
Limitations of the Macaulay matrix approach for using the
HHL algorithm to solve multivariate polynomial systems

Jianqiang Li (Penn State University)

Joint work with

Jintai Ding, Vlad Gheorghiu, András Gilyén, Sean Hallgren

February 5, 2021

Jianqiang Li (Penn State University) February 5, 2021 1 / 20



Finding new quantum algorithms based on HHL?

One approach:

Classical

nonlinear problem

linearize, map

into quantum

A :

|y〉 = |b〉
exponential size

using HHL in polynomial time

map into

classical

get answer of

classical problems

in polynomial time

Where to find such problems?
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Linearize polynomial equations [Chen, Gao 17]

f1 = 0
...

fm = 0

linearize, map

into quantum

A :

|y〉 = |b〉
exponential size map into

classical

get a solution of

f1 = 0, · · · , fm = 0

in polynomial time

• The two mapping steps can be done in polynomial time;

• But: the HHL time depends on the condition number of A.

- Chen and Gao did not analyze the condition number of A;

- Instead, they pose the question that any of the following problems,
including 3SAT, Polynomial systems over finite fields, SVP, and CVP, GI, SIS,
LWE, the block cipher AES, and the stream cipher Trivum might have small
condition number when reducing to solving polynomial equations [Chen, Gao 17;

Chen, Gao, Yuan 18].
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This work:

Question: Given f1, · · · , fm with unique nonzero solution s ∈ {0, 1}n, linearize into A.
The running time of Chen/Gao’s algorithm =?

H(s): the Hamming weight of s.

Theorem 1: The lower bound of the condition number of A is exponential(H(s)).
So the algorithm takes exponential time in H(s).

This implies that Grover’s algorithm is faster.

Theorem 2: We refine the algorithm so that H(s) ≈ log n might have a speedup.
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Motivation for mapping polynomial systems to linear algebra
Bad news: Solving polynomial systems is NP-hard ;

→ So, the condition number better be big!

Good news:

- Classically, people have used this approach for some polynomial systems.

For example: Bilinear polynomial systems; Overdefined systems of polynomial
equations [Courtois, Klimov, Patarin, Shamir 00; Ars, Faugère, Imai, Kawazoe, Sugita 04]

Polynomial systems over finite fields [Bettale, Faugère, Perret 09; Bardet, Faugère, Imai,

Salvy, Spaenlehauer 13].

- Quantumly, [Chen, Gao 17]

f1 = 0
...

fm = 0

linearize

map into quantum

A and b are sparse
A :

|y〉 = |b〉exponential size

If each variable is a Boolean

map into

classical

get a solution

in polynomial time

κ(A) =?
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Difference between the classical and quantum approach
• Classically,

f1 = 0
...

fm = 0

linearize

Macaulay matrix

Â :

exponential size
Gauss elimination

look at the row reduced Â
Gröbner basis

(not required for this talk)

But: this is not directly possible with the quantum algorithm. Why?
- Can’t do Gauss elimination;
- Can’t look at the row reduced Â.

Instead, something related but different works: solve A |y〉 = |b〉, Â = [A −b].

Where does the matrix A come from?
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Reduce polynomial systems to Macaulay linear systems[Chen,Gao17]

Input : F1 = {f1, . . . , fm} ⊆ C[x1, . . . , xn], deg(fi) = 2
F2 = {x2

1 − x1, . . . , x
2
n − xn}.

Output : s ∈ {0, 1}n: f1(s) = · · · = fm(s) = 0

Solving

Boolean

polynomial

systems

A

(3n)n

(3n)n y =
b

Can connect the HHL algorithm to this classical problem. But the running time?
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Linearize polynomial equations for HHL
For example: f = x2

1 + x2
2 + x1x2 − 1 can be represented by

x1 x2 x2
1 x1x2 x2

2 1

f = [0 0 1 1 1 − 1]

Xα X β · · ·
f1 · · · · · · · · ·

f1 =
∑

α fαX
α, Xα =

∏n
i=1 x

αi

i

(t, fi) coefficient vector of tfi

t: all monomials under
maximum degree ≈ d

...
...

...
...

(t, fm) ...

Maximum degree ≤ d yα yβ · · ·
New linear variables

y

= b

constant
terms

AFor high enough
d = 3n,

we get the solution.

: O(m)-sparse

O(mn2)-sparse

κ(A) =?
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The lower bound of the condition number κ(A)

Based on the all the setup we have, let

• s ∈ {0, 1}n: the unique non-zero solution of polynomial equations;

• h = H(s): the Hamming weight of s.

Theorem 1 The lower bound of the condition number of A exponential in the
Hamming weight of the solution : (3n)h/2.

This implies that Chen/Gao’s algorithm takes time Ω((3n)h/2).

• h = O(1), classical algorithm can solve it efficiently;

• h = Θ(log n), superpolynomially large, Grover is faster;

• h = Θ(n), superexponentially large, Grover is faster.
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Proof of Theorem 1:

κ(A) = ||A|| · ||A+|| ≥ ||A|| ||A
+b||
||b||

≥ ||A+b|| = ||ŝ|| (1)

For ŝ :
1(3n)n

...

