
Fenglong Ma, Muchao Ye, Junyu Luo, Cao Xiao & Jimeng Sun

Advances in Mining Heterogeneous
Healthcare Data

Outline
• Introduction to Electronic Healthcare Records

• Various types of EHR data
• Different applications

• Part I: Mining structured health data
• Phenotyping
• Disease detection/Risk prediction
• Treatment recommendation

• Part II: Mining unstructured health data
• Automated ICD coding /Disease classification
• Understandable medical language translation
• Medical report generation
• Clinical trial mining

• Conclusion and Future Outlook

2

Electronic Health Record (EHR)

3

• A longitudinal record of patient health information generated by one
or several encounters in any healthcare providing setting.

Adoption of Electronic Health Record Systems among U.S.
Hospitals: 2008-2015

4
https://dashboard.healthit.gov/evaluations/data-briefs/non-federal-acute-care-hospital-
ehr-adoption-2008-2015.php

Hospitals’ Use of Electronic Health Records Data, 2015-2017

• As of 2017, 94 percent of hospitals
used their EHR data to perform
hospital processes that inform clinical
practice.
• EHR data is most commonly used by

hospitals to support quality
improvement (82 percent), monitor
patient safety (81 percent), and
measure organization performance
(77 percent).

5https://www.healthit.gov/sites/default/files/page/2019-04/AHAEHRUseDataBrief.pdf

Multiple Data Modalities in the EHR Systems

6

Types of Data

7

• Demographics
• Age, sex, socio-economic status,

insurance type, language, religion,
living situation, family structure,
location, work, ...

• Continuous Monitoring Data
• Heart rate, pulse, respiration rate,

body temperature, ...

https://canadiem.org/how-to-read-patient-monitors/

Types of Data

• Medications
• Prescriptions, over-the-counter

drugs, illegal drugs, alcohol, ...

• Coding system
• National Drug Code (NDC)

• Each of sources provides NDC codes
in a different format.

• RxNorm
• A standardized nomenclature for

clinical drugs, is produced by the
National Library of Medicine.

8

Types of Data

• Laboratory Results
• Components of blood, urine, stool,

saliva, spinal fluid (CSF), ascitic fluid,
joint fluid, bone marrow, lung, ...

• Coding System
• LOINC: Logical Observation Identifiers

Names and Codes

9

Types of Data

• Billing
• Diagnoses (ICD-{9, 10})

• International Classification of Diseases
• The World Health Organization (WHO) currently

develops and maintains the list for use by Member
States.

• Procedures (CPT and ICD)
• CPT (Current Procedural Terminology) codes

describe procedures performed
• The American Medical Association administers and

maintains the CPT list.

10

https://www.who.int/

Types of Data

• Clinical Notes
• Discharge summary
• Attending and/or Resident
• Nurse
• Specialist

• Radiology, Pathology, ECG, Nutrition,
Respiratory, Social work, ...

• Consultant
• Referring physician
• Emergency Department

11

Types of Data

• Medical Images
• X-ray
• Ultrasound
• CT
• MRI
• PET
• Retinal
• Endoscopy
• Photographs

12

Multiple Data Modalities in the EHR Systems

13

Structured Unstructured

Analytics Tasks using EHR Data

14

Phenotyping Risk Prediction
Medication

Recommendation

ICD

Disease
Classification

Understandable Medical
Language Translation

Medical Report
Generation

Clinical Trial
Mining

EHR Data

Outline
• Introduction to Electronic Healthcare Records

• Various types of EHR data
• Different applications

• Part I: Mining structured health data
• Phenotyping
• Disease detection/Risk prediction
• Treatment recommendation

• Part II: Mining unstructured health data
• Automated ICD coding /Disease classification
• Understandable medical language translation
• Medical report generation
• Clinical trial mining

• Conclusion and Future Outlook

15

Phenotyping

• Goal: Learning medical concept representations from EHR data
• Approach: Predicting the next visit information according to all the

previous visits

16

Med2Vec

• Two-layered representation learning

17
v Choi et al. Med2Vec: Multi-layer Representation Learning for Medical Concepts. KDD

2016.

Cough

Visit 1

Fever

Fever

Visit 2

Chill Fever

Visit 3

Pneumonia

Chest X-ray

Tylenol

IV fluid

2. Sequential relation

1. Co-occurrence • Objective function: the sum of
1. Negative intra-visit Skip-gram

• Because Skip-gram objective function is to be maximized
2. Inter-visit multi-label classification loss

Intra-visit Skip-gram

• Model all pairs of medical codes in a visit

18

• Visit contains codes {c1, c2, c3, … cn}
• ci: i-th code among the code vocabulary C
• p(ci | cj): Skip-gram probability (see below)
• Each code c1, c2, c3, … cn is used as the ”input”
• Learn Wc, the code representation

c1 c2 c3 cn. . .
! "# "$! "% "$! "& "$

c1 c2 c3 cn. . .
! "# "&! "$ "& ! "% "&

. . . Repeat for n times

• Vt: t-th visit
• ci, cj: codes in the visit Vt
• [:, j]: j-th column of the matrix

text window size, exp the element-wise exponential function,
and 1 denotes an all one vector. We have used MATLAB’s
notation for selecting a row in Ws and a coordinate of bs.

3.3 Learning from the code-level information
As we described in the introduction, healthcare datasets

contain two-level information: visit-level sequence informa-
tion and code-level co-occurrence information. Since the loss
function in Eq. (2) can e�ciently capture the sequence level
information, now we need to find a way to use the second
source of information, i.e., the intra-visit co-occurrence of
the codes.

A natural choice to capture the code co-occurrence infor-
mation is to use Skip-gram. The main idea would be that
the representations for the codes that occur in the same visit
should predict each other. To embed Skip-gram in Med2Vec,
we can train Wc 2 Rm⇥|C| (which also produces intermedi-
ate visit level representations) so that the i-th column of Wc

will be the representation for the i-th medical code among
total |C| codes. Note that given the unordered nature of
the codes inside a visit, unlike the original Skip-gram, we do
not distinguish between the “input” medical code and the
“output”medical code. In text, it is sensible to assume that
a word can serve a di↵erent role as a center word and a
context word, whereas in EHR datasets, we cannot classify
codes as center or context codes. It is also desirable to learn
the representations of di↵erent types of codes (e.g. diagno-
sis, medication, procedure code) in the same latent space so
that we can capture the hidden relationships between them.

However, precise interpretation of Skip-gram codes will be
di�cult asWc will have positive and negative values. For in-
tuitive interpretation, we should learn code representations
with non-negative values. Note that in Eq.(1), if the binary
vector xt is a one-hot vector, then the intermediate visit rep-
resentation ut becomes a code representation. Therefore,
using the Skip-gram algorithm, we train the non-negative
weight ReLU(Wc) instead of Wc. This will not only use
the intra-visit co-occurrence information, but also guaran-
tee non-negative code representations. Moreover, ReLU pro-
duces sparse code representations, which further facilitates
easier interpretation of the codes.
The code representations to be learned is denoted as a

matrix W 0
c = ReLU(Wc) 2 Rm⇥|C|. From a sequence of

visits V1, V2, . . . , VT , the code-level representations can be
learned by maximizing the following log-likelihood,

min
W 0

c

1
T

TX

t=1

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci), (3)

where p(cj |ci) =
exp

⇣
W 0

c [:, j]
>W 0

c [:, i]
⌘

P|C|
k=1 exp

⇣
W 0

c [:, k]>W 0
c [:, i]

⌘ . (4)

3.4 Unified training
The single unified framework can be obtained by adding

the two objective functions (3) and (2) as follows,

argmin
W ,b

1
T

TX

t=1

n
�

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci)

+
X

�wkw,k 6=0

�x>
t+k log ŷt � (1� xt+k)

> log(1� ŷt)
o

By combining the two objective functions we learn both
code representations and visit representations from the same
source of patient visit records, exploiting both intra-visit
co-occurrence information as well as inter-visit sequential
information at the same time.

