

Efficient booster pump placement in water networks using graph theoretic principles

TCS: Iyswarya Narayanan, Venkatesh Sarangan,

Arun Vasan, Anand Sivasubramaniam

UMD: Aravind Srinivasan

IITM: B.S.Murty, Shankar Narasimhan

Why look at water?

Important angle of sustainability

- Directly for human consumption
- Indirectly through industrial products/processes

Blue gold

- Limited supply
- Ever-increasing demand

The role of Computer Science

- Optimization
- Analytics
- Management

WATERGY

Water is used to "produce" energy

 41% of US freshwater use is for energy [EPA]

Energy is used to "move" water

- Across qualities and locations
- 31% of the opex of water utilities is energy

TATA CONSULTANCY SERVICES

Experience certainty.

Energy for Water

California's Water-Related Energy Use

30% of all Natural Gas

> Enough to supply 60% of CA home's gas needs:

> 7.2 million homes

20% of all Electricity

Enough to supply entire state's electricity needs:

Oregon or Mass

The role of water utilities

Variation in per-capita water availability

- Across time over years
- Across geographic areas

Utilities

- Efficient and typical way of water supply
- Stand between limited supply and increasing demands
- Smooth over variability
- Differentiator between sufficiency and scarcity

Pain-points of water utilities

Most utilities old
US needs \$300 billion over 20
years

ACING

40% of global water not billed

\$14 billion loss globally annually

How can Computer Science help?

OUR FOCUS

Demand growing at 17.4% p.a.

ement

Contamination management Integrated asset management

TATA CONSULTANCY SERVICES

Experience certainty.

Computing for Water Delivery

Planning

- Multi-grade supply
- Infrastructure Planning and maintenance
 - Algorithms
- Decentralized vs. centralized treatment plants
 - Networking
- Pricing strategies
 - Algorithmic Game Theory

Operations

- Sensor placement
 - Contamination
 - Leak detection
 - Trace back
- Striping delivery across multiple channels
- Criticality analysis
 - Centrality measures

Metering/Control

- Optimal pressure for pumps
- Scheduling of pumps to exploit energy spot pricing
- Analytics on metered data

Outline

Computing in Water delivery

Booster pump placement

- The problem
- Solution strategy
- Evaluation

Summary

A typical water utility network

The problem

Increasing demands

Increasing flows

Drop in pressure \approx k. Flow²

Reduced pressure

How to meet pressure requirements

- Minimizing extra energy
- Minimizing extra energy + capex

Booster pumps for ensuring minimum pressure

Pipes can handle flow

But pumps cannot

Need booster pumps

- Where should these pumps be placed?
- What should their capacities be ?
- Wrong choices can be off by 50%

Problem formulation

Inputs

- Topology
- Network elements
- Demands

Outputs

New pump locations and capacities

Constraints

- Flow conservation
- Pressure drops
- Pressure > minPressure

Objectives

- Minimize Energy
- Minimize Energy + Capex

Challenge 1: Placement changes flows,

Expected: Boost in pressure at all the nodes

Observed: More change in path of lower resistance

Challenge 2: The capex – opex tradeoff

Energy cost

Linear with capacity

Capex cost

Sub-linear with capacity

Solution for tree topologies

Minimize energy alone

- Boost at node → boost at all descendants
- So boost at node = min required at that node; Recurse

Minimize energy + capex

- Discrete pump sizes
- Over-provisioning possible
- Pruning strategies

Solution strategy for general topologies

#1 Solve tree subgraph

- Identify tree subgraph by choosing edges appropriately
- Apply tree solution strategies to identify seed solutions

#2 Refine solution

- Ensure hydraulic constraints
- Identify new pumps using local search
- Repeat till convergence

Max flow spanning tree
Apply tree strategy and identify pumps
Change in flow – new deficiencies
Find new placements
Iterate till convergence

Benchmark Topology - Colorado Springs

Network details

- Reservoirs 2
- Junctions 1786
- Pipes 1985
- Pumps − 1
- Valves: 4 (Pressure Reducing Valves)
- Total demand: 8295 gpm

Capacity

• 100000 ppl, 12 MGD

Results from Colorado Springs (GA)

Better than conventional

- Exploits structure
- Average reduction in TCO: 68%
- Average reduction in Opex: 65%

High drop in pressure

- Use economy of scale
- Significant improvement

The Capex-Opex Split

Scale Factor 2.7, GA - Random

Scale Factor 3.2, GA-Random

SF 2.7, GA - Our approach

SF 3.2 GA-Our Approach

Results from Colorado Springs (SLP)

Better than conventional

- Average reduction in TCO : 26%
- Average reduction in Opex : 23%

Works with deterministic search as well

Significant improvement

The Capex Opex Split

SF 2.7 SLP - Conventional

SF 3.2 SLP - Conventional

SF 2.7 SLP - Our Approach

SF 3.2 SLP - Our Approach

Summary

Water important

Computing can help

Booster pump placement

- Exploit structure to do better
- Decoupling approximation between hydraulics and search
- Improves both random and deterministic searches

Ongoing work

- Refine algorithms
- Contamination detection
- Criticality analysis

Thank You

Planning Scenario 1: To Keep pace with demand

Experience certainty.

23

Benchmark Topology - Richmond

Network details

- Reservoirs 1, Tanks 6
- Junctions 865, Pipes 949
- Pumps 7, Valves: 1 (Pressure Reducing Valve)

Demand 0.8 MGD, 7000 people

Results from Richmond (GA)

Better than conventional

- Exploits structure
- Can improve conventional also
- Average reduction in TCO: 56%
- Average reduction in Opex: 54%

GA details

- 80% Crossover,5% mutation
- Guided random seeding
- Tournament Selection
- 500 Generation s
- 100 chromosomes/generation

TATA CONSULTANCY SERVICES

Experience certainty.

Results from Richmond (SLP)

Better than conventional

- Exploits structure
- Can improve conventional also
- Average reduction in TCO: 13%
- Average reduction in Opex: 10%

Optimize opex, capex, TCO

Saving energy ≠ saving TCO

TATA CONSULTANCY SERVICES

Experience certainty.

Pump power distribution – Richmond Topology

TATA CONSULTANCY SERVICES

Experience certainty.