (1) and (2) for small positive v are proved
in Chap. 3.

In Chapter 4 a series of examples is considered showing specific features of
solutions of equation (1) which are caused by the singular perturbation term.

The role of attracting periodic intervals with relatively large immediate
attraction domains is studied in Chap. 5.

Chapter 6 deals with the existence of periodic solutions for equation (1).

Concluding discussions including some naturally posed unsolved problems
are presented in Chap. 7.

We do not survey all the results available for differential-delay equations
of the form (1) but rather make an attempt to present studies done at the
Institute of Mathematics of the Ukrainian Academy of Sciences. Therefore
some intersections may be found with other resulis, in particular, with those
obtained in [40-42].
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1. Difference Equations

-“ Basic Notions for Interval Maps

We recall briefly some basic notions from the theory of one-dimensional maps

. which we use throughout the paper.

Every continuous map: f : & — f{z) of an interval I C R into itself

_generates a dynamical system on I. Every xo € T defines a trajectory {2y, k €

7.} by zi41 = flzr). A point 2o is called periodic with period n if the
points 2g,%1,++*,&n—1 are pairwise distinct and f(zn—1) = mo. The points
T, E1, "+, Tyn-1 are said to form a cycle of period n. Clearly, any point from
the cycle is periodic with period n. Fixed points are periodic with period 1.
Points from a cycle of period n are fixed points for the map fr=fofo--of.

n
A fixed point zg € I is called attracting if limg..co fF(z) = xo for all
in some neighbourhood of zg. If the function f(z) is differentiable at = = zo
and |f'(z¢)] < 1 then the fixed point o is attracting. A maximal connected
open (with respect to I) set which is attracted by the fixed point is called a
domain of immediate atiraction of the fixed point. The domain of immediate

_ attraction sometimes is called an immediate basin.

A fixed point zq € I is called repelling if it has a neighbourhood U{zo)
such that for every 2' € U(mo)\{o} there exists a positive integer k = k(z')

.. with f*(2') & Ulze). This means that all points from some neighbourhood

leave the neighbourhood (though, they may get back afterwards). If f (z) is
differentiable at @ = xg and |’ ()] > 1 then the fixed point ap is repelling.

A periodic point zg € I of period n is called atiracting if it is an atéracting
fixed point of the map f™. Then the corresponding cycle {zo, %1, -, Tp—1}is
also called attracting. If f*(z) is differentiable at @ = mp and |(f")'(=o)] <1
then the periodic point o is attracting. Since (f*){ze) = f'(zo) Flzy):--
f'(2,, 1) for smooth maps the inequality mentioned holds at any point of the
cycle. Repelling periodic points and cycles are ‘defined similarly. Sometimes
attracting periodic points and cycles are called sinks, and repelling ones are
called sources.

A set M is called invariantif f(M) C M. Sometimes the stronger condition
f(M) = M is meant by invariance. If it is not specified we use the broader
first notion.

A closed set A C I will be called an aeftractor if it is invariant and there ex-
ists a neighbourhood U(A4) with (V5o F¥(U(A)) = A. Attracting fixed points
and cycles are attractors. A maximal open set U which has a non-empty inter-
section with A for each connected component and such that f*(z) — 4,z €U
as k — oo will be called the domain of immediate attraction for the attractor
A,

The domain of immediate attraction for an attracting cycle {zo,z1,--",
%1} consists of n open intervals. Each of them contains a point z; from the
cycle for some i and is the domain of immediate attraction of the fixed point
x; of the map f*, 2=1,2,---,n.
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An interval Iy ¢ T is called periodic with period n if f"(fo) C o and
the intervals I = f*(Ip), k = 0,1,--+,n — 1 satisfy int [; NintL; = 6,4 #
j. Here we will deal only with closed periodic intervals. The set of intervals
{In,I1,---,In_1} is said to form an interval cycle of period n. If the map has
an interval cycle of period n then it has a periodic point with period n or
n/2 at least (the latter may happen if n = 2¢ and if the intervals I; and Tiqg,
i=0,1,-+,q — 1, have common points on the boundary, which constitute
the cycle of period ¢ = n/2). A cycle of intervals {Tg, I, -+, In-1y is called
attracting if the set U;1; is an attractor.

The domain of immediate atiraction of an attracting cycle of intervals
consists of n open (with respect to I} intervals each of them containing an
element of the cycle.

Difference Equations with Continuous Argument

In this part we briefly describe properties of solutions of difference equations
with continuous argument

o(t) = f(z(t— 1)), teRy (2)

which are needed later.
Throughout we assume that the one-dimensional map

frz— fz) (3)

has an invariant interval I and is continuous on I.

To have solutions of equation (2} for £ > 0 it is necessary to define some
functions p(£) on the initial set [~1,0). Let ¢ € X = C(|-1,0),1). Then for
t € [0,1), z(t) = f(p(t — 1)) € I because of the invariance property AN cl.
By repeating the procedure we construct the solution for ¢ € {1,2) and so on.
Thus, to any ¢ € X there corresponds an unique solution 2, (¢) of the equation
(2) forall t > 0.

Requiring lime., o @(f) = f(p(—1)) for a given ¢ € X the solution z,(?)
is continuous for all £ > 0 since f(z) is continuous. We restrict ourselves here
to continuous solutions by supposing ¢ € X 0 = {p € X|lim_gp(t) =

fle(-1))}.

Remark. Unlike differential equations, difference equations in form (2) do not
require any assumptions of continuity or smoothness of f (z) or (). In par-
ticular we shall consider difference equations with discontinuous {e.g. steplike)
functions. Clearly, the restriction v € X = C([-1,0),I} is also not necessary.

Since the solution 2,(t) is defined by means of iterates of f the asymptotic
behaviour of the solutions depends on properties of sequences { f ¥ap), k> 0}
(i.e. on trajectories of the dynamical system {f*, k > 0} for distinct g €
{p(t), t € [-1,0)}. Generically, equation (2) has solutions which are asymp-
totic to upper semicontinuous functions (generally speaking, to discontinuous
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ones}, see details in [55]. The complexity of the limit functions, determining the
asymptotic behaviour of the solutions of equation (2), is characterized by the
discontinuity set and by the jump spectrum which consists of the accumulation
points of the function on the discontinuity set. Generically, the jump spectrum
is finite though it may consist of countably many points. The discontinuity set
usually has a complicated structure; in particular it may be homeomorphic to
a Cantor set.

We shall not get into the detailed theory of equation (2) which is pre-
sented completely in the monograph [55]. Here we only consider the simplest
properties of solutions which are needed in the sequel.

We distinguish three basic types of continuous solutions of equation (2):
asymptotically constant solutions, relaxation type solutions and turbulent type
solutions. We present simple examples which show the mechanisms of how the
different types of solutions do appear.

a) Asymptotically Constant Solutions

y

I

&
&

Fig. 2.

Suppose the interval map (3) has an attracting fixed point ag (Fig. 2) with
domain of immediate attraction Jy, implying limg_,eq F*(zo) = ag for every
o € Jo. Then, for every ¢ with o(t) € Jy for all £ € [~1,0), the corresponding
solution z,(t) satisfies lim;_, o 2, (£) = ag. We call such solutions asymp-
totically constant. Clearly their existence and stability is determined by the
existence of the attracting fixed points of the map f. If a fixed point zq is
repelling for the map then the solution () = ay of equation’(2) is Liapunov
unstable,

b) Relaxation Type solutions
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Relaxation type solutions appear in the following typical cases. (i} The
map f has several (> 1) attracting fixed points and their attraction domains
are separated by repelling fixed points. (it) The map f has an attracting cycle
of period two with a two component domain of attraction, separated by a
repelling fixed point. The two cases can be realized by monotone maps. We
show them in Fig. 3 a) and b), respectively.

fx

{a) {b)

by by

i~
S
K3
oy

@

Fig. 3a. Fig, 3b.

Consider case (i). If the initial function » € X satisfies ag < @{t) < a for
all ¢ € [-1,0) then lima,(t) = aj since f*(z) — as for all xq € (ag, a9}, k —
o0. The corresponding solution z,(t) is asymptotically constant. Similarly,
Himy_,eo 2,(t) = a; provided a; < () < ag for all £ € [~1,0). The situa-
tion changes when () has intersections with the graph (1) = ag. Consider
the simplest case of two intersections: ©(t) > ag for t € [—1,4;) U (£2,0) and
@(t) < ag for t € (t1,%) (Fig. 42). Since F¥(zo) — ag for every zo ¢ (20, as] and
F¥yo) — ay for every ¥ € ay, ag), the solution ,(t) approaches a generalized
1-periodic function on [k — 1, k) as k — co (see Fig. 4b). Clearly, the conver-
gence is uniform on each compact set not containing #; and #y. This means
that the family {f*(p(t)), k € Zy} converges uniformly on [—1,0\Us(t1,ta)
where Us(t1,12) is a 6 neighbourhood of the points ¢£; and #y.

Case (ii) differs from (i) in that we have convergence to a 2-periodic limit
function. For the initial function shown in Fig. 5a one obtains the limit function
shown in Fig. 5h.

In both cases (i) and (ii}, the oscillation frequency (number of zeros of
#(t) — ag) of the solution x,(t) on each unit segment [k — 1, k) is constant for
all k € N and is defined by the number of crossings of the initial function with

-
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ap fy

]
'“'I fl \_/‘2 0 ""1 ti fz 0

[ q

Fig. 4a. Fig. 4b.

by

bo\ : -t

b
Fig. ba.
by
by 1 - f
-1 fa 0 fh+1 1
by
Fig. 5b.

the level of the repelling fixed point. The Lipschitz constant of the solution
z,(t) at the crossing points with @ = ag (or = = by) increases infinitely as
t — oo and does not depend on the smoothness of f(z} or ¢{t).
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¢) Turbulent Type Solutions

Turbulent type solutions are characterized by exponential (or polynomial)
growth of oscillation frequency while their amplitudes do not damp out as
¢ — oo. Sinoothness of the solutions is predetermined by the smoothness of the
map (3} and of the initial function ¢, and does not change with . Nevertheless,
the Lipschitz constant for any solution on the unit interval [t —1,¢) grows
infinitely as £ — co (with exponential rate generically).

The generation of oscillations for turbulent type solutions can be illustrated
as follows. Suppose the map f of the interval I = [a, b} onto itself has the form
as in Fig. 6.

J(x

I
i
!
!
|
i
I
|
!
I
|
¢

Fig. 6.

In this case there exist two intervals I; and I» such that each of them is
mapped onto their union I UL (I1 = [e,cl, I = [c, b] for the map in Fig. 6).
Therefore, if the initial condition (¢) attains all the values from I; = la,c} on
some time subinterval [¢;,%;] of [-1,0), then the solution z,(t) will attain all
the values from I = F; U I, for the time interval [1+121,1 + ¢3). Similar, initial
conditions ranging within I == [¢,b] give rise to a solution ranging through
all the interval I after one time unit. One oscillation of the initial function
covering the interval I generates two similar oscillations within the same time
interval but one time unit later. An initial condition © with two oscillations
(Fig. 7a) generates a solution w,(¢) with four oscillations on [0, 1) (Fig. 7b).
Clearly, the number of oscillations on the initial interval [-1,0) is increased
by the factor 2™ for the time interval n — 1,n).

The existence of turbulent type solutions with exponential growth of the
frequency may be concluded jn the case when the interval map f has periodic
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Fig, Ta.

t]'"l“l fz‘i‘]

Fig. 7b.

points with periods which are not a power of two. Indeed, as it was shown in
[49] in this case there exist two intervals I; and Iy and 4 positive integer N
such that g(f1) D ) Ul and g(l} D I} UT; where g = Y. Therefore, an
oscitlation of the initial function covering the union I Ul gives rise to at least
two oscillations covering I U I3 after a time interval of length V.

Turbulent type solutions with polynomial growth of the frequency (somre-
times called preturbulent ones) always exist when the map [ has periodic
points of periods 2¢ with ¢ > 1 and no other periodic points, But they may
exist also for some maps f which have only fixed points.

Summarizing, the existence of certain types of continuous solutions for
equation (2) is defined by the dynamics of the map f-In particular, if the map f
has attracting fixed points, equation (2) has asymptoticaily constant solutions:
il there are no attracting fixed points, there are no asymptotically constant
solutions (except trivial ones ®(f) = const); if the map has several attracting
fixed points on some subinterval of I such that their immediate attraction
domains are separated by repelling fixed points or if it has an attracting 2-
cycle with two component domain of immediate attraction separated by a
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fixed point of by a cycle of period two, then equation (2} has relaxation type
solutions; if the map f has a periodic point with period # 2¢, i = 0,1,2,---
then equation (2) has turbulent type solutions. Cleary, equation (2) may have
solutions of several types simultaneously. Examples of asymptotically constant,
relaxation type, and turbulent type solutions are shown on the a), b), ¢) parts
of Fig. 8 respectively.

(@) ay PR 7T 2 3

N A VT
IAVAAUAU RN

a

i /\/\/\ANV\/WWW\
s + + panl §
[H 1 2 3

(c) am}

Fig. 8.

2. Singular Perturbations of Difference Equations
with Continuous Argument: Simplest Properties

It is nature;,l to consider the differential difference equation
vi(t) + z(t) = fz(t — 1)) (1)

as a singular perturbation (¢ < 1} of the difference equation with continuous
argument

w(t) = fl=(t - 1)} . (2)
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Properties of solutions for equation (2) can be understood rather well. The
analysis is based on properties of the one-dimensional dynamical system gen-
erated by the corresponding map

frz— f=). (3)

For a theory of equation (2) with scalar f(z) see monograph [55]. Necessary
preliminaries have been introduced in the previous chapter.

The map f is assumed to have an invariant interval I = [a,b] and to be
continuous on I, Let z%{t) denote the solution of equation (1) with initial
condition - € Xy = C(]-1,0],I). It is natural to ask what properties of
solutions of equation (1) are inherited from those of equation {2) (or from
the map (3))7 The following statements contain some answers to this question
which can be obtained immediately from the dynamics given by the map f.
They are found in earlier publications by the authors [2, 55], and also in [40-
12].

Theorem 2.1 (Invariance property). If ¢ € Xy then zi,(t} € I for all
t > 0 and any fized v > 0.

Theorem 2.1 states that the solution z}(¢) ranges within the invariant
interval I of the map f provided the initial condition ¢(t) does so for all
t € {-1,0].