3.5 Interpretation of learned representations
While the original Skip-gram learns code representations

that have interesting properties such as additivity, in health-
care we need stronger interpretability. We need to be able
to associate clinical meaning to each dimension of both code
and visit representations. Interpreting the learned represen-
tations is based on analyzing each coordinate in both code
and visit embedding spaces.

Interpreting code representations.

If information is properly embedded into a lower dimen-
sional non-negative space, each coordinate of the lower di-
mension can be readily interpreted. Non-negative matrix
factorization (NMF) is a good example. Since we trained
ReLU(Wc) 2 Rm⇥|C|, a non-negative matrix, to represent
the medical codes, we can employ a simple method to inter-
pret the meaning of each coordinate of the m-dimensional
code embedding space. We can find the top k codes that
have the largest values for the i-th coordinate of the code
embedding space as follows,

argsort(Wc[i, :])[1 : k]

where argsort returns the indices of a vector that index its
values in a descending order. By studying the returned med-
ical codes, we can view each coordinate as a disease group.
Detailed examples are given in section 5.1

Interpreting visit representations.

To interpret the learned visit vectors, we can use the same
principle we used for interpreting the code representation.
For the i-th coordinate of the n-dimensional visit embed-
ding space, we can find the top k coordinates of the code
embedding space that have the strongest values as follows,

argsort(Wv[i, :])[1 : k]

where we use the same argsort as before. Once we ob-
tain a set of code coordinates, we can use the knowledge
learned from interpreting the code representations to under-
stand how each visit coordinate is associated with a group
of diseases. This simple interpretation is possible because
the intermediate visit representation ut is a non-negative
vector, due to the ReLU activation function.
In the experiments, we also tried to find the input vector

xt that most activates the target visit coordinate [14, 21].
However, the results were very sensitive to the initial value of
xt, and even averaging over multiple samples were producing
unreliable results.

3.6 Complexity analysis
We first analyze the computational complexity of the code-

level objective function Eq. (3). Without loss of generality,
we assume the visit records of all patients are concatenated
into a single sequence of visits. Then the complexity for Eq.
(3) is as follows,

O(TM
2
|C|m)

text window size, exp the element-wise exponential function,
and 1 denotes an all one vector. We have used MATLAB’s
notation for selecting a row in Ws and a coordinate of bs.

3.3 Learning from the code-level information
As we described in the introduction, healthcare datasets

contain two-level information: visit-level sequence informa-
tion and code-level co-occurrence information. Since the loss
function in Eq. (2) can e�ciently capture the sequence level
information, now we need to find a way to use the second
source of information, i.e., the intra-visit co-occurrence of
the codes.

A natural choice to capture the code co-occurrence infor-
mation is to use Skip-gram. The main idea would be that
the representations for the codes that occur in the same visit
should predict each other. To embed Skip-gram in Med2Vec,
we can train Wc 2 Rm⇥|C| (which also produces intermedi-
ate visit level representations) so that the i-th column of Wc

will be the representation for the i-th medical code among
total |C| codes. Note that given the unordered nature of
the codes inside a visit, unlike the original Skip-gram, we do
not distinguish between the “input” medical code and the
“output”medical code. In text, it is sensible to assume that
a word can serve a di↵erent role as a center word and a
context word, whereas in EHR datasets, we cannot classify
codes as center or context codes. It is also desirable to learn
the representations of di↵erent types of codes (e.g. diagno-
sis, medication, procedure code) in the same latent space so
that we can capture the hidden relationships between them.

However, precise interpretation of Skip-gram codes will be
di�cult asWc will have positive and negative values. For in-
tuitive interpretation, we should learn code representations
with non-negative values. Note that in Eq.(1), if the binary
vector xt is a one-hot vector, then the intermediate visit rep-
resentation ut becomes a code representation. Therefore,
using the Skip-gram algorithm, we train the non-negative
weight ReLU(Wc) instead of Wc. This will not only use
the intra-visit co-occurrence information, but also guaran-
tee non-negative code representations. Moreover, ReLU pro-
duces sparse code representations, which further facilitates
easier interpretation of the codes.
The code representations to be learned is denoted as a

matrix W 0
c = ReLU(Wc) 2 Rm⇥|C|. From a sequence of

visits V1, V2, . . . , VT , the code-level representations can be
learned by maximizing the following log-likelihood,

min
W 0

c

1
T

TX

t=1

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci), (3)

where p(cj |ci) =
exp

⇣
W 0

c [:, j]
>W 0

c [:, i]
⌘

P|C|
k=1 exp

⇣
W 0

c [:, k]>W 0
c [:, i]

⌘ . (4)

3.4 Unified training
The single unified framework can be obtained by adding

the two objective functions (3) and (2) as follows,

argmin
W ,b

1
T

TX

t=1

n
�

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci)

+
X

�wkw,k 6=0

�x>
t+k log ŷt � (1� xt+k)

> log(1� ŷt)
o

By combining the two objective functions we learn both
code representations and visit representations from the same
source of patient visit records, exploiting both intra-visit
co-occurrence information as well as inter-visit sequential
information at the same time.

3.5 Interpretation of learned representations
While the original Skip-gram learns code representations

that have interesting properties such as additivity, in health-
care we need stronger interpretability. We need to be able
to associate clinical meaning to each dimension of both code
and visit representations. Interpreting the learned represen-
tations is based on analyzing each coordinate in both code
and visit embedding spaces.

Interpreting code representations.

If information is properly embedded into a lower dimen-
sional non-negative space, each coordinate of the lower di-
mension can be readily interpreted. Non-negative matrix
factorization (NMF) is a good example. Since we trained
ReLU(Wc) 2 Rm⇥|C|, a non-negative matrix, to represent
the medical codes, we can employ a simple method to inter-
pret the meaning of each coordinate of the m-dimensional
code embedding space. We can find the top k codes that
have the largest values for the i-th coordinate of the code
embedding space as follows,

argsort(Wc[i, :])[1 : k]

where argsort returns the indices of a vector that index its
values in a descending order. By studying the returned med-
ical codes, we can view each coordinate as a disease group.
Detailed examples are given in section 5.1

Interpreting visit representations.

To interpret the learned visit vectors, we can use the same
principle we used for interpreting the code representation.
For the i-th coordinate of the n-dimensional visit embed-
ding space, we can find the top k coordinates of the code
embedding space that have the strongest values as follows,

argsort(Wv[i, :])[1 : k]

where we use the same argsort as before. Once we ob-
tain a set of code coordinates, we can use the knowledge
learned from interpreting the code representations to under-
stand how each visit coordinate is associated with a group
of diseases. This simple interpretation is possible because
the intermediate visit representation ut is a non-negative
vector, due to the ReLU activation function.
In the experiments, we also tried to find the input vector

xt that most activates the target visit coordinate [14, 21].
However, the results were very sensitive to the initial value of
xt, and even averaging over multiple samples were producing
unreliable results.