...
Πxi∈Sx

ei
i

the number of 1’s in ŝ : (d + 1)h − 1

Aŝ = b

Therefore ||ŝ||2 = (d + 1)h − 1 and [Lemma 4.1][Chen, Gao 17] uses d = 3n, we
have

κ(A) ≥
√

(3n+1)h − 1 ≥ (3n)h/2.
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Can we do better?

Chen/Gao’s algorithm takes time Ω((3n)h/2).

So Grover’s algorithm is faster.

Is this the end of the story? No!

Next:

We can refine the algorithm so that the refined algorithm takes time Ω(2h/2).

• h = O(1), classical algorithm can solve it efficiently;

• h = Θ(log n), open again for potential quantum polynomial time;

• h = Θ(n), exponentially large.
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How can we do better?

Variables are Boolean =⇒ all monomials can be replaced by square-free versions.

Based on this observation:

We reduce polynomial systems to better Boolean Macaulay linear systems with a
smaller size;

Solve the Boolean Macaulay linear system Ax = b using HHL and the lower
bound of κ(A) is Ω(2h/2);

We provide an alternative approach to get the solution of polynomial equations.
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Reduce polynomial systems to Boolean Macaulay linear
systems
Here we extend the definition of Boolean Macaulay matrix Â from F2 [Bardet, Faugère,

Imai, Salvy, Spaenlehauer 13] to C, where Â = [A − b].

f1 = 0

f2 = 0
...

fm = 0

A

2n

2n y =
b

Can we get the correct solution with the Boolean Macaulay linear system? Yes!
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The row reduced Macaulay matrix

Because solving the Boolean Macaulay linear system is equivalent to solving the
Macaulay linear system:

N: the non-square-free monomials B: the square-free monomials

The row reduced
Macaulay matrix

N B

0F2

0F1

B ′
F2

IF2

0F1

Â Boolean Macaulay matrix

Â = [A − b]
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Connect the Boolean Macaulay linear system to HHL

Goal: solve Ay = b using the HHL algorithm. The running time depends on the
condition number.

First: Are the two mapping steps still efficient? Yes!

A: O(mn2)-sparse matrix;

b : can be efficiently prepared as a quantum state (sparse);

|y〉: get the solution of polynomial equations in polynomial time;

The rank of the matrix A: high (full) column rank;

Second: How about the condition number? κ(A) : Ω(2h/2)
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The lower bound of the condition number κ(A)

• s ∈ {0, 1}n: the unique non-zero solution of polynomial equations

• ŝ :
12n

...

...
Πxi∈Sx

ei
i

the number of 1’s in ŝ : 2h − 1

Aŝ = b

Theorem 2: by Theorem 1, κ(A) ≥ ||ŝ|| = 2h/2

The lower bound of the condition number of A is polynomial when h = log n.

Open question: Are there any polynomial systems with the corresponding condition
number also upper bounded by a polynomial?
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The quantum solution of the Boolean Macaulay linear system

• s ∈ {0, 1}n: the unique non-zero solution of polynomial equations

• ŝ :
12n

...

...
Πxi∈Sx

ei
i

the number of 1’s in ŝ : 2h − 1

Aŝ = b

U = {x1, x2, . . . , xn}, let S ⊆ U be an unknown subset where all the variables in S
have value 1.
Then the quantum state

|ŝ〉 =
1√

2|S | − 1

∑
R∈2S\{∅}

|R〉

is the uniform superposition on the support of the solution vector ŝ.

Question: How to compute S given copies of |ŝ〉?
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The variant of the quantum coupon collector problem

U = {x1, x2, . . . , xn}, let S ⊆ U be an unknown subset we want to compute.

The variant of the quantum coupon collector problem: Given copies of the
state

|ŝ〉 =
1√
|Sd |

∑
R∈Sd

|R〉 ,

which is a superposition of subsets of S of size at most d . The goal is to compute S .

Theorem 3 Measuring r = O((|S |/d) log |S |) copies of the quantum superposition
state |ŝ〉, we can compute the set S with probability at least 1− 1/poly(|S |).

• d = |S |, r = O(log |S |)
• d = log |S |, r = O(|S |)
• d = 1, r = O(|S | log |S |) [Arunachalam, Belovs, Childs, Kothari, Rosmanis, Wolf 20]
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Summary

We show Chen/Gao’s algorithm is exponential in the Hamming weight of the
solution;

Our refined algorithm opens the possibility of quantum speedup for polynomial
systems with solution with Hamming weight h = log n;

For problems, like polynomial system over finite fields, SVP, CVP, GI, SIS,
LWE, 3SAT, GI [Chen, Gao, Yuan 18] and Factoring [Burges 03], the Hamming weight
of the solution is going to be large when reducing to polynomial equations.

Our analysis also applies to the truncated HHL algorithm;

- Only inverted on well-conditioned subspace.

We give an alternative approach to extract the classical solution via a
generalization of the quantum coupon collector problem.
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Open problems

- Find some special polynomial systems to exhibit the potential superpolynomial
speedup when h = log n?

- The lower bound of the condition number in the multiple solutions case?

The refined Boolean Macaulay linear system also works for the multiple
solutions case, this might open more possibilities of quantum speedup.

- Prove the matching lower bound of the variant of the quantum coupon collector
problem?
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