Theorem 2.1 allows to define in a well-known way a semiflow F%, £ > 0 on
the state space X7 = C([-1,0],1} by

(Fip)(s) = ao(t+s), s € [-1,0]. 4

Remark. The invariance property given by Theorem 2.1 holds true for the case
of a nonstrong invariance of the map f i.e., f{I) C I. The invariance property
also holds true in the case of discontinuous maps f .

Proof. Suppose p € Xy = C([—1,0], I} and £ is the first time where the corre-
sponding solution z(¢) leaves the interval I. To be definite we may assume that
tg = 0 (due to the autonomy), z{0) = b, and that every right-sided neighbor-
hood of £y = 0 contains a point ¢’ with (¢') > b. Then this neighbourhood also
contains a point ¢ with z(¢") > b and £(t") > 0. Admitting £’ < 1 we have
vi(t"} = —2(t") + F(z(t" — 1)) < 0 a contradiction. The other case, (0) = e,
is treated similarly. |

Suppose next that =, is an attracting fixed point of the map f with im-
mediate basin Jy @ iMoo fM{®e) = @, for any zp € Jo. Define X, =
C([-1,0], Jy). In this situation the following holds.

Theorem 2.2. For any v > 0 and ¢ € X, limy_, o0zl (t) = 4.
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The result shows that asymptotically constant solutions persist under sin-
gular perturbations of equation (2).

The proof of Theorem 2.2 is based on the following Lemma, which is also
of independent interest.

Lemma 2.1. Suppose an interval J is mapped by f into itself. If none of
the endpoints of the interval f(J) is o fized point then for every p € X5 =
C([-1,0], J) there exists o finite time t, = to(p, v) such that zy,(t) € f(J} for
allt > 1.

Proof. Buppose first that o(0) € f(J). Then we claim that zy(t) € f(J) for
all t < 0. Suppose not, and let ¢, be the first point at which the solution
,(t) leaves the interval f{J). Then every right-sided neighbourhood of ¢ = #,

contains a point ¢' for which z}(t') ¢ f(J). To be definite suppose zo(t') >

sup{f(J}}. Then the same neighbourhood contains also a point ¢’ for which
both zZ(t") > sup{f(J)} and d/dt[z%(t")] > 0 holds. Since zy(t) € J for
all £ € [tg — 1,%p) and £ < ¢y + 1 may be assumed, we then have v (t) =
=z (t") + f(x%(#" — 1)), a contradiction,

Suppose next that w(0} ¢ f(J). To be definite, let ©(0) > sup{f(J)} the
case p{0) < inf{ f(J)} is treated similar). We claim that zy,(t) is decreasing for
all £ € [0,¢9] where ¢5 < co is the first point with x,(to) = sup{f({J}}. Suppose
to = oo. Then z/(t}) > sup{f(J)} for all ¢ > 0. According to equation (1)
vig(t) = ~zg(t)+ f(ak (t—1)) < 0. Therefore there exists z’ = lim,, o5, (2) >
sup{f(J)}. Since 2’ is not a fixed point of the map f we have —f{2') + 2’ 1=
8 > 0. Equation (1) then replies v (t) = ~2o{t)+flzn(t—1) < —6/2 for large
t. This implies x,(t} — ~co as £ — oo, a contradiction. Therefore {5 < oo.
Since z.(t) is decreasing on [0, %o}, by the above, and T, () € F(J) we have
T (t) € f(J) for all £ € [ty — 1,15). To complete the proof we repeat its first
part. |5}

Proof of Theorem 2.2. Let Jy denote the immediate basin of the attracting
fixed point = z.. Take an arbitrary ¢ ¢ X, = C({—1,0}, Jy} and set
m = inf{p(s), s € [-1,0}, M = sup{e(s), s € [~1,0]}. Then [m,M] C
Jo. Consider the smallest closed invariant interval J' containing the interval
[m, M], which is contained in Jo. Then one has J' D f{J’) D f2(J') O - -- and
MNnso f*(J') = @.. The proof follows by repeated application of Lemma 2.1
and by using the invariance property. o

Theorem 2.2 can be extended to the case of a general attractor of the map
J. Suppose an interval Iy is invariant and an attractor for the map f with
immediate basin Jy:

dist(f"(z), Iy) — 0 for all & € Jy, n — oo.
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Theorem 2.8. For any v > 0 and ¢ € C{[-1,0), o)
inf{lp} < limgqminfm;(t) < hmy, o supzf (2) < sup{fy}.

The proof is the same as in the case of Theorem 2.2. with J being any
invariant subinterval of J; containing [y,

Let a, be a repelling fixed point of the map f, satisfying |f'{z,)] > 1.
The following shows that the repelling property (in a sense) persists for the
constant solution z(¢) = 2, of equation (1) if v is small enough.

Theorem 2.4, Suppose z, is a repelling fized point for the map f, f' (z)} is
continuous in a neighbourhood of . and |f’ ()] > 1. Then there exisis a
positive vy such that for all 0 < v < v the constant solution 2(t) = z, of
equation (1} is unstable.

A constant solution 2(f) = a, is called unstable if the stationary state
@(t) = @, of the semiflow F¢ is unstable.

The proof of the theorem splits into two casges.
1. f(=) is increasing in a neighbourhood of z = x,. In this case the proof
follows directly from the following Lemma.

-Lemma 2.2, Suppose the map f increases in some {half} neighbourhood of o

repelling fized point z = x,. Then there exists a (half) neighbourhood U (z4)
such that for every initial function ¢ € Xu(z,) = C([-1,0],U(z.)) the corre-
sponding solution =%, (t} has the property 2u(te + s) ¢ Xv(z.y, 5 € [-1,0], for
some ty = o, v) > 0.

Proof. For definiteness we suppose F{z.) = 2, and f(z) > z for all z ¢
I' = (24, 84 + 8). Take an arbitrary ¢ € X; = C([—1,0], I’} and consider the
corresponding solution z4(t). Set inf{yp(s),s ¢ [-1,0]} = m > z.. We claim
that there exists #; > 0 such that x(t) > f(m) for all t € [0, to + 1]. Indeed,
in the case ¢(0) > f(m) one has z(t) > f(m) for all ¢ € [0,1]. This can be
shown similar to the proof of Theorem 2.1. In the other case ©(0) < f(m)
there always exists a first point ¢y > 0 such that zy(to) = f(m) and z(t) is
strictly increasing for ¢ & [0,%5] (see the second part of the proof of Lemma
2.1). According to the first case and autonomy of equation (1) zo(t) = F(m)
for all £ € [tg, %y -+ 1}. Using induction arguments one has z(¢) > f*(m) for
all £ € ftn,t, + 1] and some ¢,. Since f"(m) ¢ U(z,) = (z., 2. + 8] for every
m € U(x,) and some n € N, the proof follows. 0
2. f(z) is decreasing in a neighbourhood of z — @, with f'{z,) < —1.
The proof in this case follows from two facts: (i} Instability of the stationary
state for the semiflow generated by the linear differential -- delay equation
v§(t) + y(t) = f'(z.)y{t — 1). The characteristic quasipolynomial A(z) = vz +
1 — f'(zs)exp(—2z) has roots with positive real parts when 0 < v is small
enough, and linear instability follows {13, 17, 43, 45]. (ii} The stationary state

S
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z = x, of the semiflow F* given by vi(t) + z{t) = f(z(t — 1) is unstable
provided A(z) = vz 41— f'(z,)exp(—#) has roots with positive real parts and
F(a) satisfies {f(z) — f(zs) — f'{zs )z —~ 2.)} = Oz — z.[) as z — =, [12].
Another but similar proof is contained in [16] (Lemma 10).
In the case when the endpoints of the invariant interval I are not at{racting
fixed points the invariance property {Theorem 2.1} can be strengthened in the
following way.

Theorem 2.5. Suppose the interval I = [a,b] is invariant under f and if
z =a {orz = b) is a fived point then il is a repelling one. Then there esists
a positive number &, depending only on f(z) and v, such that if we denote
I' = [a -+ 8,b— 6] then the following holds: (1) for every p € X there exists a
time to = to{ip,v) such that % (to + s) € Xy, s € [=1,0] (eacepting o = a or
b when & = a or = = b is a fived point); (2) for everyyp ¢ Xp al(t) € I' for
allt >0,

Remark. It is clear that in the case that one of the endpoints of the interval
is an attracting fixed point or a nonisolated fixed point Theorem 2.5 does not
hold. This follows from Theorem 2.2 and from the fact that every fixed point
of the map f gives rise to a corresponding stationary solution of equation (1).

Proof. We shall show the existence of a positive § such that for every ¢ € Xr
the corresponding solution z,(¢) satisfies z}(t) > a-+4 for sufficiently large . In
a similar way the existence of positive ¢ may be shown for which z{(t) < b—a
for large ¢. This evidently implies the proof.

Since I = {a, b] is invariant in every case (either f(a) > a or f{e) =a and
z = a is a repelling fixed point) there exists a positive -y such that f(z} > =
for all z € {a,a +7]. Set (a,a+v] = 1I;.

Claim 1. For every ¢ € X, there exists a time moment £; = #; (i, v} such
that @%(f;) = a+ 7, zi,(t1 +8) > a+ for all s € (0, 1]. Moreover, z,(t) is
increasing for ¢ € {0,4].

The proof essentially repeats the proof of Lemma 2.2,

Claim 2. For every ¢ € X, either 2 (¢} — (a-++y) > 0 for sufficiently large
t, or z4,(t) — (@ + ) has arbitrarily large zeros.

Proof. The case z,(t) — (e + ) < 0 for all large £ is excluded by claim 1.
From claim 2 it follows that we only have to consider solutions which
oscillate around @ = a-t). Consider a zero ¢y of &, (¢} - (a +7) which contains
in every right-side neighbourhood a point ¢ for which z{(t') — (e + ) < 0.
Then on the interval [to, tg + 1] one has z},(t} > a+v expf—- (t — to)/v}, which
implies 5(t) > a + ";rexp(ﬁl/v)défa + § for all £ € [to,fo + 1]. If z,(t) has
a zero t; on (fg,{o + 1] such that every right-sided neighbourhood contains a
point ¢’ satislying ¢(t') — (@ + ) < 0, we set to = {) and repeat arguments.
If z(t) does not have such a zero in (fo,%g -+ 1] then zp({t) —{a+79) <0 for
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all ¢ € (Zp, ¢y + 1]. This implies z5(to + 1+ s) € Xy, 8 € [-1,0] and therefore

z;,(t) increases for ¢ > o + 1 until the next zero ¢ of z5(t) — a+ ). In every

case one has z}(¢) > a + § for all ¢ € {tp,¢;]. The Theorem is then proved by

induction. O
The following Theorem is a combination of Theorems 2.3 and 2.5.

Theorem 2.6. Suppose the interval Iy C I is invariant under f and an at-
tractor with domain of immediate attraction Jo C I: f(Ip) = I, f™z) > Ip
asn — oo for everyx € Jy. If none of the endpoints of the interval Iy is a fized
point then the following holds: there exists a positive § depending on f and v
only such that solutions of equation (1)} satisfy zy,(t) € [infly + 6,suply — 6]
for every p € C([-1,0}, Jo) and large t.

The proof is based essentially on the arguments given in the proofs of
Theorems 2.3 and 2.5. We leave the details for the reader.

Remark. All results proved in this chapter extend for piecewise continuous
nonlinearities f(z) which we use in the sequel. In particular, Theorem 2.1
(invariance property) and Lemma 2.1 hold without any changes.

Example 2.1. Consider equation (1) with f(z) being the logistic family f, (z) =
Az(l — x),0 < A < 4, which map the interval [0, 1] into itself.

We briefly recall some dynamical properties of the map f;, depending on
particular values of the parameter ).

If0 < A < 1 the map fy has the only attracting fixed point = = 0 which
attracts all others trajectories (2,)(z = 0 is a global attractor, Fig. 9a).

For A > 1 another fixed point & = 1 — 1/X bifurcates which attracts all
other trajectories () for 1 < X < 3, (except = = 0). ‘The fixed point z = 0 is
repelling for every A > 1 (Fig. 9b).

For A > 3 the fixed point z = 1 — 1/X becomes repelling and an attracting
cycle {a1,a2} of period two bifurcates off. For 3 < A < 1+ /6 this cycle
attracts almost all trajectories (z,) (except the repelling fixed points & = 0
and z =1 —1/) and their preimages) (Fig. 9c).

The further development of dynamics for the map fy is well-known. There
exists an increasing sequence A\g < A\j < Ay < ++- < A, < (Ao = LAy =
3,22 = 1 + +/6) such that for every A € {(A,, A\ag1] the map f, has an at-
tracting cycle of period 2" which attracts almost all trajectories (2,,) (except
repelling cycles of periods 1,2, - -, 271 and all their preimages}). The sequence
converges to A, 2 3, 569. For each A > X, the map f) has a cycle with a period
which is not a power of two.

For every A > 3, the interval Iy = [f}(1/2), £1(1/2)] is invariant for the
map fx and is an attractor (Fig. 9d).

We shall see now what can be said about the asymptotic behavior as ¢ — oo
of solutions to equation (1) when the initial conditions are taken from X =
C([-1,0}, [0, 1]). To draw conclusions we use Theorems 2.1-2.6.
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When 0 < A < 1 every solution of equation (1) satisfies lim,_, oa(t) = 0
(Fig. 9a).

When 1 < A < 3 every solution of equation (1) satisfies lim, ,ox(t) =
zx = 1--1/X (except 2 == 0) (Fig. 9b).

Now consider the case A > 3 and let {a1,a,} be the cycle of period two
that appears for the map f,. There exists a parameter value \? € (A1, A2) =
(3,1 + v/6) such that at A = A% the critical point ¢ = 1 /2 forms a cycle of
period two which is evidently attracting,

For all A € (3, X%) the points a; and o5 lay on the right hand side of & = 1 /2
and the interval I, = [a1, a5] is invariant and a global attractor for the map #5.
In this case one has z(f} € I, for all sufficiently large £ and every solution z(t)
of equation (1) {except « = 0). Moreover, there exists a positive § = (A, v)
such that z(t) € I for all large ¢, where I} = [a; + 6, a3 — 6] (Fig. 9c)(Theorem
2.6).
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When A € (A%, 1+ /6] the interval I, = [a;,a5] is not invariant but the
interval Iy = [f3(1/2), fA(1/2)} is. Similarily, every solution 2(£)(z 0) of equa-
tion (1) satisfles z(t) € Iy for large t. There exists § = (), v) such that
w(t) € I} for large ¢, where I§ = [£3(1/2) + &, fA(1/2) — 6] (Theorem 2.6).