3.6 Complexity analysis
We first analyze the computational complexity of the code-

level objective function Eq. (3). Without loss of generality,
we assume the visit records of all patients are concatenated
into a single sequence of visits. Then the complexity for Eq.
(3) is as follows,

O(TM
2
|C|m)

text window size, exp the element-wise exponential function,
and 1 denotes an all one vector. We have used MATLAB’s
notation for selecting a row in Ws and a coordinate of bs.

3.3 Learning from the code-level information
As we described in the introduction, healthcare datasets

contain two-level information: visit-level sequence informa-
tion and code-level co-occurrence information. Since the loss
function in Eq. (2) can e�ciently capture the sequence level
information, now we need to find a way to use the second
source of information, i.e., the intra-visit co-occurrence of
the codes.

A natural choice to capture the code co-occurrence infor-
mation is to use Skip-gram. The main idea would be that
the representations for the codes that occur in the same visit
should predict each other. To embed Skip-gram in Med2Vec,
we can train Wc 2 Rm⇥|C| (which also produces intermedi-
ate visit level representations) so that the i-th column of Wc

will be the representation for the i-th medical code among
total |C| codes. Note that given the unordered nature of
the codes inside a visit, unlike the original Skip-gram, we do
not distinguish between the “input” medical code and the
“output”medical code. In text, it is sensible to assume that
a word can serve a di↵erent role as a center word and a
context word, whereas in EHR datasets, we cannot classify
codes as center or context codes. It is also desirable to learn
the representations of di↵erent types of codes (e.g. diagno-
sis, medication, procedure code) in the same latent space so
that we can capture the hidden relationships between them.

However, precise interpretation of Skip-gram codes will be
di�cult asWc will have positive and negative values. For in-
tuitive interpretation, we should learn code representations
with non-negative values. Note that in Eq.(1), if the binary
vector xt is a one-hot vector, then the intermediate visit rep-
resentation ut becomes a code representation. Therefore,
using the Skip-gram algorithm, we train the non-negative
weight ReLU(Wc) instead of Wc. This will not only use
the intra-visit co-occurrence information, but also guaran-
tee non-negative code representations. Moreover, ReLU pro-
duces sparse code representations, which further facilitates
easier interpretation of the codes.
The code representations to be learned is denoted as a

matrix W 0
c = ReLU(Wc) 2 Rm⇥|C|. From a sequence of

visits V1, V2, . . . , VT , the code-level representations can be
learned by maximizing the following log-likelihood,

min
W 0

c

1
T

TX

t=1

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci), (3)

where p(cj |ci) =
exp

⇣
W 0

c [:, j]
>W 0

c [:, i]
⌘

P|C|
k=1 exp

⇣
W 0

c [:, k]>W 0
c [:, i]

⌘ . (4)

3.4 Unified training
The single unified framework can be obtained by adding

the two objective functions (3) and (2) as follows,

argmin
W ,b

1
T

TX

t=1

n
�

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci)

+
X

�wkw,k 6=0

�x>
t+k log ŷt � (1� xt+k)

> log(1� ŷt)
o

By combining the two objective functions we learn both
code representations and visit representations from the same
source of patient visit records, exploiting both intra-visit
co-occurrence information as well as inter-visit sequential
information at the same time.

3.5 Interpretation of learned representations
While the original Skip-gram learns code representations

that have interesting properties such as additivity, in health-
care we need stronger interpretability. We need to be able
to associate clinical meaning to each dimension of both code
and visit representations. Interpreting the learned represen-
tations is based on analyzing each coordinate in both code
and visit embedding spaces.

Interpreting code representations.

If information is properly embedded into a lower dimen-
sional non-negative space, each coordinate of the lower di-
mension can be readily interpreted. Non-negative matrix
factorization (NMF) is a good example. Since we trained
ReLU(Wc) 2 Rm⇥|C|, a non-negative matrix, to represent
the medical codes, we can employ a simple method to inter-
pret the meaning of each coordinate of the m-dimensional
code embedding space. We can find the top k codes that
have the largest values for the i-th coordinate of the code
embedding space as follows,

argsort(Wc[i, :])[1 : k]

where argsort returns the indices of a vector that index its
values in a descending order. By studying the returned med-
ical codes, we can view each coordinate as a disease group.
Detailed examples are given in section 5.1

Interpreting visit representations.

To interpret the learned visit vectors, we can use the same
principle we used for interpreting the code representation.
For the i-th coordinate of the n-dimensional visit embed-
ding space, we can find the top k coordinates of the code
embedding space that have the strongest values as follows,

argsort(Wv[i, :])[1 : k]

where we use the same argsort as before. Once we ob-
tain a set of code coordinates, we can use the knowledge
learned from interpreting the code representations to under-
stand how each visit coordinate is associated with a group
of diseases. This simple interpretation is possible because
the intermediate visit representation ut is a non-negative
vector, due to the ReLU activation function.
In the experiments, we also tried to find the input vector

xt that most activates the target visit coordinate [14, 21].
However, the results were very sensitive to the initial value of
xt, and even averaging over multiple samples were producing
unreliable results.

3.6 Complexity analysis
We first analyze the computational complexity of the code-

level objective function Eq. (3). Without loss of generality,
we assume the visit records of all patients are concatenated
into a single sequence of visits. Then the complexity for Eq.
(3) is as follows,

O(TM
2
|C|m)

text window size, exp the element-wise exponential function,
and 1 denotes an all one vector. We have used MATLAB’s
notation for selecting a row in Ws and a coordinate of bs.

3.3 Learning from the code-level information
As we described in the introduction, healthcare datasets

contain two-level information: visit-level sequence informa-
tion and code-level co-occurrence information. Since the loss
function in Eq. (2) can e�ciently capture the sequence level
information, now we need to find a way to use the second
source of information, i.e., the intra-visit co-occurrence of
the codes.

A natural choice to capture the code co-occurrence infor-
mation is to use Skip-gram. The main idea would be that
the representations for the codes that occur in the same visit
should predict each other. To embed Skip-gram in Med2Vec,
we can train Wc 2 Rm⇥|C| (which also produces intermedi-
ate visit level representations) so that the i-th column of Wc

will be the representation for the i-th medical code among
total |C| codes. Note that given the unordered nature of
the codes inside a visit, unlike the original Skip-gram, we do
not distinguish between the “input” medical code and the
“output”medical code. In text, it is sensible to assume that
a word can serve a di↵erent role as a center word and a
context word, whereas in EHR datasets, we cannot classify
codes as center or context codes. It is also desirable to learn
the representations of di↵erent types of codes (e.g. diagno-
sis, medication, procedure code) in the same latent space so
that we can capture the hidden relationships between them.

