Andreas Thom just posted the article [1005.0823] About the metric approximation of Higman’s group on the arXiv today. It is quite short with a specific result about Higman’s group, but the introduction was most helpful to me in learning a bit about the ideas related to “soficity” of groups. It refers to another interesting paper: Elek, Gábor, and Endre Szabó. “Hyperlinearity, essentially free actions and L2-invariants. The sofic property.” Mathematische Annalen 332, no. 2 (4, 2005): 421-441.
It seems that these authors use some words like “hyperlinear” and “amenable action” in a sense different to that which is common to us in Baum-Connes land. for instance, for Elek-Szabo, the trivial action of a group on a point is *always* amenable.