The same situation holds true for every 4 > A > A% The interval Iy =
[£2(1/2), £2(1/2)] remains invariant. There exists a positive § = 6{)\, v} such
that z(¢) € I} = [f3(1/2) + 6, £1(1/2) — 8] for every solution z(t) of equation
(1} and all large ¢ (Fig. 9d).

3. Continuous Dependence on Parameter

Consider the differential-difference equation
vi(t) 4+ 2(t) = f(=(t - 1)) 1)

with small positive v and the corresponding difference equation with continu-
ous argument

&(t) = fla(t - 1)) )

which is obtained formally from equation (1) by letting » = 0. Assume that
the one-dimensional map

[z fla) (3)

has a closed invariant interval I C R and is continuous on 1.

Let Xy = C([—1,0], I) denote the continuous functions from {—1,0] into I.
Clearly, if ¢ € Xy the corresponding solutionzy, (¢) of equation (1} is continuous
(even smooth for ¢ > 0), whereas the solution of equation (2) need not be
continuous. It is continuous for all £ > —1 if the consistency condition (0} =
f{p(—1}) holds. This motivates us to introduce the subset of initial functions
X7 = {p € X1}p(0) = f((~1))}.

One naturally expects that close initial data (2} and ¥(t) generate solu-
tions z,(t) and z;(¢) which are also close within (at least) a finite time interval,
provided v is small enough. In fact closeness between solutions of equations (1)
and (2) holds uniformly on intervals [0, T), T > 0 for @ € X2, and uniformly on
compact subsets of R, = {t|t > 0} which do not contain discontinuity points
of z,(t) for ¢ € X;. Precise statements are given in Theorems 3.1 and 3.4
below.

Let M be a subset of R. By the norm of ¢ : M — R we mean the uniform
norm, that is [l 44 = sup{jp(d)},t € M}.

Theorem 3.1, For any ¢ € X2 and positive T,e there exist positive §, 1y
depending on ¢, T, ¢ such that N, — zylljo,r) < € for all 0 < v < vy provided
lle — Pllj-1,0 < 8 and ¥ € X;.
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Due to induction arguments it is sufficient to prove the theorem for T' = 1.
We first prove several lemmas.

Lemma 3.1. For any ¢ € X1 and € > 0 there exists § = §(p,€) > 0 such that
ll% - 2%l < € for all v > 0 provided % € Xy and ||¢ — Pljj_1,09) < 6.

Proof. Since the differential-difference equation (1) is equivalent to the integral
equation z(t) = z(0)exp(—t/v)+(1/v) fot exp{(s—t)/v}f(z(s—1))ds, we have
the following relation for ¢ € [0, 1][z% (2} — =} (t)| < le(0) — (0)|exp{—t/v} +
(1/v) x f; exp{(s — t)/vHf(p(s — 1)) — f(3(s — 1)}|ds. The uniform continuity
of f implies that for any & > 0 there exists § > 0 with |f((t)) — fF(¥(t))| < ¢
provided |p(t) — #{t)| < 8. This yields Jz (¢} - =} (1)] < Sexp(—tfv) —e(l —
exp(—t/v) < max{é,e} which completes the proof. A O

Lemma 3.2. For any ¢ € X¥ and € > 0 there ezists v = o, €} > 0 such
that Jlaf, — zplljo,y < € for all 0 < v < v,

Proof. Taking into account that 1 — exp{—t/v) = (1/v) foi exp{(s — t}/v}ds
we have for ¢ € [0,1] : Jel () — @p(t)] < l0(0) — flp(t — D) exp(~t/v) +
(1/v) JEexp{(s — t)/uH fl(s — 1)) — F{p(t — 1))lds. Since f(p()} is uniformly
continuous for ¢ € [—1,0] it follows that for any &’ > 0 there exists §' > 0 such
that |F{w(ts)) — fp(t2))| < &' provided [t; — ta] < 8. Thus for ¢ € [0,5']. we
have |al(t) — @,(t)] < &'exp(—t/v) + e'(1 — exp(—t/v)}) < €'. Suppose next
¢t € [6',1). Then |p(0) — flp(t — )} exp(—t/v) = diamI exp(-—¢'/v) = ¢ for
all sufficiently small », say 0 < v < +/. On the other hand (1/v) fg exp{(s -
/v (els—1)) - FlpE—1)ds = (UL/)(fi ™ + [/ ;) < diam T exp(—8' [v)+
(1 — exp(—&'/v)) < 2¢' for all sufficiently small v say 0 < v < v". Therefore,
setting " = min(2”, ") we have (1/v) fut exp{(s—t}/v} flpl{s—1})— flwlt—
1))|ds = 2¢" for all 0 < v < v, This implies lzb(t) — 2,(2)] < 3¢’ = € for all
0<wv<v andte[§,1] with ¢ = £/3. The proof is complete. 0

The proof of Theorem 3.1. follows easily from the inequality ||} —~z4lip,1) <
2, — 24,2 + 5 — % lj0,1; and Lemmas 3.1 and 3.2.

It is not difficult to see that, similarly to the proof of Theorem 3.1, the
closeness between solutions of equation {2) and solutions of equation (1) may
be derived, when f in equation (1} is perturbed. For a precise statement we
denote by a4 (t, f) and z,(¢, f) the solutions of equations (1} and (2}, respec-
tively, with particular f(z).

Theorem 3.2. For any ¢ € X? and positive T, £ there exist positive §,0,14
depending on ¢, T, & such that |z4(-, f) — 23(-, Ny S € for all0 <v < 1o
provided ¢ € X, lp — #llrjo) < 6 and [if - Flls < o




186 A F. Ivanov, AN, Sharkovsky

With the closeness result proved the next natural question appears. How
long do the solutions of equations (1) and (2) remain close, provided the initial
data are close?

Suppose ¢ € X} is fixed and consider arbitrary ¢ € X; with the initial
deviation [l — 4|1, := Ag being small. The solutions z,(f) and zy(1)
diverge, in general, as ¢ increases. Since Ay = [ja, —zglon < llep—24 o+
llzy — zylljo,r) and ffz, — zllio 7y — 0 as v — +0, the value fley — o,
may be estimated by fz,, - Zpllio,r}. The latter is determined by the initial
deviation Ag and equation (2). Thus, the value of Ap depends on both the
deviation induced by difference equation (2) with Ag given and the deviation
caused by solutions of equations (1) and (2) through the same initial condition.
The latter depends essentially on the smoothness of (=)

Theorem 3.3. Suppose f and ¢ € X are Lispschitz. Then ftzy — 2l =
O(v) as v — 10 for any fized T > 0.

Proof. Suppose the Lispschitz constants are L and I’ for f(z) and (2},
respectively. First consider the interval [0,1). To estimate llzt — Zolho,
we use the inequality [a¥(t) — z,(£)] < [@(0) — flp{t — exp(—tfv) +
(1/v) x fot exp{(s — t}/v}f{p(s — 1)) — flp(t — 1))]dsd§fd(t) (see the proof
of lemma 3.2). Since ¢(t) is fixed and Lipschitz and p(0) = flp(-1)) we

have [p(0) ~ f(p(t — Dexp(—t/v)} < LL'v x (¢/v) exp(—i/v) < LL’v/eq—Efclu.

On the other hand (1/v) fet exp{(s — £)/v}Hflp(s — 1)) ~ flo(t — 1))|ds <
Lr fot exp{(s - t}/v}|s — tids = Vfﬂt/" exp(—~u}fuldu < cpv. Therefore d(t) <
cv, where ¢ is a constant depending on L and L’ only. Thus llzp —2b o,y < cv.

Now consider the solutions z,(t) and @%(t) for ¢ € [0,1] as members
of the space of initial functions. Denote them by ¢; € X? and ¢, € X
respectively. Then [lz, — 2¥llny < flzg, — Torllo + llet, — 4 o,
But one has ||z — 2% lljo,) < supsejo,y{w1(0) — 11(0)| exp(—t/v) + LI —
exp(—-t/v}} sup(g 4 ]‘Plé‘ — 1) ~ 4y (s — 1)|, which implies ¥ — 2% ljjo.) <
max{L, 1}jp, — Y1ll{-1,0- Since 3 = f(y) and both ¢ and f are Lipschitz,
1 is Lipschitz too. Therefore [lz,, — zy Hlio,; < e1v again, and we have
e —~ 2glling < ewv + cmax{L,1}ev = O(v). With T fixed the above ar-
guments can be repeated, completing the proof. O

It is worth to note that assuming f(z) to be Lipschitz and ¢ € H®, 0 <
@ < 1, one would obtain [lz, — z¥[ljor} = O(¥*) as v — 40 for any fixed
T'. We recall that H* = {p ¢ X||p(t') — (") < Kl¢' — t|* for all #,¢" ¢
[—1,0], K — const}.

As we have noted earlier, the consistency condition ©(0) = f(p(—1)) need
not hold in the case ¢ € X;. Then the solution @,(t) of equation (2} is in
general discontinuous at each point ¢ = i, i € N, although the solution m“;(t)
of equation (1) is smooth for ¢ > 0. Nevertheless the solutions zo(t) and = (¢)
are close within finite time intervals for small », outside the discontinuity




Qscillations in Singuiarly Perturbed Delay Equations ; . 187

points of z,(¢). To be precise we define for positive T and & the set J& —

{0, T\ UEZ"OH} [¢,i+ k). where [} stands for integer part of a number. Then the
following holds.

Theorem 3.4. For any ¢ € X; and positive T, k,¢ there exist positive b,
depending on ¢, T, ke such thet |jz, — zullax <€ for all 0 < v < vy provided
Y e Xy and fp — Pll_1,0 < 6.

The proof is similar to that of Theorem 3.1.

Finally we note that some continuous dependence results may be proved
under weaker assumptions on f and ¢ than in Theorems 3.1. and 3.4. We
consider here the particular case of nonlinearities f(z) as needed in the next
chapter. Assume: (i) f(x) has a finite discontinuity set A, is continuous on I\ A
and limg o+ 10 f(w) exists for any o* € A; (ii) F(I\A) A= 0.

Introduce an initial function space X} by setting X} = {p € X;| all zeros
of p(t) — z*, &* € A, are isolated}.

With ¢ € Xj, the solution z,(t) of equation (2) is defined as usual by
the above iteration procedure. By a solution z},(t) of equation (1) we mean
a continuous and piecewise continuously differentiable function satisfying the
equation for all £ > 0 except at isolated points. Clearly, with given ¢ the
corresponding solution (¢} is constructed for ¢ > 0 through step by step
integration.

Suppose ¢ € X} is fixed. We enumerate all zeros of p(t) - x*, z* € A,
on the initial set [—~1,0] by ¢ < #; < -+ < t. The number of zeros is finite
according to the definition. Take any positive x and T" and set Ji = J&(p) =
[0, T\ Ui\;l Ug}fl] U.{ts + i) where U.(z) is the x-neighbourhood of z. The
set JF is the interval [0, T] excepting s-neighbourhoods of points #;, + %, where
0 <i< [T+ 1), b is a zero of p{t) — 2*, 2 ¢ A, 1 < k < N. Clearly, for any
& > @ the solution z,(t} is continuous on J&.

Theorem 3.5. Let f satisfies conditions (i) and (ii). For any p € X} and
positive T, k, & there exist positive § and vy depending on e, T,k e such that
flzp ~ ayflas < e for all0 < v < wy provided € X} and [jp — Plli—1,00 < 6.

Essentially the proof is similar to that of Theorem 3.1.

4. Impact of Singular Perturbations: Examples

In this chapter we consider several simple examples showing that the asymp-
totic behaviour as £ — +o0 of solutions for equation (1) with positive v may
differ essentially from the asymptotic behaviour of solutions for equation (2)
(though, as was shown in the previous chapter, the solutions of the equations
are close within any sufficiently large but fixed time interval, for small v > 0).
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In the examples considered the function f(z) is piecewise constant {(hence,
the map & — f(w) is not continuous). This allows vs to find an explicit form
for the shift operator along solutions of equation (1) and to carry out a suffi-
ciently complete analysis of the properties of the solutions. If it is not specified
otherwise the parameter v is assumed to be positive and small throughout the
chapter.

The examples show in particular that the singular term vi(t) may lead to
both a simplification of the limit behavior for the solutions (Examples 4.1--4.3)
and a complication (Example 4.4}. For the latter, the attractor of the difference
equation (2) consists of generalized periodic functions, whereas the attractor of
the corresponding singularly perturbed equation is described by oscillating so-
lutions governed (in a sense) by a quasi-random quantity for which the density
distribution is absolutely continuous with respect to Lebesgue measure.

In the examples which follow the map f has a maximal invariant interval I.
Set X = C([-1,0}, I). According to Theorem 2.1 (the invariance property) and
its generalization to the case of the discontinuous f, for an arbitrary ¢ € X
the corresponding solution satisfies zo(t+s)e X, s €[-1,0], forall £ > 0 and
each v > 0. This allows us to consider initial conditions from X only.

Ezample 4.1. Consider equation (1) with f satisfying: fl#) =a >0 forz >
0; f(z) = —b < 0 for = < 0; £(0) = 0.

With f(z) given, the corresponding interval map has two attracting fixed
points 1 = @ and 2, = —b with basins # > 0 and 2 < respectively, Both
equations (1} and (2) have three constant solutions zo(t) = 0 and 2,{t) = a,
a(t) = ~b with the latter two being attracting. Any initial function p(t) > 0
gives rise to a solution 2(f) satisfying limy. o x(t) = a. Similarly, any initial
function @(¢) < 0 generates a solution with lim,_,, 2(t} = —b. This is the case
for both equation (1) and equation (2) (see Chaps. 1 and 2).

Equation (2) also has relaxation type solutions, and they are the typical
ones. They are generated by initial conditions having both positive and nega-
tive values. Small perturbations give rise to relaxation type solutions as well.

On the other hand for equation (1) oscillatory solutions are rare. According
.to the following proposition almost all solutions are asymptotically constant.

Proposition 4.1. Almost all solutions of equation (1) satisfy one of the fol-
lowing limy .00 2(t) = @ or limy_,o, 2(2) = —b.

“Almost all” is used in the following meaning. The set of initial conditions
for which the solutions have limits a or b is an open and dense subset of
X = C([-1,0], R).

ERT Y.
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Proof. First consider & set of initial functions with at most two zeros: ¢, =
{p € X|p(0) = p(~u) = 0,p(t) < 0 fort € (—u,0),¢(t) > 0 for t €
[-1,—wu)}, depending on the real parameter u € {0, 1].