However, precise interpretation of Skip-gram codes will be
di�cult asWc will have positive and negative values. For in-
tuitive interpretation, we should learn code representations
with non-negative values. Note that in Eq.(1), if the binary
vector xt is a one-hot vector, then the intermediate visit rep-
resentation ut becomes a code representation. Therefore,
using the Skip-gram algorithm, we train the non-negative
weight ReLU(Wc) instead of Wc. This will not only use
the intra-visit co-occurrence information, but also guaran-
tee non-negative code representations. Moreover, ReLU pro-
duces sparse code representations, which further facilitates
easier interpretation of the codes.
The code representations to be learned is denoted as a

matrix W 0
c = ReLU(Wc) 2 Rm⇥|C|. From a sequence of

visits V1, V2, . . . , VT , the code-level representations can be
learned by maximizing the following log-likelihood,

min
W 0

c

1
T

TX

t=1

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci), (3)

where p(cj |ci) =
exp

⇣
W 0

c [:, j]
>W 0

c [:, i]
⌘

P|C|
k=1 exp

⇣
W 0

c [:, k]>W 0
c [:, i]

⌘ . (4)

3.4 Unified training
The single unified framework can be obtained by adding

the two objective functions (3) and (2) as follows,

argmin
W ,b

1
T

TX

t=1

n
�

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci)

+
X

�wkw,k 6=0

�x>
t+k log ŷt � (1� xt+k)

> log(1� ŷt)
o

By combining the two objective functions we learn both
code representations and visit representations from the same
source of patient visit records, exploiting both intra-visit
co-occurrence information as well as inter-visit sequential
information at the same time.

3.5 Interpretation of learned representations
While the original Skip-gram learns code representations

that have interesting properties such as additivity, in health-
care we need stronger interpretability. We need to be able
to associate clinical meaning to each dimension of both code
and visit representations. Interpreting the learned represen-
tations is based on analyzing each coordinate in both code
and visit embedding spaces.

Interpreting code representations.

If information is properly embedded into a lower dimen-
sional non-negative space, each coordinate of the lower di-
mension can be readily interpreted. Non-negative matrix
factorization (NMF) is a good example. Since we trained
ReLU(Wc) 2 Rm⇥|C|, a non-negative matrix, to represent
the medical codes, we can employ a simple method to inter-
pret the meaning of each coordinate of the m-dimensional
code embedding space. We can find the top k codes that
have the largest values for the i-th coordinate of the code
embedding space as follows,

argsort(Wc[i, :])[1 : k]

where argsort returns the indices of a vector that index its
values in a descending order. By studying the returned med-
ical codes, we can view each coordinate as a disease group.
Detailed examples are given in section 5.1

Interpreting visit representations.

To interpret the learned visit vectors, we can use the same
principle we used for interpreting the code representation.
For the i-th coordinate of the n-dimensional visit embed-
ding space, we can find the top k coordinates of the code
embedding space that have the strongest values as follows,

argsort(Wv[i, :])[1 : k]

where we use the same argsort as before. Once we ob-
tain a set of code coordinates, we can use the knowledge
learned from interpreting the code representations to under-
stand how each visit coordinate is associated with a group
of diseases. This simple interpretation is possible because
the intermediate visit representation ut is a non-negative
vector, due to the ReLU activation function.
In the experiments, we also tried to find the input vector

xt that most activates the target visit coordinate [14, 21].
However, the results were very sensitive to the initial value of
xt, and even averaging over multiple samples were producing
unreliable results.

3.6 Complexity analysis
We first analyze the computational complexity of the code-

level objective function Eq. (3). Without loss of generality,
we assume the visit records of all patients are concatenated
into a single sequence of visits. Then the complexity for Eq.
(3) is as follows,

O(TM
2
|C|m)

where

the representations for the codes that occur in the same visit
should predict each other. To embed Skip-gram in Med2Vec,
we can train Wc 2 Rm⇥|C| (which also produces intermedi-
ate visit level representations) so that the i-th column of Wc

will be the representation for the i-th medical code among
total |C| codes. Note that given the unordered nature of
the codes inside a visit, unlike the original Skip-gram, we do
not distinguish between the “input” medical code and the
“output”medical code. In text, it is sensible to assume that
a word can serve a di↵erent role as a center word and a
context word, whereas in EHR datasets, we cannot classify
codes as center or context codes. It is also desirable to learn
the representations of di↵erent types of codes (e.g. diagno-
sis, medication, procedure code) in the same latent space so
that we can capture the hidden relationships between them.

However, coordinate-wise interpretation of Skip-gram codes
is not straightforward because the positive and negative val-
ues of Wc make it hard for each coordinate to focus on
a single coherent medical concept. For intuitive interpreta-
tion, we should learn code representations with non-negative
values. Note that in Eq.(1), if the binary vector xt is a one-
hot vector, then the intermediate visit representation ut be-
comes a code representation. Therefore, using the Skip-gram
algorithm, we train the non-negative weight ReLU(Wc) in-
stead of Wc. This will not only use the intra-visit co-
occurrence information, but also guarantee non-negative code
representations. Moreover, ReLU produces sparse code rep-
resentations, which further facilitates easier interpretation
of the codes.

The code representations to be learned is denoted as a
matrix W 0

c = ReLU(Wc) 2 Rm⇥|C|. From a sequence of
visits V1, V2, . . . , VT , the code-level representations can be
learned by maximizing the following log-likelihood,

max
W 0

c

1
T

TX

t=1

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci), (3)

where p(cj |ci) =
exp

⇣
W 0

c [:, j]
>W 0

c [:, i]
⌘

P|C|
k=1 exp

⇣
W 0

c [:, k]>W 0
c [:, i]

⌘ . (4)

3.4 Unified training
The single unified framework can be obtained by adding

the two objective functions (3) and (2) as follows,

argmin
Wc,v,s,bc,v,s

1
T

TX

t=1

n
�

X

i:ci2Vt

X

j:cj2Vt,j 6=i

log p(cj |ci)

+
X

�wkw,k 6=0

�x>
t+k log ŷt � (1� xt+k)

> log(1� ŷt)
o

By combining the two objective functions we learn both
code representations and visit representations from the same
source of patient visit records, exploiting both intra-visit
co-occurrence information as well as inter-visit sequential
information at the same time.

3.5 Interpretation of learned representations
While the original Skip-gram learns code representations

that have interesting properties such as additivity, in health-
care we need stronger interpretability. We need to be able
to associate clinical meaning to each dimension of both code
and visit representations. Interpreting the learned represen-

tations is based on analyzing each coordinate in both code
and visit embedding spaces.

Interpreting code representations.

If information is properly embedded into a lower dimen-
sional non-negative space, each coordinate of the lower di-
mension can be readily interpreted. Non-negative matrix
factorization (NMF) is a good example. Since we trained
ReLU(Wc) 2 Rm⇥|C|, a non-negative matrix, to represent
the medical codes, we can employ a simple method to inter-
pret the meaning of each coordinate of the m-dimensional
code embedding space. We can find the top k codes that
have the largest values for the i-th coordinate of the code
embedding space as follows,

argsort(Wc[i, :])[1 : k]

where argsort returns the indices of a vector that index its
values in a descending order. By studying the returned med-
ical codes, we can view each coordinate as a disease group.
Detailed examples are given in section 5.1

Interpreting visit representations.

To interpret the learned visit vectors, we can use the same
principle we used for interpreting the code representation.
For the i-th coordinate of the n-dimensional visit embed-
ding space, we can find the top k coordinates of the code
embedding space that have the strongest values as follows,

argsort(Wv[i, :])[1 : k]

where we use the same argsort as before. Once we ob-
tain a set of code coordinates, we can use the knowledge
learned from interpreting the code representations to under-
stand how each visit coordinate is associated with a group
of diseases. This simple interpretation is possible because
the intermediate visit representation ut is a non-negative
vector, due to the ReLU activation function.
In the experiments, we also tried to find the input vector

xt that most activates the target visit coordinate [14, 21].
However, the results were very sensitive to the initial value of
xt, and even averaging over multiple samples were producing
unreliable results.

3.6 Complexity analysis
We first analyze the computational complexity of the code-

level objective function Eq. (3). Without loss of generality,
we assume the visit records of all patients are concatenated
into a single sequence of visits. Then the complexity for Eq.
(3) is as follows,

O(TM
2
|C|m)

where T is the number of visits, M
2
is the average of squared

number of medical codes within a visit, |C| the number of
unique medical codes, m the size of the code representation.
The M2 factor comes from iterating over all possible pairs
of codes within a visit. The complexity of the visit-level
objective function Eq.(2) is as follows,

O(Tw(|C|(m+ n) +mn))

where w is the size of the context window, n the size of the
visit representation. The added terms come from generating
a visit representation via MLP. Since size of code represen-
tation m and size of visit representation n generally have the

v Choi et al. Med2Vec: Multi-layer Representation Learning for Medical Concepts. KDD
2016.

Inter-visit Multi-label Classification Loss

• Model relations between nearby visits

19

+

. . .0 1 0 0 0 0 1 0

vt

xt+1

ut dt

xt-1

xt

Softmax

xt-2 xt+2

ReLU(Wv [ut , dt] + bv)

ReLU(Wcxt + bc)

{0, 1}|C|

Final visit
representation

• xt: one-hot coded Dx, Rx, Pr at time t
• ut: intermediate visit representation
• dt: patient demographic information
• vt: final visit representation
• Wc, Wv, bc, bv: weights to learn
• |C|: number of unique medical codes

Intermediate visit
representation

v Choi et al. Med2Vec: Multi-layer Representation Learning for Medical Concepts. KDD
2016.

Dipole

• Imitate doctors’ diagnosis procedure + disease progression

20

Doctor Diagnosis

Disease Progression

l 558.9
l 477.9
l 401.9
l 274.9
l 530.8

l 278.0
l 584.9
l 995.91
l 518.81

l 786.50
l 564.00
l 357.0
l 305.02
l 852.20

l 959.09
l E849.7
l 723.1
l E888.9
l 959.01
l V49.84

l 300.00
l 305.02
l 530.81
l 786.50
l 401.9

l V58.61
l 786.50
l 428.0
l 780.2

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6
Diagnoses

ICD-9 Codes:
Diagnoses

ICD-9 Codes:
Diagnoses

ICD-9 Codes:
Diagnoses

ICD-9 Codes:
Diagnoses

ICD-9 Codes:
Diagnoses

ICD-9 Codes:

Importance for
the prediction

v Ma et al. Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional
Recurrent Neural Networks. KDD 2017.

Dipole

• Motivations:
• Bidirectional Recurrent

Neural Networks (BRNN) to
imitate both the procedure
of doctor diagnosis and
disease progression.
• The importance of different

visits for the final prediction
should vary – Attention
Mechanism!

21

Diagnosis Prediction

Attention

Bidirectional RNN

Visit Embedding

v Ma et al. Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional
Recurrent Neural Networks. KDD 2017.

Interpretation for Code Representations (Diabetes Dataset)

22

Eye Complications &
Alzheimer’s Disease Neuropathy Heart Diseases

Mental Health Skin Complications High Blood Pressure

Latent Space

M
ed

ic
al

 C
od

e

v Ma et al. Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional
Recurrent Neural Networks. KDD 2017.

Interpretation for Code Representations

23
v Ma et al. Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional

Recurrent Neural Networks. KDD 2017.

GRAM

• Generate a medical code representation vector by combining the
representation vectors of its ancestors using the attention
mechanism

24
v Choi et al. GRAM: Learn representations of medical codes leveraging medical ontologies.

KDD 2017.

!",$ 	×	'"

!(,$ 	×	'(

!),$×	')

!$,$×	'$

+

i-th column of G

. . .

NN Model

*+,

tanh(Gxt)
vt

Attention
generation

Weighted sum

Knowledge DAG

-$

Predictive Model

., ∈ {0,1}|5|

Embedding matrix G
ck ch ci

cj
cf cg

cd ce

cb cc

ca

0 1 0 0 0 1 0

GRAM algorithm

25

Attention weights are generated for all pairs of basic embeddings 𝐞! and its ancestors 𝐞".

Final representation 𝐠! is the weighted sum of attention weights and basic embeddings.

Sequence of visit representations are obtained using the Embedding matrix G.

Performing sequential diagnoses prediction, outcomes are generated by RNN and
Softmax.

of the code c j and �i j 2 R+ the attention weight on the embedding
ej when calculating gi . The attention weight �i j in Eq. (1) is
calculated by the following Softmax function,

�i j =
exp(f (ei , ej))Õ

k 2A(i) exp(f (ei , ek))
(2)

f (ei , ej) is a scalar value representing the compatibility between
the basic embeddings of ei and ek . We compute f (ei , ej) via the
following feed-forward network with a single hidden layer (MLP),

f (ei , ej) = u>a tanh(Wa

ei
ej

�
+ ba) (3)

whereWa 2 Rl⇥2m is the weight matrix for the concatenation of
ei and ej , b 2 Rl the bias vector, and ua 2 Rl the weight vector for
generating the scalar value. The constant l represents the dimen-
sion size of the hidden layer of f (·, ·). We concatenate ei and ej in
the child-ancestor order. Note that the compatibility function f is
an MLP, because MLP is well known to be a su�cient approximator
for an arbitrary function, and we empirically found that our formu-
lation performed better in our use cases than alternatives such as
inner product and Bahdanau et al.’s [2].
Remarks: The example in Figure 1 is derived based on a single
path from ci to ca . However, the same mechanism can be applicable
to multiple paths as well. For example, code ck has two paths to
the root ca , containing �ve ancestors in total. Another scenario
is where the EHR data contain both leaf codes and some ancestor
codes. We can move those ancestors present in EHR data from the
set C0 to C and apply the same process as Eq. (1) to obtain the �nal
representations for them.

2.3 End-to-End Training with a Predictive
Model

We train the attention mechanism together with a predictive model
such that the attention mechanism improves the predictive perfor-
mance. By concatenating �nal representation g1, g2, . . . , g |C | of all
medical codes, we have the embedding matrix G 2 Rm⇥ |C | where
gi is the i-th column of G. As shown in the right side of Figure 1,
we can convert a visitVt to a visit representation vt by multiplying
the embedding matrix G with a multi-hot (i.e. multi-label binary)
vector xt indicating the clinical events in the visit Vt , followed by
a nonlinear activation via tanh. Finally the visit representation vt
will be used as an input to the neural network model for predicting
the target label yt . In this work, we use RNN as the choice of the
NN model to perform sequential diagnoses prediction [9, 10]. That
is, we are interested in predicting the disease codes of the next visit
Vt+1 given the visit records up to the current timestepV1,V2, . . . ,Vt ,
which can be expressed as follows,

v1, v2, . . . , vt = tanh(G[x1, x2, . . . , xt]),
h1, h2, . . . , ht = RNN(v1, v2, . . . , vt ,�r), (4)

byt = bxt+1 = So�max(Wht + b),

where xt 2 R |C | denotes the multi-hot vector for the t-th visit;
vt 2 Rm the t-th visit representation; ht 2 Rr the RNN’s hidden
layer at the t-th time step (i.e. t-th visit); �r RNN’s parameters;
W 2 R |C |⇥r and b 2 R |C | the weight matrices and the bias vector
of the �nal Softmax function (r denotes the dimension size of the