Integrating (1) for £ > 0 and u given, we have 2*(t) = a — a exp(—t/v)
for t € [0,1 — %], a*(1 ~ u)‘?ifa:l = a[l —exp{—{1 — u}/v}]; 2*(t) = b+
(1 + DYexp{—(t — 1 + w)/v} for t € [1 — u,1], a:“(l)c-t_ifa:g = —b+ (&1 +
b} exp(—u/v); a%({t) = a + (z2 — a)exp{—(t — 1}/v} for t € {1,2 — u.

Claim 1. With v fixed there exists a unique solution z*(¢) of equation (1)
generated by ,. The solution does not depend on the particular ¢ € &,,.

Since f(x) takes constant values for < 0 and z > 0 the claim is obvious.

Claim 2. Given u € [0,1] either (a) there exists {; € (0,1} with z*(#;) =
0, 2*(t) > 0 for ¢ € (0,%;) and z*(t) < 0 for t € (t4,1], or (b) z*(¢) =
a+ (x¥(1) — a)exp{—(t — 1}/v}, 1 > 1.

Clearly, 2*(£) is increasing for ¢ € (0,1—u) and decreasing for ¢ € (1—u, 1).
Thus, either z*(1) > 0 meaning z*(t) > 0 for all ¢ € (0, 1], implying z*(f) =
a+ (x"(1) — a) exp{—(t — 1)/v} (Fig. 10).

Claim 3. With v fixed there exists u; > 0 such that 21 (¢} > O for ¢t € (0,1)
and z"t(1) = 0. For any u € [0,u1) z*(t) > 0 for all ¢ >> 0 (therefore z%(t) =
o+ {z*(1) — a) exp{—(t — 1}/v}, t = 1).

The claim is obvious and wuy is calculated directly u; = vin[(a + bj/a
exp(—1/v) + b)}. The claim states the existence of a threshold value for the
parameter u: for every w < u; the solution z*(t) has no zeros for £ > 0, while

for u > uy it has at least one zero £y > 0.

Claim 4. In case (1) < 0 there either (a) exists 1 < &5 < ¢ + 1 with
z"(t2) = 0, or (b} a®(t) < 0 for all £ € {1, 2].

The claim is obvious.

Simitarly to claim 3 the following holds.

Claim 5. With » fixed there exists uz > 0 such that z¥2(t) < 0 for £ €
(t1,t2), 22 = 11+ 1, 2"2(t3) = 0. For any u € (up,1]z*{t) < Qfor all £ > ¢,
{therefore z*(2) = —b + (=¥(1 + 1) + b) exp{—{f — ¢, — 1}/v}).

The claim follows as a symmetric counterpart of claim 3. Indeed, for any
u > w3 there always exists ¢; > 0 such that z*(t,} = 0, and z*(¢) > 0 for all
t € (0,,) (see claim 3). Due to the symmnetry arguments to those of claim 3,
there is 1] = vIn[(a + b}/(b exp(—1/vr) + a)] and a corresponding value g of
the parameter w such that £*2(t] + 1) = 0, 2¥2(t) < 0 for all ¢ € (¢],¢] + 1).
The parameter value w3 is a real root of the equation 1 —us+» Infl 4 {(a/b)(1 —
exp{(uz — 1)/v})] = vIn[{a + b)/(bexp(—1/v) + a)).

Claims 25 allow to define a map F on the parameterized sets @, in the
following way. To any &, u € (uy,us), there corresponds &, with v’ = f3 —#;.
In the case u € [0,u1] we set %' = 0, and in the case u € [ua, 1] we set «/ = 1.

The map F induces an one-dimensional map by v’ = F(u}). We shall find
the explicit form of ¥ next. If both #; and #; exist then it is easy to calculate:

e
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A% (1 - w) = vInfl + (1 — exp{(u — 1)/v})/b],

2%, — 1 = wIn[l + bfa+ exp(~1/v) — (bfa + 1) exp(—u/v)] .

In this case: F(u) = u' = u+ Ay — 4;, implying

Fiu—u+vhfl+b/a+exp(—1/v) - (bfa+ 1) exp(—u/v)]
u—1
)i

—vinfl + (—;(1 —exp—

Changing the variable v to z = h{u)% exp(—u/v) we get the toplogically
equivalent map

1+ (a/b)(1 — exp(—1/v)/2) ,2 € [exp(~1/v),1],

Giz— 11 b/a+ exp(—1/v) — (bfa + 1)z

with F and G being conjugate by Goh = ho F for u € [0, 1]. Denoting a/b = k
and a exp(—1/r}/(a+ b) = € we obtain
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Giz— ki%; , z€lexp(—1/v),1}.

Note that F is defined for all w € [0,1). This implies that z = h{u) varies
within {exp(—1/),1] and the latter interval is the domain of G. The function
k(z — €)/{1 + & — 2) is defined for all real z # 1+ ¢ and is strictly increasing
(Fig. 11). If » > 0 is small enough then there exist 21 < 2 such that Gz} =
exp(—1/v), z1 > exp(--1/v) and G(z) = 1, 22 < 1 (by direct calculation
one obtains from the formula for G : G(1) > 1, G(z1) = exp(—1/v), 21 =
e[l — (k+ V)/{k* + ek + 1)}] > exp(~1/), 0 < v < L It is clear that
the values 7z; and z; are related to u; and ug in the following way: 21 =
exp(—uy /), za = exp(—ua/v). According to the definition of the map F and
claims 3, 5 we have to set G(z) = exp{—1/v}, z < z, and G(z)=1,2z2> 2.
Then the map G has a form as shown in Fig. 11 by continuous curve.

G
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Fig. 11.

The map G is related to the dynamics given by (1) in the following way.
For any particular u € [0,1] equation (1) has a unique solution z*(t), ¢t >
0 generated by &,. The distance o between its successive zeros £y, and £,
{Fig. 10) is given for u by 4’ = F'(u), where ' = h 'oGoh, h =exp(—u/v).
Therefore, if the solution z*(¢) oscillates with successive zeros &) <tz <i3 <
ty < +-- then the distance u, between zeros 2,1 and ty, is governed by G as
follows: 1, = h~* o G* o h, where G™ is n-th iterate of G.
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The map G has one repelling fixed point z (Fig. 11). (The value zp is found
as a larger (real) root of the equation z = k(z — €}/{1 4 ¢ — 2)). Clearly, the
corresponding value ug = vIn(1/zy) gives rise to an unstable periodic solution
of the equation (1). For any z # zy the sequence 7, = G™(z) is monotone.
There always exists a first ng € N with either Zng = exp(—1/v) or z,, = 1.
This implies monotonicity of the corresponding u,, = vin{1/z,) with u,, =1
or Uy, = 0, respectively. Recall that we sot o/ = F(u) = 0 for u € [0, u;} and
u' = F(u) = 1 for u € [ug, 1]. If the initial value satisfies u € [0,21] U [ug, 1)
then (1) has no zeros for ¢ > 0, and either z4(t) — a or z*(t) — —b as
t — oo (see Claims 3, 5). Therefore, the solution z*(t) for which u,, = 0 (or
Uny = 1) monotonically tends to a {or to —b) for large t.

Similar (but more complicated) calculations show that for any even m > 4
there exists precisely one unstable periodic solution with m zeros per period.
Almost all other solutions are asymptotically constant. There exist infinitely
many solutions which merge into the mentioned periodic solutions. Almost al]
small perturbations within the initial set give rise to asymptotically constant
solutions. Details are found in [2].

Since the solutions depend continuously on initial conditions for the nen-
linearity f of Example 4.1, the set of asymptotically constant solutions (which
have limits a or bas ¢ — oo) is open. For every initial function v € C([-1,0),R)
and arbitrary £ > 0 there exists an initial function ¢, € C([~1,0],R) which
has an even number m of zeros on the inital set [~1,0] and is in an e-
neighbourhood of ¢. Together with the previous arguments this gives density
and completes the proof of Proposition 4.1.

Next, we briefly describe the second

Ezample 4.2. Consider equation (1) with f(z) satisfying: f(z) = a > 0 for
z>0and flzy=-b<0forz >0,

The corresponding interval map has a globally attracting cycle of period 2:
a — —b-» a (Fig. 12). All solutions of equation (2) oscillate. Initial functions
having m zeros on [~1,0) produce solutions having m zeros on each interval
[k, k+1), k € N. This follows from the fact that each solution of equation (2}
is obtained by successive iterations of the corresponding initial function (see
Chap. 2).

For equation (1) the sitnation is different as the following proposition
shows.

Proposition 4.2, Equation {1) has an asymptotically stable periodic solution
generated by any initial function p(t) satisfying plt) > 0 for all t € [-1,0]
(or ©(t) < 0). Almost oll other inital functions generate solutions which merge
into this periodic solution.
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Y

Fig. 12.

“Almost all” means that the corresponding set is open and dense in X =
C(]-1,0], R). The details of the proof can be found in [2]. )

Thus both Examples 4.1 and 4.2 show that the term vZ(¢) added to equa-
tion: {2) leads to the disappearance of solutions having more than one zero on
intervals of length 1.

A similar phenomenon also takes place for the equation #(t) = g(=(t — 1))
if the nonlinearity g satisfies the negative feedback condition ag{a) < 0, = # 0.
Strong results for the case of a general nonlinearity g(z) are found in [60].

Ezample 4.3. Fix a constant h € (0,1) and consider equation (1) with f(z) =
fr.(2) where nonlinearity fi(z) is defined by fa(z) = 0 for |z| < k and fi(z) =
--sign(z) for [z| > h (Fig.13).

Proposition 4.3 Any solution of equation (1) satisfies limy .o, xl(t) = 0
provided h > 1/2.

Note that = = 0 is an attracting fixed point of the map f), in the interval
[~1,1]) with basin jo] < h and 1 — -1 — 1 is an attracting cycle with
basin [@] > k. This means that equation (2) has both asymptotically constant
solutions and relaxation type solutions. At the same time, if A > 1/2 all
solutions of equation {1) are asymptotically constant.

Proof of the proposition.. It is clear that any initial function @(t) satisfying
le(t) < h for t € {—1,0] generates the solution x}(t) = @(0)exp(—t/v} of
equation (1) for which lim,_, e, z},(£} = 0. 0
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| /
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Pig. 13.

Introduce a family of sets of initial functions depending on the real pa-
rameter u, 0 < u < 1, by @, = {9 € X|p(0) = p(—u) = h, p(t) > h for
t € (~u,0), lp{t)] < hfort € [-1,~u)}.

Claim 1. With u fixed there exists a unique solution x"(¢) of equation (1)
generated by .. The solution does not depend on the particular choice of
P E Py

Claim 1 is obvious.

Claim 2. Given u € {0, 1] there either (a) exists a t1 € (0,1) with 2%(ty) =
—h, or (b} a*(t) = cexp{—{t — 1)/v}, ¢t > L.

Integrating (1} on [0,1} we have: 2*(t) = hexp(—t/v) for t € [0,1 — ),
z(t) = —1+4 (w1 + Dexp{--(t — 1 + u)/v} for £ € {1 — u,1) with 2, =
hexp{(u — 1)/v}. Since 2*(t) is monotone on [0, 1] the claim follows.

Claim 3. In the case {a} of claim 2 there exists t; > 1 with z%(t;) =
—h, w“(t) < —-hforalltc (t;,tz).

Since *(¢) € [~h, b for £ € [0,4;] and z*(t) < —h for ¢ € (b1,1], 2*(t) is
monotonically increasing for ¢ > 1 with 2*(t) > =*(1) exp{-—(t - 1}/v}. ‘This
implies the existence of ¢, (Fig. 14).

It is natural to introduce a map F on the family ¢,, in the following way. To
given u € [0, 1] and ¢,, there corresponds v € [0, 1] and ¢, such that v = ty—#;.
If the second zero ¢2 of #(t) + h does not exist we put v = 0 (the latter case
means that the solution z*(¢) has the form z*(z) = 2*(1) exp{—(t--1)/v},t > 1
and goes to zero as £ — oo. So do the solutions generated by @a).

The map F induces an one-dimensional map F : © — v. We shall calculate
the explicit form of F.

T
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Denote A; == {; — (1 — u). Then —h = —1 + (1 + zy) exp(—4:/v). This
implies A; = vInf(1+hexp{(u-1)/v}}/(1—h)]. Denoting Ay = t>—1 we have
ag exp(—Ay/v) = —hin the case ty < ¢;-+1, with zy = ~14(z1+1) exp{—u/fv)
implying A3 = vIn[{1—hexp{—1/v)—exp(—u/r}}/h]. In the case {3 > t1+1 we
set v = F{u) = L. Let Iy (1) = u+vInfl— - exp(—u/v)]/le(l -+ B exp(u/v))]

for all u where F(u) exists. Here a = hf(1 —h), B = hexp(—1/v). Then we

have for » € [0, 1]:
0 il Fyu) <0

1-f-—exp(—~ufv

. 1-f-exp(oufu)
Fru— qutvinggemromts o if Fi{u) € (0,1}
1 s if F}(’u) > 1.

Introducing a new variable by z = h(z:)déf exp{—u/v) and denoting G1(z) =
a(z + B)/[1 — (z - 8)] we get the equivalent map

1 , if G'l(z) >1
Giz—{ aZls i Gux) € fexp(-1/),1],
exp(—1/v) , if Gi{z) <exp(-1/v),

where F and G are conjugate by Goh = ho F. The map G from the interval
[exp{—1/v},1] into itself and the dynamics of solutions of equation (1) for
initial functions from ¢,, 0 < u < 1, are related in the following way. Fix
u € 0,1}, @, and consider the corresponding solution #*(¢) of equation (1).
a*(t) either oscillates around @ = 0 or tends to zero as ¢ — -+oco. Enumerate
successive zeros of the function z(t) = (8} —h by 0 <11 <l <ilg <ty <+
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{which are finite or infinite in number) and let u, = 4, — tap—1. Then u,
and u,_; are related by u, = F%(u,,_1y. Therefore u,, = Fn(y). Since F =
h™'oGoh we have u, = h~! o G2 o i(u). Here 2" and G*" are the 2n-th
iterates of the maps. Thus, the dynamics of solutions for initial fimctions from
¥y is completely determined by the dynamics given by the map G,

The graph of G(z) and small » > 0 is shown in Fig.15a for @ < 1 and in
Fig. 15b for o > 1.

F .
1 1
G(2) G(2)
- : -z = -
y=¢°* Zy 7 =1 e 1
Fig. 15a. Fig, 15b.

The case o < 1 corresponds to A < 1 /2. 'There exists a positive vy such
that for all 0 < » < v the map & has three fixed points z; = exp(—1/v), zp =
1, zp where 2, is the root of the equation G(z} = z which belongs to the
interval {z,2;). The fixed points z and 2z, are attracting with domains of
attraction [21, z0) and (zg, 25) respectively, while the fixed point z; is repelling.
Therefore, in this case equation (1) has two periodic solutions corresponding
tow = 1and v = vIn(1/2) (the value u = 0 corresponds to the solution
@(t) = hexp(—t/v) which is attracted by the trivial periodic solution z(t) = 0).
‘The first one attracts all solutions from Pu ifuw > vin(l/2). Ifu < vin(1 /20)
the corresponding solution z*(t) tends to zero exponentially as ¢t — J-co.

The case a > 1 corresponds to b > 1 /2. For any v > 0, the map G has the
only attracting fixed point z = 1 which corresponds to u = 0. Clearly, for a
given u € (0, 1] we have F(u) < u and there exists an integer ng = ng(u) with
F™(u) = 0 for alln > ny (Fig. 15b). Thus for any ¢ € g, there exists to = Lo{u)
such that the solution o (t) is of the form 2% (t) = T, (to) exp{—(t —to)/v} for
t > ty and hence tends to zero.

To show that lim,._,,, () = 0 for any ¢ € X in the case & > 1/2 we

make use of the following observation. Take an arbitrary ¢ € X and consider

0 -,
B

T
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the corresponding solution z,(t). If jz(t)| < h then wh(t) — 0 ast — oo
Therefore, we have to consider initial conditions for which the corresponding

solutions oscillate with respect to both # = h and & = —h. In this latter case
there always exists a sequence (possibly finite) 0 < s1 < s2 < 53 < --- such
that 33;(34k—3) = (B;(S4k) = h, m;(s‘;k_g) = m;(84kﬁ1) = —h, m;’,(t) & [—h, h]

for all s € [sap—1, 525, and m;(t) < h for all £ € [sar—3, 841}, TpH{t) = —h for
all t € [seh_2,545-1], & € N. Consider 3(s) = ai,(t1 + s), s € [-1,0] as an
element of X. Let u = sup{v € [0,1] : {9(s)| < h for all s € [~1,—v]}. The
value —u is the largest point on the interval [--1,0] such that |¢)(s)| < A for all
s € [~1,—u}. Compare now the solution @%(t), ¢ = 0, and the solution x*(t})
constructed by ¢, with given u. Define wy = sax41 — Sox if s2r41 exists and
wy, = 0 otherwise, k € N (in the latter case the sequence sy} is finite). Direct
calculation shows that 53 — 83 = wy <t —#; = F'(u), where ty;¢; are the first
and second zeros of #%(t) constructed above. Induction arguments show that
wi = Sopp1 — sak < FR(w), k € N. Since F¥(u) = 0Vk > ko for some ko € N
we have wy = 0Vk > ng for some positive integer ng < ko. This implies that
the sequence (sz} is finite and therefore z(t) = cexp{—(t - to)/v} for some
¢, tg > 0.

* Example {.4. Consider equation (1) with f(z) given by f(z) = 1 for z >

hOo<h<l, flzg)=a>1for0<z<h, f(0)=0, flz) = —f(—z) forz <0
{Fig. 16).

Proposition 4.4. For any positive integer n there exists an open subset of the
parameter space {(a,h), @ > 1, 0 < h < 1} such that for any particular choice
of a and h from this subset and any sufficiently small 0 < v <y = vo(h, e)
the corresponding equation (1) has an asymptotically stable periodic solution
with period 2n + O(¥), v — +0.

Proposition 4.5. There ezists an open subset of the parameter space such
that for any particular choice of (a,h) from this subset and any sufficiently
small {0 < v < vy(h,a)) the corresponding equation (1} has a set of solu-
tions such that subsequent mazima (or distances between zeros) behave quasi-
randomly (the associated probability density is absolutely continuous with re-
spect to Lebesgue measure).

Given f(x) for any 0 < h < 1 and @ > 1 the inferval map f has a globally
attracting cycle of period two formed by the points —1 and L. The correspond-
ing difference equation (2) has relaxation type solutions which are two-periodic
for ¢ > 0. Nevertheless, the asymptotic behavior of the solution for equation
(1) is much more complicated as the propositions indicate,

We briefly sketch an approach to the proofs of the two propositions, as
given in [1,3] (see also [40]). Consider the set @ of initial functions defined by

i

T Tl
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& = {p € X|p(-—1) = h, o(t} is unimodal on [—1,0], that is, there exists a

t' € (—1,0) such that ©(t) is increasing on (—1,¢'} and decrasing on (¢',0)}.
Straightforward calculations show that for v sufficiently small and any ¢ €

&, the corresponding solution w;’,(t) has the property: there exists ¢; > 0 such

. that &}(t: + 1), ¢ € [-1,0] belongs to . This allows us to define a map F

on & by Flp) = ¢, ¢(t) = al{ts +1),t € [-1,0]. Next consider the set
¥ = F($). Functions in & depend on the real parameter z = (0). Again, to
any 1 € ¥ there corresponds an unique 1 € ¥ given by ¢ = F(¢). Now F on
¥ induces an one-dimensional map of the parameter set G :— z — %, which
turns out to be piecewise Moebius and continuous. Simple, but technically
rather complicated, calculations allow us to find the explicit form of &, All
details can be found in the mentioned paper (3]. In particular, there exists
a parameter subset such that & has a slope greater than 1 at each point of
an invariant interval (Fig. 17). According to the theory of interval maps, this
implies the existence of an invariant measure p which is absolutely continuous
with respect to Lebesque measure A {that is p{d) = p(G~1{A)) for every
measurable A C I).

Similarly, for any n there exists an (a, h)-parameter subset for which equa-
tion {1) has an asymptotically stable periodic solution of period 2n + O(v) (v
is small) [1]. The results are based on the analysis of parametrized families of
the obtained piecewise Moebius maps G {34].

We note that the asymptotic behaviors described by Propositions 4.4 and
4.5 occur in a §-neigbourhood (in the Hausdorff metric) of the generalized peri-
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odic solution po(t) of equation (2) defined by po(t) = 1iort € (0,1), polt) = —1
for t € (1,2), po(0) = po(1) = {—a, ], po(t) continued periodically outside
[6,2)

The following should be also noted. The induced interval map for the shift
operator along solutions in the cases considered in Example 4.4 (and in many
others examples in recent publications; see, e.g. [18-23, 40, 48, 61}) has Cantor
sets or (as in the case of Proposition 4.4) closed intervals as invariant sets.
The map on these sets is transitive (there exists a dense trajectory). More-
over it is mixing (a map @ is said to be mixing on an invariant set F, if for
any open (with respect to F) subset U there exist positive integers m and &
such that GHUZ'GI(U)) = F for § > k). The above sets contain trajectories
(Liapunov unstable ones) with diverse asymptotic behavior: periodic trajecto-
ries with arbitrarily large periods; recurrent trajectories (for which the w-limit
sets are minimal sets different form cycles; there exists a continuum of such
sets and they are pairwise disjoint Cantor-like sets); and simply Poisson stable
trajectories {they are almost all trajectories), etc. Each such trajectory, as we
know, gives rise to an unstable solution of equation (1) with a corresponding
asymptotic behvior.

Since a set with the mixing property is invariant, every point of it has at
least one preimage which belongs to the set. Therefore, any trajectory on the
set may be prolonged for negative n (usually in several ways) to obtain a two-
sided trajectory. Such two-sided trajectories may have the same asymptotic
behaviors for both 7 — oo and n — —o0, or different ones. In particular, in
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this way we obtain homoclinic trajectories, and each of them is attracted by
a periodic trajectory or by a fixed point as n — oo and n — —oo. To every
two-sided trajectory there corresponds a solution of equation {1} defined for all
t € R (in fact a family of solutions differing by a shift in time). In particular,
there exist solutions (homoclinic ones) modeling solitons (the corresponding
trajectory for the interval map is homoclinic to a fixed point).

Every homoclinic trajectory on an invariant set with the mixing property is
known to attract a continuum of trajectories as n — oo [54, 55). Hence, there
exists a continuum of different solutions of equation (1), defined for ¢ > 0 only
(and differing not only by a shift along ¢). Every such solution will reproduce
the original homoclinic solution, as £ — oo, with increasing accuracy on time
intervals of increasing length. In particular each such solution of equation
(1), corresponding to a one-dimensional trajectory which is homoclinic to a
fixed point, simulates a sequence of single waves (solitons) scattering away as
t — 400,

In the present paper we do not deal with bifurcation problems for equation
(1) when the nonlinearity f(z) is parameter dependent. Bifurcations for peri-
odic solutions and possible paths of transition to chaos are studies extensively
now in different classes of dynamical systems. The problem seems to be dif-
ficult for equation (1} and is not studied widely (some numerical results may
be found in {6]).

In this situation the study of bifurcation problems for relatively simple
examples seems to be worthwhile. (In particular, it is of infterest what happens
with the dynamics of solutions for example 4.4 as the parameters a,h vary,
and how chaos may appear there). We shall not get into more detail but would
like to conclude with a remark. If the shift operator ¢ on a subset of solutions
is reducible to an one-dimensional map G which is continuous and piecewise
Mocebius then its Schwartz derivative S(G) = G /G — 3/2(C"/G')? equals
zero (for all points where it exists). This implies [34] that period doubling
bifurcations for the map G may occur only finitely many times. The scenary
of the bifurcation itself is the following (see Fig. 18). An attracting cycle of
period n (a fixed point on Fig. 18a) while losing stahility is replaced by a
parameterized family of cycles of period n (Fig. 18 (b}). After this an attracting
cycle of period 2n (Fig. 18 (b)), or repelling cycle of period 2n (Fig. 18 (¢) may
appear. In the second case a local chaos in the vicinity of the 2n cycle appears.
The cycle of period n itself becomes unstable in every case.
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5. Attractors of Interval Maps and Asymptotlc
- Behavior of Solutions

In this chapter we try to show the role which is played by the attractors of
interval maps with large domains of immediate attraction for the asymptotic
behavior of the solutions of equation (1).

Consider first a simple but important generalization of the previous Exam-
ple 4.3.

Ezample 5.1. Fix h € (0,1) and consider equation (1) with f(z) = fo(z),
where fo(z) is smooth, fo(z) =0 for fo| <k, |fo(z)] < 1for |z} > hand z = 0
is the only fixed point of the map fy (a particular fo(z) is shown in Fig. 19).

Proposition 5.1. In the case h > 1/2 every solution of equation (1) satisfies
lirmy oo () = 0 (V¥ > 0,

Proof. As in Example 4.2 we introduce a family of sets of initial functions
by ou = {p € X|p(0) = p(~u) = h, p(t} > h, t € (~u,0), [p(t)] < h, t €
[~1, —u]} depending on a real parameter u € [0,1]. Given u and a particular
i € ¢, there exists an unique solution #*(t) of equation (1) defined for all
t>10.

Claim. For any u there either, {a) exist ¢; € (0,1) and ¢; > 1 with 2%(¢;) =
a¥(t2} = —h, ©*(t) € [-h, k] for ¢ € [0,4,] and z*(¢) < —h for t € (t1,13), or
{b) a¥(t) =cexp{—-((t—1)/v}, £t > L.

The proof is quite similar as in the case of claims 2 and 3 of Example 4.2,

Denoting w = 3 -t we have an induced interval map F; on the parameter
set [0, 1] with Fy(u) = w. In the case that ¢; does not exist or £y = ¢; we set w —
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Fi{u) = 0. Compare now w and v obtained in Example 4.3, Since [fo(z)] <1
for [z| > h and fo(z) = fu(z) for jz] < h we have w < v = F(u), where F{u)
is the same as in Example 4.3 (Fig. 20). Because of the monotonicity of F we
conclude Fi*(u) < F™(u). The exact form of F(u) (see Fig. 15b) shows us that
for any u there exists a positive integer ng = ng(h, u) with F*(u) = 0 for all
7 2 ng. This implies the existence of ¢3 such that l2(£)f < h for all ¢ > ¢,.
The proposition is proved. O

Now we observe that generally fo(2) may be defined on {zth < 2] < 1},
> % in an arbitrary way. In particular, fy can have an invariant subinterval
with an attracting cycle of period two, a repelling cycle of period two and no
other cycles on it (and the already existing fixed point 2 = 0). This guarantees
that relaxation type solutions are typical for equation (1}. In addition we
can require fy to have periodic points with periods (2k + 1)2™, k, m positive
integers. The latter will ensure the existence of turbulent type solutions for
equation (1) (see Chap. 1 for the details). An example of Jfo is shown in Fig. 19).

‘The proposition says, that for & > 1/2 all solutions of equation {1} are
asymptotically constant, notwithstanding the particular form of fo(z) outside
[=h,h]. For smali positive v the continuous dependence results of Chap.3
imply that the solutions of equation (1) follow the solutions of equation (2)
within finite time interval (which is the larger the smaller v is). Then, after
some transient time interval, they begin to decrease to zero exponentially. The
duration of the transient state my be estimated generically as o(1/v)).

Thus the example suggests that the main factor to the determination of the
asymptotic behaviour of solutions of equation (1) may be an attractor having
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a large domain of immediate attraction compared with the remaining part of
the invariant interval. The following theorem shows that this is the typical
situation.

Theorem 5.1. Suppose the map f of the compact interval I into itself
has a compact invariant subinterval Iy with tmmediate atfraction domain
Jo:TaCdyC I, f¥ () — Iy as k — oo for any z € Jo. If the set I\Jy does
not contain fized points and the value meas(I\Jo)/meas(Jo\Iy) is small enough
then for every solution x(t) of equation (1) there exzists a time to = to(z,v)
such that z(t) € Jo for all t > tg. Moreover, infIy < lim; o infx(t) <
limy_, o sup 2(t) < sup Iy.

Remark. If z(t) € Jy for a unit time interval then one immediately obtains
the required conclusion lim,_, ., inf x(¢) > inf Iy and lim;_, , sup 2(f) < sup Ip.
This follows from Theorem 2.3.
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Therefore, we only have to show that every solution of equation (1) satisfies
z(t) € Jy for t € [s — 1, 5] and some (sufficiently large) s.

Remark. Suppose that no endpoint of the interval I is a fixed point. Then there
exists a positive number § = §(f,v) such that inf Iy + & < limy.,e infz(f) <
limy_, o, sup z(t) < sup Jo—6 for every solution z(t} of equation (1). This follows
from Theorem 2.5.

We give a proof of Theorem 5.2 using several auxilary propositions. They
are listed below as Lemmas 5.1-5.3. The proofs of these Lemmas are technical
and only outlined her. The proof of Lemma 5.2 is similar to the considerations
of example 5.1, and the proof of Lemma 5.3 is similar to the argumentis given
in example 4.3 (case h > 1/2). For more details see [27, 28].