Algorithm 1 GRAM Optimization
Randomly initialize basic embedding matrix E, attention param-
eters ua ,Wa , ba , RNN parameter �r , softmax parametersW, b.

repeat
Update E with GloVe objective function (see Section 2.4)

until convergence
repeat
X random patient from dataset
for visit Vt in X do
for code ci in Vt do

Refer G to �nd ci ’s ancestors C 0
for code c j in C 0 do
Calculate attention weight �i j using Eq. (2).

end for
Obtain �nal representation gi using Eq. (1).

end for
vt tanh(Õi :ci 2Vt gi)
Make predictionbyt using Eq. (4)

end for
Calculate prediction loss L using Eq .(5)
Update parameters according to the gradient of L

until convergence

hidden layer). Note that we use Softmax instead of dimension-
wise sigmoid for predicting multiple disease codes in the next visit
Vt+1 because it showed better performance. Here we use “RNN” to
denote any recurrent neural network variants that can cope with
the vanishing gradient problem [3], such as LSTM [18], GRU [8],
and IRNN [21]. The prediction loss for all time steps is calculated
using the binary cross entropy as follows,

L(x1, x2 . . . , xT) = �
1

T � 1

T�1’
t=1

⇣
yt> log(byt)+ (1�yt)> log(1�byt)⌘ (5)

where we sum the cross entropy errors from all timestamps ofbyt ,T
denotes the number of timestamps of the visit sequence. Note that
the above loss is de�ned for a single patient. In actual implemen-
tation, we will take the average of the individual loss for multiple
patients. Algorithm 1 describes the overall GRAM training proce-
dure assuming that we are performing the sequential diagnoses
prediction task using an RNN. Note that Algorithm 1 describes
stochastic gradient update to avoid clutter, but it can be easily ex-
tended to other gradient based optimization such as mini-batch
gradient update.

2.4 Initializing Basic Embeddings
The attention generation mechanism in Section 2.2 requires basic
embeddings ei of each node in the knowledge DAG. The basic
embeddings of ancestors, however, are not usually observed in the
data. To properly initialize them, we use co-occurrence information
to learn the basic embeddings of medical codes and their ancestors.
Co-occurrence has proven to be an important source of information
when learning representations of words or medical concepts [11,
13, 27]. To train the basic embeddings, we employ GloVe [31],
which uses the global co-occurrence matrix of words to learn their
representations. In our case, the co-occurrence matrix of the codes

of the code c j and �i j 2 R+ the attention weight on the embedding
ej when calculating gi . The attention weight �i j in Eq. (1) is
calculated by the following Softmax function,

�i j =
exp(f (ei , ej))Õ

k 2A(i) exp(f (ei , ek))
(2)

f (ei , ej) is a scalar value representing the compatibility between
the basic embeddings of ei and ek . We compute f (ei , ej) via the
following feed-forward network with a single hidden layer (MLP),

f (ei , ej) = u>a tanh(Wa

ei
ej

�
+ ba) (3)

whereWa 2 Rl⇥2m is the weight matrix for the concatenation of
ei and ej , b 2 Rl the bias vector, and ua 2 Rl the weight vector for
generating the scalar value. The constant l represents the dimen-
sion size of the hidden layer of f (·, ·). We concatenate ei and ej in
the child-ancestor order. Note that the compatibility function f is
an MLP, because MLP is well known to be a su�cient approximator
for an arbitrary function, and we empirically found that our formu-
lation performed better in our use cases than alternatives such as
inner product and Bahdanau et al.’s [2].
Remarks: The example in Figure 1 is derived based on a single
path from ci to ca . However, the same mechanism can be applicable
to multiple paths as well. For example, code ck has two paths to
the root ca , containing �ve ancestors in total. Another scenario
is where the EHR data contain both leaf codes and some ancestor
codes. We can move those ancestors present in EHR data from the
set C0 to C and apply the same process as Eq. (1) to obtain the �nal
representations for them.

2.3 End-to-End Training with a Predictive
Model

We train the attention mechanism together with a predictive model
such that the attention mechanism improves the predictive perfor-
mance. By concatenating �nal representation g1, g2, . . . , g |C | of all
medical codes, we have the embedding matrix G 2 Rm⇥ |C | where
gi is the i-th column of G. As shown in the right side of Figure 1,
we can convert a visitVt to a visit representation vt by multiplying
the embedding matrix G with a multi-hot (i.e. multi-label binary)
vector xt indicating the clinical events in the visit Vt , followed by
a nonlinear activation via tanh. Finally the visit representation vt
will be used as an input to the neural network model for predicting
the target label yt . In this work, we use RNN as the choice of the
NN model to perform sequential diagnoses prediction [9, 10]. That
is, we are interested in predicting the disease codes of the next visit
Vt+1 given the visit records up to the current timestepV1,V2, . . . ,Vt ,
which can be expressed as follows,

v1, v2, . . . , vt = tanh(G[x1, x2, . . . , xt]),
h1, h2, . . . , ht = RNN(v1, v2, . . . , vt ,�r), (4)

byt = bxt+1 = So�max(Wht + b),

where xt 2 R |C | denotes the multi-hot vector for the t-th visit;
vt 2 Rm the t-th visit representation; ht 2 Rr the RNN’s hidden
layer at the t-th time step (i.e. t-th visit); �r RNN’s parameters;
W 2 R |C |⇥r and b 2 R |C | the weight matrices and the bias vector
of the �nal Softmax function (r denotes the dimension size of the

Algorithm 1 GRAM Optimization
Randomly initialize basic embedding matrix E, attention param-
eters ua ,Wa , ba , RNN parameter �r , softmax parametersW, b.

repeat
Update E with GloVe objective function (see Section 2.4)

until convergence
repeat
X random patient from dataset
for visit Vt in X do
for code ci in Vt do

Refer G to �nd ci ’s ancestors C 0
for code c j in C 0 do
Calculate attention weight �i j using Eq. (2).

end for
Obtain �nal representation gi using Eq. (1).

end for
vt tanh(Õi :ci 2Vt gi)
Make predictionbyt using Eq. (4)

end for
Calculate prediction loss L using Eq .(5)
Update parameters according to the gradient of L

until convergence

hidden layer). Note that we use Softmax instead of dimension-
wise sigmoid for predicting multiple disease codes in the next visit
Vt+1 because it showed better performance. Here we use “RNN” to
denote any recurrent neural network variants that can cope with
the vanishing gradient problem [3], such as LSTM [18], GRU [8],
and IRNN [21]. The prediction loss for all time steps is calculated
using the binary cross entropy as follows,

L(x1, x2 . . . , xT) = �
1

T � 1

T�1’
t=1

⇣
yt> log(byt)+ (1�yt)> log(1�byt)⌘ (5)

where we sum the cross entropy errors from all timestamps ofbyt ,T
denotes the number of timestamps of the visit sequence. Note that
the above loss is de�ned for a single patient. In actual implemen-
tation, we will take the average of the individual loss for multiple
patients. Algorithm 1 describes the overall GRAM training proce-
dure assuming that we are performing the sequential diagnoses
prediction task using an RNN. Note that Algorithm 1 describes
stochastic gradient update to avoid clutter, but it can be easily ex-
tended to other gradient based optimization such as mini-batch
gradient update.