Let wg € I be arbitrary and consider a solution z(¢) of equation (1). We
say that z(t) oscillates with respect to zq if () — xg has zeros for ¢ > 0.

Under the assumptions of Theorem 5.1 there exist three intervals I O Jg D
Tp which are invariant under f. Denote I = [a,d], Jp = {ao, b, Io = [a1,b1].

Lemma 5.1. Every solution z(t) of equation (1) either oscillates with respect
to both ag and by or satisfies z(t) € Jy, t > 0.

The statement of the Lemma is evident. If 2(£) does not oscillate then
z{t} € Jo, t € [0,1]. Due to the invariance property {Theorem 2.1} we have
w(t) € Jy for all ¢ > 0.

Lemma 5.1 allows us to consider only those solutions which oscillate with
respect to both ap and bg.

Now intreduce a set &, of initial functions depending on the real parameter
u € [0,1] by By = {p € X1[9(0) = p(—u) = aq, ©(s) € Ju, s € [-1,—u)}. Let
(£}, t > 0 be a solution of equation (1) constructed by a particular ¢ € &,
for a given w. Since we consider solutions which oscillate around ag and by,
there always exist £; < 1 and £ > 1 such that 2%(t;) = 2%(ta) = bg, () < bo
for ¢ € [0,41) (a particular case is shown in Fig, 21). Consider now z*(f, +5) =
¥(s), s € [~1,0] as an element of X;. Then, similarly, we may assume that
there exist £3 > ¢, and 4 > #3 + 1 such that z(t;) = 5%(24) = ag, 2*(t) > ao
for ¢ € ft5,13,)] (Fig. 21). Consider again %(t4 + u) = @(s) as an element of
Xy It is clear that @(s) belongs to some @, with o/ given by o' = t4 — #5.
Define now a one-dimensional map F on the parameter set {u: 0<u<1}
by F : u — «'. In the case that zeros t3,#; do not exist for some u and
@ € &, we set F(u) = 0. Due to the continuous dependence of solutions of
equation (1) on initial conditions it is clear that for every fixed v there exists
up = up(f, ) € (0,1) such that F(u) = 0 for every 0 < u < ug and arbitrary
peEd,.

Note that in general for every fixed u the value «' depends on the par-
ticular choice of ¢ € $,. The following lemma shows that there exists an
one-dimensional map to which the mapping F is subjected.
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Lemma 5.2. For f(x) given and meas(J\Jy)/meas{Jo\Iy) small, there exists
an one-dimensional map F of the interval [0, 1] into itself which majorizes the
map F in the following sense: Fu) > u' for every particular ¢ € &, and
arbiirary u € {0, 1].

The proof of the lemma is based on the properties of solutions of equation
(1) with a step function f*(z) which is constructed on the basis of a given
nonlinearity f(z). It is similar to the considerations of Example 5.1. We sup-
pose that f(z) is fixed an continue with the construction of the function f*(z)
which we will need.

We have the three invariant intervals I = {a,b], Jy = [ag,bg] and I =
fax,b:] which satisfy T > Jy D Ip. Now f*(z) is defined as follows

(b, x € [a,ay)

a,xrc {bg, b]

by, z € a1, 0)

f*=1¢ ay, z € {e,b for some ¢ € (a1,b1) .
an arbitrary step functions satisfying:

@ < f*(x) < b, f*(=) # bo, = € (a0, 1)
&> f* (2} > ag, fH(2) # a0, & € (b1, bo)

For a f(x} and the three intervals I D Jy D Iy given, f*(«) is chosen to satisfy
=) = fz} for = € (ag,a1) and f*(z) < f(z) for z € (b1, by). Then, due to
the construction one has f*(z) > f(«) for < cand f*(z) < f(2) for z > ¢
A particular f(2) and its f*(z) are shown in Fig. 22.
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A technical calculation shows that, for every u € {0, 1} and particular pe
#,, the map F depending on f and f* has the property u/( £*) > ¥@'(f), where
u' = t4 — #3 is defined above, This is proved by step by step comparison of
the corresponding solutions depending on the particular f and f* constructed
above. Details are found in [27).

The map F associated to f* induces an one-dimensional map F given
by w' = F(u). Indeed ', constructed by u and ¢, does not depend on the
particular choice of ¢ € &, when f is replaced by a step function f* {cf in
Examples 4.1-4.4).

The following statement is verified by a direct caleulation of the map F.
They are similar to Example 4.3, case > 1 /2 (see Chap. 4).

Lemma 5.3, The one-dimensional map F : [0,1] — [0,1] 4s conjugate by
z = exp(—ufv) to a map G : fexp(-1/v),1] — fexp(=1/v),1). If b~ by and
@p —a are small enough then the map G has the only fized point z = 1, which
is globally attracting: limy_,o, G*(z) = 1Vz € [exp(—1/v},1]. The map G has
the form shown in Fig. 15b.
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Remark. Since G(2) = 1 for z € [z,1] and G(z) > z for all z € {exp(—1/r), 1]
it follows that for every fixed z € fexp(—1/¥),1] there exists a positive integer
ng such that G*(z) = 1 Vk > ny.

With Lemmas 5.1-5.3 at hand, the proof of Theorem 5.1 is straightforward.
Take an arbitrary ¢ ¢ X. If the function z%(¢) — ao (or z4(2) — bg) has no
zeros for £ > 0 then the theorem holds (Lemma 5.1). If it has a zero #y > 0
we consider 2, (¢ -+ s), 5 € [1,0] as an element of &, for some u € [0,1]. Then
the map F is defined, for this initial condition, as well as the induced one-
dimensional map F majorizing 7 (Lemma 5.2). If meas (I\Jp)}/meas(Jy\lo)
is small enough, then the map G = h~to Foh, z = h{u) == exp(—u/v) has the
property: limg_, o, G¥(2) = 1 (Lemma 5.3). Moreover, with z = v In(1/u) given
there exists ko € N such that G*(z) < 1, G*(z) = 1, k > ko (Remark 5.3).
Therefore, the corresponding w; = F*(u) satisfy wup, > 0, ux = 0Vk > kq.
This implies that for every u € [0, 1] and every ¢ € &, there exists k3 < ko
such that F¥1(u) = 0. But for « = 0 one has zi(t) € Jo ¥t > 0. This completes
the proof.

One naturally expects to extend (in a sense} Theorem 5.1. to cycles of
intervals. What conditions should a cycle of intervals {I;}7., be subjected
to, in order to guarantee existence of solutions for equation (1) which range
cyclically in intervals Iy, I, - - -, I,,? An answer is given by Theorem 5.2 below.

We suppose that a set of intervals I, = [ag,bi], & = 1,2,+.,n, forms
a cycle of period n for themap f: I —» I, — .-+ — I, — I;. For every k,
1 < k < n, denote by J;, the interval which connects I, and Ii 1 1(mod n) and has
joint endpoints with them: Ji = [by, arq1] for by < apqq, and Ji = [bry1,ax)
for biy1 < a (from now on we identify the indices n+1 and 1}. J;, may consist
of one point. For any k, 1 < & < n, intervals Iy, Iy, i given we define the
following numbers:

L (k) = [supf(Ji) — supliqa]/lsupf(Jx) — supf(IL)] ,
if supf{Ji) > supf(f;), and

L{lk) =0, if supf(Ji) < supf(li),

lz(fk) = [inf Iy — inff(Jk)]/[inff(Ik) — inff(Jk)] , if

i€ f(I) > inf f(Ji) , ba(I) = O if infF(Ix) < infF(Ji) ,
W) = max{ly (I} ,8a(82)},

m(li) = € (L) — infLusa )/ [infF (1) ~ supli]
if suply < inff{1,),

m{1) = [supTirs — supf (F)/finf I — supf (1))
if supf(I) < infl; .

Introduce subsets Xz, k = 1,2,---,n, of X by setting X;, = C([-1, 0}, I)-

Theorem 5.2. Suppose the map f has an interval cycle [y + I — -+« = I, —
Ly, satisfying m(Iy) > I(Iy) for k = 1,2,---,n. Then there exists o positive
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vy such that for any 0 < v < vy and arbitrary ¢ € Xy, the corresponding
solution x,(t) has the following property: there exisls a sequence 0 <13 <ty <
f3 < - — oo with iy —tp > 1 for allk € N and a:;’,(tk +t} € Iiginodn) for
t 0,1}

Remark. Let 7%, t > 0 be the semiflow on X1 = C([—1,0}, ) given by Ftip(s) =
@l (t + 8), s € [0,1]. The teorem says that if v is sufficiently small for every
@ € X; there exists a sequence () — oo such that (F*™* € Xy, .. Every
initial function p € X, generates a solution x},(¢} which ranges cyclically in
the intervals Iy, I3, - -, I,, within time segments of length at least 1.

Remark. Since I(I;} > 0 the conditions of Theorem 5.2 imply that m({I;) > 0
for all 1 < k& < n. The inequality m(J) > 0 implies in turn {(see the def-
inition) of m(Ji)) that the set {f(Ix)} is a proper subset of {Irxy1}. This
means that each of the intervals I is mapped strictly inside the interval
Iii, ko= 1,2,---,n. Then it is not difficult to see that under the condi-
tions of Theorem 5.2 there exists a cycle of intervals {11, 13, -- -, I}, } satisfying
I C L0y, # I, F(I}) = Ity Indeed, it is enough to set I} = Nizof™ {1)-
The interval cycle {I{,13,- -, I!,} (which may coincide with the trajectory of a
periodic point) is an attractor and the set I;UI3U- - <UL, is a proper subset of its
domain of immediate attraction. The conditions m(Il;) > {I), k =1,2,-- -, n,
can be considered {in a sense) as reflecting the fact that the set [UU-- U,
is much larger than the remaining part 7\(Up_, ;) of the invariant interval I.

A particular map of an interval into itself having a cycle of intervals of
period two is depicted in Fig. 23. A cycle of intervals is formed by I = {as, b1}
and I = [ag, by with f(I1) = [a}, b2], f(I2) = a1, b}] where a} > ag, b] < by.
The set J; coincides with the set J, and is the interval {b,az]. Define £ =
inf {f(z), x € Ji1}, n = sup{f(z), z € Jy}. Directly from the definitions we
have:

L(h) =0, l(Iz) = (e2) — £)/(ey — &) = W) = (a2 — &)/(ay — &);
m(ly) = (a} — a2}/ {ay — b1} ;

Li(I2) = (n— b1} /(g — b1}, 2(L2) = 0 = U{L2) = (n— b1)/{n — b31);
m(Iz) = {by — b1}/(az — b7) .

The conditions of Theorem 5.2 in the case considered take the form (a} —
03)/(a, — by) > (az — £)/{ah - €) and (by — b;)/(az — by) > (- ba)/(n — BY).
They hold always if the inequalities (ah — a2}/ (ah — b1} > (a2 — 01)/(ah — a1)
and (by — b})/(e2 — b)) > (by — b1)/(bz — b}) ave satisfied. This follows from
the fact a; < € <5 < by. In particular, the inequalities are justified when aof
and b} are fixed and ay — by is small enough.

The proof of Theorem 5.2 is based on the following lemma.

Lemma 5.4. Suppose that the inequality m(Iy) > I{I}.) holds. Then there ez-
ists a positive v such that for all 0 < v < vy and any ¢ € X}, the corresponding
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solution z2,(t) has the following property: there exists o time ¢, = tp,v)> 1

with z¥(t, + 1) € Iy for ol t € [0,1].

The proof is divided into several parts. To be definite we suppose £ = 1,
and set I; = [(Ll,bl], I = [(12,1)2}, a; < by < az < by, f(Il) = [aé, '2} C
I, Jy = [by,az), & = inf f(J1), m =sup f(J1); X7 = { € Xi[p(0) = b1 }.

Claim 1. For any ¢ € X;, there exists ¢y = £ (i, ¥} > 0 with g% (t1) = br.

Since f(I1) C Iz and b; < a}, according to equation (1) the solution y(#)
increases (for any ¥ > 0 and ¢ € X;) in some righthand neighbourhood
of ¢ = 0. Clearly, d/di(z%(t)} > 0 for all £ > 0 where zi,(t) < ay. Moreover

¥ (t) = aftl d:—'ifa’z-{— (0)—ablexp(—t/v). The latter implies t; < t{ = vinf{ab—
(%3 2

- a1)/(ah — b))}

Claim 1 allows to restrict the considerations to X7 rather than X;.

Claim 2. For any ¢ € X there exists & = ta(p,v) with zi{t2) = aa.
Moreover, z%(t) increases on [0, 5] and ¢ < vIn[(ay — b1)/ (o — a2)).

Let ¢ € X?. Then for ¢ € [0,1] we have p} > ()= ol 4 (by —ah )exp(—/v).
Clearly, 2 (t) is monotone for all those ¢ from a righthand neighbourhood of
t = 0 where z}(t) < aj.
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Hence, t < t3 = vIn[{a} — b1)/(a} — az)).
Claim 3. If the inequality m{I{) > I3{l;) holds, then there exists a positive
va such that for all 0 < v < v} and for any p € X the corresponding solution
(] 4] 1
x,(t) satisfies the inequality «} (¢} > ag for all ¢ € [ta, ¢ + 1].

According to claim 2, for any ¢ € X? there exists {3 = t2{¢p, v} such that
1

ay,(t) is increasing on [0,£5] and 2% (t2) = ag. Moreover, t; < ¢ = vinj{a} —

b1)/ (e} — az)]. We may choose 4} guaranteeing 3 < 1 for all 0 < v < 1. Then

zy(t) > a(t)dzera’z 4 {b1 - aj}exp(—t)/v) and hence z},(¢) > b for all ¢ € [y, 1].

Put a;défa(l) = ajy + (b — a})exp(—1/v), and consider the solution x,(t)
within the time interval [1,1 + ¢5]. We have: m;’,(t) > &y + (g — & Jexp{—(t —
/vy 2 & + ey + (b — au)exp(—1/v) — &1)(aj — a2)/(e; — b1). From the
definition we have m(I) = (ah —a2)/(eh — by} and () = (ag — &)/ (a - &).
Since m(Iy) > lp(I1), there exists a positive 1) < v} with & + [a) + (b1 —
ab)exp(—1/v) — &](ah — a2)/(ah — b1) > aq for all 0 < v < . This implies
zg(t) > ag for t € [1,1 4 £2).