2.4 Initializing Basic Embeddings
The attention generation mechanism in Section 2.2 requires basic
embeddings ei of each node in the knowledge DAG. The basic
embeddings of ancestors, however, are not usually observed in the
data. To properly initialize them, we use co-occurrence information
to learn the basic embeddings of medical codes and their ancestors.
Co-occurrence has proven to be an important source of information
when learning representations of words or medical concepts [11,
13, 27]. To train the basic embeddings, we employ GloVe [31],
which uses the global co-occurrence matrix of words to learn their
representations. In our case, the co-occurrence matrix of the codes

where

of the code c j and �i j 2 R+ the attention weight on the embedding
ej when calculating gi . The attention weight �i j in Eq. (1) is
calculated by the following Softmax function,

�i j =
exp(f (ei , ej))Õ

k 2A(i) exp(f (ei , ek))
(2)

f (ei , ej) is a scalar value representing the compatibility between
the basic embeddings of ei and ek . We compute f (ei , ej) via the
following feed-forward network with a single hidden layer (MLP),

f (ei , ej) = u>a tanh(Wa

ei
ej

�
+ ba) (3)

whereWa 2 Rl⇥2m is the weight matrix for the concatenation of
ei and ej , b 2 Rl the bias vector, and ua 2 Rl the weight vector for
generating the scalar value. The constant l represents the dimen-
sion size of the hidden layer of f (·, ·). We concatenate ei and ej in
the child-ancestor order. Note that the compatibility function f is
an MLP, because MLP is well known to be a su�cient approximator
for an arbitrary function, and we empirically found that our formu-
lation performed better in our use cases than alternatives such as
inner product and Bahdanau et al.’s [2].
Remarks: The example in Figure 1 is derived based on a single
path from ci to ca . However, the same mechanism can be applicable
to multiple paths as well. For example, code ck has two paths to
the root ca , containing �ve ancestors in total. Another scenario
is where the EHR data contain both leaf codes and some ancestor
codes. We can move those ancestors present in EHR data from the
set C0 to C and apply the same process as Eq. (1) to obtain the �nal
representations for them.

2.3 End-to-End Training with a Predictive
Model

We train the attention mechanism together with a predictive model
such that the attention mechanism improves the predictive perfor-
mance. By concatenating �nal representation g1, g2, . . . , g |C | of all
medical codes, we have the embedding matrix G 2 Rm⇥ |C | where
gi is the i-th column of G. As shown in the right side of Figure 1,
we can convert a visitVt to a visit representation vt by multiplying
the embedding matrix G with a multi-hot (i.e. multi-label binary)
vector xt indicating the clinical events in the visit Vt , followed by
a nonlinear activation via tanh. Finally the visit representation vt
will be used as an input to the neural network model for predicting
the target label yt . In this work, we use RNN as the choice of the
NN model to perform sequential diagnoses prediction [9, 10]. That
is, we are interested in predicting the disease codes of the next visit
Vt+1 given the visit records up to the current timestepV1,V2, . . . ,Vt ,
which can be expressed as follows,

v1, v2, . . . , vt = tanh(G[x1, x2, . . . , xt]),
h1, h2, . . . , ht = RNN(v1, v2, . . . , vt ,�r), (4)

byt = bxt+1 = So�max(Wht + b),

where xt 2 R |C | denotes the multi-hot vector for the t-th visit;
vt 2 Rm the t-th visit representation; ht 2 Rr the RNN’s hidden
layer at the t-th time step (i.e. t-th visit); �r RNN’s parameters;
W 2 R |C |⇥r and b 2 R |C | the weight matrices and the bias vector
of the �nal Softmax function (r denotes the dimension size of the

Algorithm 1 GRAM Optimization
Randomly initialize basic embedding matrix E, attention param-
eters ua ,Wa , ba , RNN parameter �r , softmax parametersW, b.

repeat
Update E with GloVe objective function (see Section 2.4)

until convergence
repeat
X random patient from dataset
for visit Vt in X do
for code ci in Vt do

Refer G to �nd ci ’s ancestors C 0
for code c j in C 0 do
Calculate attention weight �i j using Eq. (2).

end for
Obtain �nal representation gi using Eq. (1).

end for
vt tanh(Õi :ci 2Vt gi)
Make predictionbyt using Eq. (4)

end for
Calculate prediction loss L using Eq .(5)
Update parameters according to the gradient of L

until convergence

hidden layer). Note that we use Softmax instead of dimension-
wise sigmoid for predicting multiple disease codes in the next visit
Vt+1 because it showed better performance. Here we use “RNN” to
denote any recurrent neural network variants that can cope with
the vanishing gradient problem [3], such as LSTM [18], GRU [8],
and IRNN [21]. The prediction loss for all time steps is calculated
using the binary cross entropy as follows,

L(x1, x2 . . . , xT) = �
1

T � 1

T�1’
t=1

⇣
yt> log(byt)+ (1�yt)> log(1�byt)⌘ (5)

where we sum the cross entropy errors from all timestamps ofbyt ,T
denotes the number of timestamps of the visit sequence. Note that
the above loss is de�ned for a single patient. In actual implemen-
tation, we will take the average of the individual loss for multiple
patients. Algorithm 1 describes the overall GRAM training proce-
dure assuming that we are performing the sequential diagnoses
prediction task using an RNN. Note that Algorithm 1 describes
stochastic gradient update to avoid clutter, but it can be easily ex-
tended to other gradient based optimization such as mini-batch
gradient update.

2.4 Initializing Basic Embeddings
The attention generation mechanism in Section 2.2 requires basic
embeddings ei of each node in the knowledge DAG. The basic
embeddings of ancestors, however, are not usually observed in the
data. To properly initialize them, we use co-occurrence information
to learn the basic embeddings of medical codes and their ancestors.
Co-occurrence has proven to be an important source of information
when learning representations of words or medical concepts [11,
13, 27]. To train the basic embeddings, we employ GloVe [31],
which uses the global co-occurrence matrix of words to learn their
representations. In our case, the co-occurrence matrix of the codes

of the code c j and �i j 2 R+ the attention weight on the embedding
ej when calculating gi . The attention weight �i j in Eq. (1) is
calculated by the following Softmax function,

�i j =
exp(f (ei , ej))Õ

k 2A(i) exp(f (ei , ek))
(2)

f (ei , ej) is a scalar value representing the compatibility between
the basic embeddings of ei and ek . We compute f (ei , ej) via the
following feed-forward network with a single hidden layer (MLP),

f (ei , ej) = u>a tanh(Wa

ei
ej

�
+ ba) (3)

whereWa 2 Rl⇥2m is the weight matrix for the concatenation of
ei and ej , b 2 Rl the bias vector, and ua 2 Rl the weight vector for
generating the scalar value. The constant l represents the dimen-
sion size of the hidden layer of f (·, ·). We concatenate ei and ej in
the child-ancestor order. Note that the compatibility function f is
an MLP, because MLP is well known to be a su�cient approximator
for an arbitrary function, and we empirically found that our formu-
lation performed better in our use cases than alternatives such as
inner product and Bahdanau et al.’s [2].
Remarks: The example in Figure 1 is derived based on a single
path from ci to ca . However, the same mechanism can be applicable
to multiple paths as well. For example, code ck has two paths to
the root ca , containing �ve ancestors in total. Another scenario
is where the EHR data contain both leaf codes and some ancestor
codes. We can move those ancestors present in EHR data from the
set C0 to C and apply the same process as Eq. (1) to obtain the �nal
representations for them.