Claim 4. If the inequality m{1;) > 1, ({1) holds, then for all 0 < v < v and
any ¢ € X7 the solution x (1) satisfies z%(t) < by for ¢ € [t2, 22 + 1}.

Clearly z3(t) < ,G(t)déf 54+(b1 —bh)exp(—t/v) < b forali ¢ € [0, 1}. Suppose
v < vy Since m{Iy) = (ah—az)/(ah—by) and 11 {11) = (m1—b2)/ (71 —b%) we have
@ (1) < m+ (8 —m) xexp{—(t~1)/v} < mu+ (b —m)(ay —az)/(ag—b1) = b2
for t € [1,1+ ty).

To complete the proof of the lemma we set vg = 1 and ¢, = {3 + 1. The
case by < @y is treated similarly.

With the proved Lemma, the proof of Theorem 5.2 is straight-forward.

The conditions involved in Theorem 5.2 are explained in the following ex-
ampie.

Ezample 5.2. Suppose 6 is a small positive number. Define fs{z) by fs(z) =0
form < ~1-86, fs(zg) =2 for 2 € (-1 +68,1-38), fs(z) =a < -1 - § for
2 > 146 and let fs{z} be an arbitrary monotone function for z € (1 —6, -1+
6) U (1 — 6,1 + 6) such that fs(z) € C*R) (Fig.24). The map fs5 has an
interval cycle of period three: [y = Ip = I3 = I with I; = [a,—1 - §], b =
[-1+46,1—6], Is = [1+8, 2]. Note that there exists an attracting cycle of period
three ¢ —» 0 — 2 — a whose immediate attraction domain contains [; U UT;
at least. For the interval cycle {I, I, I3} we have J; = [-1—§,—1+4 6], Jp =
[1—6,1+8), J3 =[-1—46,1+68]. One easily obtains that I;{[)) =0, (L) =
0, 12(11) = 0, lp(La) = (1 + 6 — a)/(2— a), (L3} = 3+ 8)/(2 ~ a), (3) =
0, ym(h)=m(L)=(1-8)/1+8),m(lz)=(-1-8—a)/(1+6—a). Then
the conditions of Theorem 5.2 become (1 —8)/(1 +8) > 0, (1 - 8)/(1 + 6} >
(1+6—-a)/(2—0a), (-1 —-6—a}/(1+6—0a)>(3+8)/(2-a).
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This means that for any @ < —1 — /6 there exists a positive & = 8o(a)
such that the assumptions of Theorem 5.2 hold for f; provided 0 < § < &, For
the particular choice a = —4 a sufficient condition is 0 < § < /b2 — 7~ 0, 2L,

Fx)
f(x
2
a —-1-8 —1+6 1-6 1+68
g3
Fig. 24.

Note that if the conditions of Theorem 5.2 hold for a particular contin-
uous function f(z), then they are also satisfied for all sufficiently small C°
perturbations of f(z).

6. Existence of Periodic Solutions

The existence of nonconstant periodic solutions for funtional-differential equa-
tions has been studied in many papers. We refer, for example, to [5, 9, 15, 17,
30, 31, 33, 39, 42-45, 58, 59, 62] for autonomous differential-difference equa-
tions related to the equation considered here. Several methods were developed
to prove the existence of periodic solutions inchuding technique based on recent
results of functional analysis. Some of them are applicable to the singularly
perturbed differential-difference equation

vi(t) + z(t) = flz(t —1)). (1)
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If the interval map f has only one attracting point and no other cycles, then
all solutions of equation (1} are asymptotically constant. This means that the
rest point of the semiflow F* corresponding to the fixed point of the map
f is a global attractor on X5 = C([-1,0],I as t — +o0. This was shown
in Chap. 2. Therefore, the dynamics of the map f on an invariant interval
has to be more complex to produce nonconstant periodic solution. The next
situation is when the map f has only one repelling fixed point and a globally
attracting cycle of period two. This means, in particular, that the fixed point
divides the invariant interval into two subintervals which are permuted by f
and which cover the whole invariant interval. In this situation, equation (1)
has a nonconstant periodic solution if ~ > 0 is small encugh. This result was
proved in [16].

Theorem 8.1. Suppose the map f has an invariant interval I with ezactly one
repelling fized point z, € I, |f'{z.)] > 1, and f satisfies the negative feedback
conditions (z — z.)[f(z) — z] < 0,z # . Then there exists a positive vy
such that for every v € (0,1p] equation (1) has a slowly oscillating periodic
solution.

We recall that a solution z(t) is called slowly oscillating if successive zeros
of z(t) — x, for large ¢ are spaced apart by distances more than the time delay
1.

Since the complete proof of this theorem is given in [16] for the slightly
different equation z(¢) + vz(f) + f{x(t — 1)) = 0 we briefly sketch here the
main ideas of the proof refering to the original paper for details.

It is well known fact that for 0 < » < |f'{z,)| all solutions of equation (1)
oscillate with respect to = = x,. This means that the function z(t) — z. has
an unbounded set of zeros for every solution x(t) of equation (1}.

Consider a set of initial functions defined by K = {p € Xjlp(-1) =
T4y p(s) — 2z, < 0 for all s € {-1,0]}.

For any ¢ € K there exists a sequence {t}32; of zeros of zi,(t) — z. with
tpq1 — i > 1lforall k€ N, cc;’,(t) —z. <Ofortc (tziﬁl,tg,'), :'B;(t) —z, >0
for ¢t € (ta:,42i41), 7 € N. In other words, any ¢ € K gives rise to a slowly
oscillating selution. This makes it possible to define a map & on K in the
following way. If ¢ € K and 3 is the second zero of the function z(t) — =,
then {Gp)}(t) = al(tz + 1+ 1), t € [-1,0]. Clearly, G maps K into itself. It
is convenient to consider the constant solution xz(t) = z, as a fixed point of
G. Other fixed points of G (if any) generate nontrivial periodic solutions of
equation (1). The main result of [16] is to show the existence of a fixed point
of G different from z..

It is possible to find a subset K = {p € Klp(t)exp(t/v) does not decrease
for t € [-1,0]} of K which is invariant under G.

Suppose next that f'(z.) < —1. Then for all sufficiently small v > 0 the
trivial solution z(t) = =z, is unstable. Using ideas of [33, 44, 64] this allows
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us to show that the fixed point ¢ = =z, is repelling under G on Ky. More
precisely, it is possible to find a neighbourhood U, in Ky of the fixed point
¢ = x, such that for every ¢ € U, there exist a positive integer N = N{¢) such
that G¥(p) ¢ U,. Here GV is the N-th iterate of the map G. This implies,
according to {44], the existence of a fixed point of G different from the trivial

. one p = .. As we have remarked before every nontrivial fixed point of G gives

rise to a slowly oscillating periodic solution of equation (1).

Theorem 6.1 is existence theorem which does not say anything about the
particular form of the periodic solutions when v is small. In general, little can
be said about it even when the structure of the map f is known in great detail.
This is one of the unsolved problems (see Chap. 7).

However, when the map f has a globally attracting cycle of period two,
the structure of periodic solutions and their asymptotics as v — 40 can be
studied. This is done in {42]. Here we cite only the following particular result.

Suppose the map f has a globally attracting cycle {ay, a2} of period two on
I and f'(z,) < —1 for the repelling fixed point 2= 2. (H). Let pa{t) = a1, t €

" 10,1), po{t) = az, t € {1,2) and continuate py(t) periodically for all ¢ € R.

Theorem 6.2, If the map f satisfies (H), then there exists a positive vy such

that for every 0 < v < 1y equation (1) has o periodic solution p,(t) with period
2+ O(v), v — +0. The periodic solution p,(t) converges to po(t) as v — +0,
uniformiy on every compect interval not containing integer poinist =k, k € Z.

For a proof of this theorem see [42].

Remark. Note that neither stability nor unigueness of the periodic solution
P (1) is asserted in Theorem 6.2. In fact, there may be several or even infinitely
many periodic solutions (see Example 4.4 or [1, 3, 40]).

Ezample 6.1. Consider equation (1} with f{z) = fa{z) = Az(1 — ).

For every 0 < A < 3 all solutions have finite limits (see Example 2.1).

Suppose that 3 < A < A*. Here A* = 3,57 is the value of the parameter
A for which the map fy has cycles of every period 2%, n = 0,1,2,--- but no
other cycles (Feigenbaum point}. It is well-known (see, e.g. [54]) that for every
A € (3,A*) the fixed point . = 1 -- 1/A is repelling and (z — a.,}{fr(z) -
z,] < 0 for all @ belonging to the invariant interval {f§{1/2), f1(1/2)] < [0,1}.
Therefore, for every A € {3,A*} and » > 0 sufficiently small, equation (1) has
a periodic solution p,.(f) which is slowly oscillating (Theorem 6.1). Moreover,
if A € (8,14 /6) (for this range of parameter values, the map f) has a
globally attracting cycle of period 2) p,(f) converges to the function py(t) on
compact sets not containing integer points ¢ = n,n € Z, as » — 40. Here
polt) = a1, t € [0,1), po(t) = a2, £ € [1,2) and {ay,as} is the cycle of period
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two of the map fi. The points ay, ay are found as the real roots of the equation
fi(z) = =, different from z =0 and . = 1 — 1/,

It is natural, however, to relate periodic solutions of equation {1} and cycles
of the map f. This can be seen from the following heuristic arguments. Suppose
B = {z1,2,---, 25} is an attracting cycle of the map f with components
U(z;),i =1,-++,n, of domain of immediate attraction. Define subsets of the
phase space X = C{([-1,0],I) by setting ¥; = {¢ € X|p(t) € U(z;)Vt €
[—1,0)}. Since B is an attracting cycle any p € ¥;, i =1,2,. .-, n, gives rise to
a solution z,(t) of equation (2} converging uniformly on [k,k+ 1) as kb — o
to the steplike function z* = z; for £ € [i — 1L,4),¢ = 1,2,---,n. By virtue
of the continuous dependence results (Chap. 3) which guarantee, for small »,
the closeness between solutions of the equations (1) and (2}, it is natural to
expect that, in some cases, a periodic solution of equation (1) with period
close to n will correspond to the attracting cycle . Generally speaking there
may not be any such correspondence at all, as Example 4.3 and Theorem
5.1 show. Therefore some additional restrictions are needed to guarantee the
correspondence, The idea is to use the continuous dependence results together
with the existence of an attracting cycle of intervals, subjected to additional
conditions. The conditions are roughly speaking, to ensure, the existence of an
interval cycle with a large domain of immediate attraction.

Suppose the map f has an interval cycle {I1, I3, - -+, I'5,}. Consider the num-
bers m(I;) and {(I;), i == 1,2, -+, n, introduced in the previous chapier. Recall
the notations X = C{[-1,0},I), X, = C([-1,0}, L), k= 1,2,---,n.

Theorem 6.3. If the conditions m{I;} > I(I;), 1= 1,2, - -, n, hold, then there
exists a vy > 0 such that for every 0 < v < vy equation (1)} has a periodic
solution p(t) with the following properties:

(i) p(t) has peried T' = n + O(v}, v — +0;
(ii) there exists a sequence 0 < t; < ta < -++ < t, < T such that p(t, +1) €
Xk1t€[—‘1,0],l_<_kin .

We recall (see Remark 5.5) that the conditions m(f;) > I{(I;) imply the
existence of an attracting cycle of intervals {I{,---,I,} defined by I} =
Nisof™*(L;). The set [y UTp U --- U I, is a part of its domain of immediate
attraction, )

Theorem 6.3 is a straightforward corollary of Theorem 5.2 and the Schauder
fixed point theorem. Indeed, according to Theorem 5.2, for arbitrary ¢ € X,
there exists a sequence 0 < ¢ <itg < v < < -+ > oo such that £33 — & >
1forall £ € N and @l (i + 8) € Xitmodn)> 8 € (=100 < v < v, g is
small enough) (see Remark 5.4). Define a map G : X; — X7 by setting:
(Gp)(t) = 2y (tn +1), t € [~1,0]. More or less standard arguments show that
X3 is convex and bounded, and G is compact. Therefore, there exists a fixed
point ¢y € X; of G which corresponds to a periodic solution of eguation (1).
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In the case when the cycle of intervals {f3, I3, -+, I, } contains a unique at-
tracting cycle of the map f, the statement of Theorem 6.3 can be strengthened
substantially. Let a finite set {4y, Ap, -, A,} of real numbers be given, We
define a step function py(t), ¢ € R, by setting po(t) = A, ¢ € [k—1, k}(modn).

Theorem 6.4. Suppose the map f has a eycle of intervals {I,I5,---, I,,}
for which the inequalities m(I,)} > I(I;) hold for all 1 < k < n. If the cycle
of intervals contains a unique cycle {A1, Az, --, An} of the map [ then the
periodic solution p(t), guaranteed to erist by Theorem 6.3, converges to the
step function pp(t) es v — +-0. The convergence is uniform on every compact
set not contfaining points t =k, k € 7Z,

Remark. Under the conditions of Theorem 6.4 the convergence p{t) — po(t),
v — -0 holds but uniqueness of p(t} is not claimed. In fact equation (1) may
still have several or even countably many periodic solutions p(t) [1, 3, 40]. All
of them will be close to pg(t) (and therefore close to each other) and converge
to po(t) as ¥ — +0 in the following sense. Take a compact set X C R not
containing points ¢t = ¢, ¢ € Z and an arbitrary positive €. Then there exists a
positive 1y such that for every 0 < v < v one has sup{|p(¢)—po(t)|, t € K} <¢
for any periodic solution p(t) from Theorem 6.4. This result can be derived
from the fine structure of periodic solution p(t) obtained in [1, 3, 40] for the
cases considered there. For our case it is proved below.

The proof of Theorem 6.4 is based on the properties of the shift operator
F* along solutions of equation (1) and on the continuous dependence results
of Chap. 3 which we now adopt in Lemma 6.1.

Lemma 6.1 Suppose ¢ € Xy and {sy, s3] is a subinterval of [—1,0]. For any
positive €,8 there exists a positive vy such that sup{lel,(t) — fe(t — 1)), t €
[s1+1+46s+1}<cforall0<v <.

The lemma says that the iterate f o ¢ of an initial function ¢ and the
corresponding solution z},(¢) of equation (1) are as close on [s3 + 1+ 8,52 + 1]
as desired, provided v is small enough.

Proof of the lemma. Since equation {1} is autonomous we may set 53 = —1.
For t € [0,s2 + 1) the solution z}(t} of equation (1) may be written in the
form @, (2) = p(0)exp(—t/v}+(1/v} f; exp{(s—1)/v}f(p(s—1))ds. Using the
identity exp(—t/v) + (1/v) f; exp{(s — t)/v}ds = 1 we have: |z¥(t) — f((s -
)| < le(0) - flp(t ~ 1))l exp(—t/v) + (1/v) f; exp{(s — ) /v} f(w(s — 1)) -
Flo(t —~ D)lds, t € [0,52 -+ 1].

Since € and § are fixed there always exists v} such that sup{|e(0) — f(p(t -
D) exp(—t/v), t € [6,52 + 1]} < ¢/3 for all 0 < v < v},. This also implies
(1/) fo " exp{(s—8)/v}|f (p(s ~ 1)~ Flp(t—1))lds < M'(1/v) Jy ™7 exp{(s -
t)/vids < gf3,t € {0,355 + 1], for every o > 0 and ali 0 < ¥ < v = py(o).
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"The function f(y(-)} is uniformly continuous since both () and ¢(-) are
continuous. Therefore, for given & > 0 there exists o > 0 such that |f(e(t')) —~
Flp(t")l < /3 provided [t — ¢"] < o. This implies (1/) [ exp{(s —
) /vilf (pls 1)) — fle(t—1))lds < sup{{f(e(s—1)) - flp(t—1))], s : |s—1] <
o} <¢g/3.

Therefore sup{lai(t) — fle(t — 1)), t € [652 + 1)} < [0(0) — f(eft —
) exp(—t/v) + (l/y)[fot_‘7 + j;t_a] <ef3+ef3tef3=clorevery 0 <v <
min{zg, 14} 0

Corollary 6.1. Suppose ¢ € X, {s1, 53] is a subinterval of [1,0]. Then for
any positive €,8 and any positive integer N there exists a positive v such that
sup{le},{t) — f¥{(p(t— N)),t €51+ N+682+ N} <cforallO< v <y .

The corollary is proved by induction using Lemma 6.1. Indeed ¢, () =
#g(t) and p2(t) = f(p({t—1)) are close on [s1 +1+6/N, s3+1] by the lemma.
Consider ¢ and g, as elements of X; and set s} = sy +§/N, s} = s5. Then
g, (t) and f(p1{t — 1)} are close on [s] + 1+ §/N, s}, + 1] by Lemma 6.1. The
functions f(1(t — 1)) and f(wa(t — 1)) are close on [s] -+ 1, s} + 1] since f is
uniformly continuous on I. This implies that xy(t) and f2(p(t — 2)) are close
‘on the interval [s) -+ 2 + 26/N, 55 + 2], and so on.

Proof of Theorem 6.4. Let {I},I5,--+,I,} be a cycle of intervals of the map
f for which the inequalities m({l},) > I(I}),1 < k < n, hold. Let {A1,--, Az}
be the only (point) cycle contained in the cycle of intervals {L,---,I,}. Then
{A1,-++,A,} is an attracting cycle of the map f and Iy, is a proper subset of
the component U(A;) of its domain of immediate attraction, k = 1,2,---,n.
Therefore, for any positive ¢ there exists a positive integer kp such that
[fE™(z) — Ag| < € for every k > ko and all & € I,

Let Xy = C([-1,0),I;), k = 1,---,n be fixed (say k = 1; the case k > 1
is similar). Then for arbitrary € > 0 and every ¢ € X; there exists a positive
integer Np = ng-n such that sup{| Vo (p(t—Np)) - 4,],t € [No—1,Np)} < e/2.
On the other hand according to Corollary 6.1 for any positive § and given ¢
there exists a positive vy such that sup{z}, () — fY(p(t — No))|, ¢ € [N —
L+ 6,Nol} < &/2 (we apply the Corollary setting s; = —1,s5 = 0). The
latter inequality holds for every ¢ € X; including those which give rise to
periodic solutions. Use next Theorem 6.3. Take the particular tpg € X1 which
generates the periodic solution p,(t) with period T = n + O(¥), v — 40.
To be definite we may always assume that Pu{—1) = inf I while considering
P»(t} as an element of X;. Denote by G the translation operator of time 7T
along the periodic solution p,(t). We have G"'p,(t) ¢ X, for every integer {.
Then |p,(£) — f¥(po(t — No))| = 1G™p() — FNo(polt — No)| = |22, (t) ~
FM(po(t— Np))| < e/2 for all ¢ € [N — 1 +86, Ny}, and small » > 0. Therefore,
we have [p,(£) — Arf = |G™pi(t) — f¥(polt — No)) + fY(po(t — No)) — Ay
S1G™p (£)— £ (ot~ No))+ 1Mo (ot — No)) — Ar] = [, (£)— Y0 (ot —
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Nl + 17 (ot — N)) — A1} < & for ¢ € [Ny — 1 + 6, Ny — 6] and for every

0 < v < vg. This implies the convergence p,.{t) — po(f) as ¥ — 40 on the

segments corresponding to A;. For the other cases &k > 1 arguments have to

be repeated. This completes the proof. ) o
Finally, to illustrate Theorem 6.4 we give the following

Ezample 6.2. Consider equation (1) with a continuous nonlinearity f (m) close
to a step function which is constructed as follows.

Suppose n > 2 is fixed. Take two sets of real numbers {a1, -+, a,—1}
{41, Az} satisfying 4, < a1 < A < ag < Ap < *++ < apy < Ap1.
Let & be positive and small (say § = & where §; = min{(a; — 4,)/2, (a; -
@i-1)/2,i = 1,2,---,n — 1}. Define f(z) by settlng flz) = Ay for & <
a1 — & f(z) = Ap for z € [ap..1 +6ax — 8, k= 2,+--,n— 1, f(z) = A, for
% 2 0p—1 + 6. Let f(z) be an arbitrary monotone function on [a,;c -8, ay, + 8],
k=1,2,--+,n — 1 such that f(z) is continuously differentiable everywhere.

It is easy to see that the map f has the invariant interval I = [4,, A,_1]
and a cycle of intervals {fy, ..+, I,} belonging to I. Here I) = [4,,a; — §},
Iy = [a,l + 8,a9 — 6}, cee Iy 4 = [an_g +8a,1— 5], I, = [anﬁl -+ 8, Anﬁl].
Moreover, there exists the attracting cycle {4y, 4a,--+, A,} of period n. Its
domain of immediate attraction contains the cycle of intervals {I,---,I,,} as
a proper subset.

By direct calculation one has i1(1;) = (Ay — ap + §) /(A2 — A1), Lo(l1) =
0, li(ln—2) = (An—z2 — an1 +8)/(An_1 — An2), la{n-2) = 0, i {L_;) =
G, IZ(I -1 = (an—-l +4 “An)/(An—l - An): ll(In) = (An—l — a1 +6)/(An~1 -
An), lz(I-n) =0, m(Ik) = (.Ag_ —Qf — 5)/(./4;, —ap + 5), k=1, 2,--,m

Since limg_, o I(fx} < 1 and lims_,;om(ly) = 1 for all 1 < &k < n, there
exists a positive 4; such that for every 0 < § < §; the conditions of Theorem 6.4
are fulfilled. Therefore, equation (1) has a periodic solution p,(t) with period
n+ O{v), v — +0. Using the steplike form of f(z), the solution p,(t) can be
obtained explicitly, When v — -0, the periodic solution p,(t) converges to a
step function po(t) on compact sets not containing integer points t =i, i € Z.
Here po(t) = Aifmodn)s t € f— 1,8}, i € Z.

Theorem 6.4 still holds true for small C* perturbatmns of the given steplike
nonlinearity f{z).

7. Concluding Remarks and Open Questions

The main problem we have discussed in this paper on the differential-delay
equation

vi(t) + =(t) = flz(t - 1)) (1

with a small positive parameter v concerns the relation between properties
of its solutions and the dynamics given by the corrsponding one-dimensional
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map & — f(z). The map f completely determines the properties of solutions
of the difference equation with continuous argument

2(t) = fla(t 1)) 2)

obtained formally from (1) by setting v = 0. Thus, alternatively, we are con-
cerned with the correspondence between solutions of equations (1) and (2),
when v is small enough.

The natural question of closeness between solutions of equations (1) and
(2} arises. T'wo particular cases may be stated as follows:

(i) how are the solutions of equations (1) and (2) related within a finite time
interval?

(i1} to what extent does the one-dimensional map f define asymptotic prop-
erties of solutions for equation (1) as ¢ - -}-co?

The solution of problem (i) is natural and complete. When considered
within any finite time interval [0, T}, the solutions of equations (1) and (2)
are close provided the corresponding initial conditions are close and v is small
enough. In particular, solutions of equation (1) follow, within a finite segment
of time solutions of equation (2), the behavior of which is studied in reasonable
generality [55].

The question about correspondence of asymptotic properties of the map f
and selutions of equation (1} is much more difficult. Except for some relatively
simple properties, this correspondence is not too direct. Two phenomena can
be observed from the results presented in this paper:

(iii) the dynamics given by the map £ is simple while the asymptotic behavior
of solutions to equation (1) is complicated:

(iv) the dynamics given by the map f is complicated while the asymptotic
behavior of solutions of equation (1) is simple.

The first phenomenon was illustrated by an example for which the map f
has a globally attracting cycle of period two while the asymptotic behavior
of solutions to equation (1) {on a subject) is described by the induced one-
dimensional map which may exhibit very complex asymptotic properties. In
particular, the induced map may have an invariant measure which is absolutely
continuous with respect to the Lebesgue measure. It is worth noting that the
arising chaos is small, in a sense. For the example considered above all chaotic
solutions are close to a particular step function generated by the cycle of period
two. There are no results proved on the phenomenon for the case of a general
nonlinearity f(z).

The second phenomenon occurs in the general case, and may be considered
as typical. Simplification occurs in that the dynamics of the map f(z) on some
invariant subsets does not define any corresponding asymptotic properties of
the solutions to equation (1), at all. This can be explained by the existence of
attractors of the map f with “large” immediate basin. These large sets make
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sotutions {0 gradually damp out in amplitude in the long run, since every
solution is continuous and spends a relatively large fraction of its transient
time within large attractors. The phenomenon may be viewed, on the other
hand, to be caused by the “damping” term vz(%).

Although there are many publications on equation (1) (see the List of
References, for example), a series of natural and easily formulated questions
about its dynamics have not been resolved in general so far. We would like to
indicate some of these questions here.

1. Suppose the map f has an attracting cycle {a1, a2, -, a,} of period n.
Under what additional conditions does equation (1) possess an asymptotically
stable periodic solution p,.(¢) with period n+ O(»), which converges to po(t) =
A(modn); t € [k — 1,k)(modn) as v — +07?

As was shown above (Theorem 5.1) attracting cycles of the map f need not
give rise to nearby periodic solutions of equation (1). Some existence results
on periodic solutions corresponding to cycles of intervals were given {Theorem
5.2.}. No particular results on the stability of such solutions is known (except
examples; see no. 4.2, 4.4).

A related question is the following. In what cases does a cycle {a;s,ap,---,
an} of the map f give rise to several nearby periodic solutions of equation (1)?

A particular variant of this first problem is the following,

2. Suppose the map f has an attracting cycle {a1,@2,---,0,} which is a
global attractor (this means that it attracts almost all trajectories, in a topo-
logical or measure sence). Does equation (1) have a periodic solution nearby
this cycle? If so,-under what additional conditions is the periodic solution
asymptotically stable?

3. Supppose the map f has a so-called simple structure. That is, its topo-
logical entropy equals zero. This means that the map f has only cycles with
periods given by powers of two. What additional conditions guarantee that
the dynamics of equation (1} is also simple. That is, does equation (1) possess
an asymptotically stable periodic solution which atiracts almost all solutions?
Almost all means that the attracted set is residual.

4. Suppose the map f has a complicated structure. For example, suppose
there exists a cycle of period (2k + 1)2¢~1 for some positive integers k and 1.
This gnarantees (see, e.g. [54]) the existence of a homoclinic trajectory for the
map f, implying its chaotic dynamics.

What additional hypotheses are needed to produce complicated behavior
of the solutions of equation {1)? When is it possible to prove the existence of a
homoclinic solution for equation {1) which would imply complicated behavior?

Transversal homoclinic solutions with chaotic behavior for differential-delay
equations were shown to exist in several examples [19, 23, 36, 61] (see remarks
at the end of Chap. 4 also} and for an equation on the circle [63] in a general
case,

5. A bifurcation problem
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For some families f5 of interval maps depending on a real parameter A, a
complication in the dynamics arises through period doubling bifurcations as A
varies (increases or decreases). In what cases is this complication followed by
corresponding changes for equation (1)7

In the simplest case, the situation is as follows. There exists a sequence
Ag < A < A < - <€ Ay < -+ of parameter values, convergent to some
A+ < 00, such that the map fy has a globally attracting cycle of period 2® for
every A € (An, Ant1]. For what families fy does the corresponding equation
(1) possess an atiracting periodic solution nearby the cycle of period 2%, n =
0,1,2,---,A € (An:)\n+1]?

Specifically we restate the problems for the familiy fa(z) = Az(1—=z), 0 <
A < 4, which map the interval [0, 1] into itself.

It is well-known [54] that there exists a sequence of parameter values Ag <
M o< A < e <Ay < s A =2 3,569 such that for every particular
A € (An;An41] the map fy has cycles with periods 1,2,4,--.,2" only and
the cycle of period 2" is a global attractor (it does not attract only repelling
cycles of periods 1,2,4,---,2"71 and their preimages). For every A > A, the
map f) has a cycle of period (2k + 1)2°~! for some k, i € N. For an open set
of parameter values A, these cycles are global attractors. There exists a set A4
in the parameter space [(,4] of positive Lebesgue measure, such that for every
particular A € A the map f, has an invariant measure which is absolutely
continuous with respect to the Lebesgue measure.

Considering equation (1) with f(z) = fa(z) = Az{l — z), 0 < A < 4, the
specific questions are:

1. Suppose fy has a globally attracting cycle of period n. Does equation
(1) have a (asymptotically stable) periodic solution “close” to this cycle? If it
does, what is the domain of attraction of the periodic solutions?

2. Suppose A increases within the interval 1 << A < A, = 3,569 with f,
going through period doubling bifurcations. Are these bifurcations followed
by corresponding changes in the dynamics of equation (1)? That is: when
A € {X;, Anj1] does equation (1) have asympiotically stable periodic solution
close to the particular cycle of period 277

Some computer simulations for a different family [6] suggest this.

3. Do there exist values of the parameter A\ for which the semiflow F*
defined by equation (1) admits the existence of an ergodic invariant measure
in the phase space (or on a subset of the phase space)? If so, what is the
measure of such A’s.
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