2.3 End-to-End Training with a Predictive
Model

We train the attention mechanism together with a predictive model
such that the attention mechanism improves the predictive perfor-
mance. By concatenating �nal representation g1, g2, . . . , g |C | of all
medical codes, we have the embedding matrix G 2 Rm⇥ |C | where
gi is the i-th column of G. As shown in the right side of Figure 1,
we can convert a visitVt to a visit representation vt by multiplying
the embedding matrix G with a multi-hot (i.e. multi-label binary)
vector xt indicating the clinical events in the visit Vt , followed by
a nonlinear activation via tanh. Finally the visit representation vt
will be used as an input to the neural network model for predicting
the target label yt . In this work, we use RNN as the choice of the
NN model to perform sequential diagnoses prediction [9, 10]. That
is, we are interested in predicting the disease codes of the next visit
Vt+1 given the visit records up to the current timestepV1,V2, . . . ,Vt ,
which can be expressed as follows,

v1, v2, . . . , vt = tanh(G[x1, x2, . . . , xt]),
h1, h2, . . . , ht = RNN(v1, v2, . . . , vt ,�r), (4)

byt = bxt+1 = So�max(Wht + b),

where xt 2 R |C | denotes the multi-hot vector for the t-th visit;
vt 2 Rm the t-th visit representation; ht 2 Rr the RNN’s hidden
layer at the t-th time step (i.e. t-th visit); �r RNN’s parameters;
W 2 R |C |⇥r and b 2 R |C | the weight matrices and the bias vector
of the �nal Softmax function (r denotes the dimension size of the

Algorithm 1 GRAM Optimization
Randomly initialize basic embedding matrix E, attention param-
eters ua ,Wa , ba , RNN parameter �r , softmax parametersW, b.

repeat
Update E with GloVe objective function (see Section 2.4)

until convergence
repeat
X random patient from dataset
for visit Vt in X do
for code ci in Vt do

Refer G to �nd ci ’s ancestors C 0
for code c j in C 0 do
Calculate attention weight �i j using Eq. (2).

end for
Obtain �nal representation gi using Eq. (1).

end for
vt tanh(Õi :ci 2Vt gi)
Make predictionbyt using Eq. (4)

end for
Calculate prediction loss L using Eq .(5)
Update parameters according to the gradient of L

until convergence

hidden layer). Note that we use Softmax instead of dimension-
wise sigmoid for predicting multiple disease codes in the next visit
Vt+1 because it showed better performance. Here we use “RNN” to
denote any recurrent neural network variants that can cope with
the vanishing gradient problem [3], such as LSTM [18], GRU [8],
and IRNN [21]. The prediction loss for all time steps is calculated
using the binary cross entropy as follows,

L(x1, x2 . . . , xT) = �
1

T � 1

T�1’
t=1

⇣
yt> log(byt)+ (1�yt)> log(1�byt)⌘ (5)

where we sum the cross entropy errors from all timestamps ofbyt ,T
denotes the number of timestamps of the visit sequence. Note that
the above loss is de�ned for a single patient. In actual implemen-
tation, we will take the average of the individual loss for multiple
patients. Algorithm 1 describes the overall GRAM training proce-
dure assuming that we are performing the sequential diagnoses
prediction task using an RNN. Note that Algorithm 1 describes
stochastic gradient update to avoid clutter, but it can be easily ex-
tended to other gradient based optimization such as mini-batch
gradient update.

2.4 Initializing Basic Embeddings
The attention generation mechanism in Section 2.2 requires basic
embeddings ei of each node in the knowledge DAG. The basic
embeddings of ancestors, however, are not usually observed in the
data. To properly initialize them, we use co-occurrence information
to learn the basic embeddings of medical codes and their ancestors.
Co-occurrence has proven to be an important source of information
when learning representations of words or medical concepts [11,
13, 27]. To train the basic embeddings, we employ GloVe [31],
which uses the global co-occurrence matrix of words to learn their
representations. In our case, the co-occurrence matrix of the codes

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

!",$ 	×	'"

!(,$ 	×	'(

!),$×	')

!$,$×	'$

+

i-th column of G

. . .

NN Model

*+,

tanh(Gxt)

vt

Attention
generation

Weighted sum

Knowledge DAG

-$

Predictive Model

., ∈ {0,1}|5|

Embedding matrix G

ck ch ci

cj
cf cg

cd ce

cb cc

ca

0 1 0 0 0 1 0

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

v Choi et al. GRAM: Learn representations of medical codes leveraging medical ontologies.
KDD 2017.

GRAM learns representations well aligned with knowledge
ontology

26

Under review as a conference paper at ICLR 2017

Fracture of lower limb

Other fractures (ribs, pelvis)

Fracture of humerus,
Fracture of radius & ulna

Other fracture of upper limb

Complication of device; implant or graft

Complications of surgical
procedures or medical care

Other unspecified benign neoplasm

Retinal detachments; defects;
vascular occlusion; retinopathy

Other hereditary, degenerative
nervous system conditions

Osteoarthritis

Pneumonia

Hypertension with
complications and
secondary
hypertension

Other complications
of pregnancy

Genitourinary symptoms
and ill-defined
conditions

Other female
genital disorders

Other circulatory disease

Deficiency and other anemia
Peri-; endo-; myocarditis;
cardiomyopathy

Other viral infections

Otitis media
and related conditions

Other upper
respiratory infections

Gastroduodenal ulcer

(a) Scatterplot of the final representations gi’s of GRAM+

(b) Scatterplot of the trained embedding matrix
Wemb of RNN+

(c) Scatterplot of the disease representations
trained by GloVe

Figure 3: t-SNE scatterplots of medical concepts trained by GRAM+, RNN+ and GloVe

plots on the strongest results from RNN+ (Figure 3b), and GloVe (Figure 3c), the same embedding
technique in initializing the basic embeddings ei. Figures 3b and 3c confirm that interpretable
representations cannot simply be learned only by co-occurrence or supervised prediction without
medical knowledge. GRAM+ learns disease representations that are significantly more consistent with
the given knowledge DAG G. Therefore the neural network predictive model that accepts gi is using
accurate representations that lead to higher predictive performance. Additional scatterplots of other
models are provided in Appendix E for comparison. An interactive visualization tool can be accessed
at http://www.sunlab.org/research/gram-graph-based-attention-model/.

3.4 ANALYSIS OF THE ATTENTION BEHAVIOR

Next we show that GRAM’s attention can be interpreted to understand how it considers data avail-
ability and knowledge DAG’s structure when performing a prediction task. Using Eq. (1), we can
calculate the attention weights of individual disease. Figure 4 shows the attention behaviors of four
representative diseases when performing HF prediction on Sutter HF cohort.

Other pneumothorax (ICD9 512.89) in Figure 4a is rarely observed in the data and has only five
siblings. In this case, most information is derived from the highest ancestor. Temporomandibular
joint disorders & articular disc disorder (ICD9 524.63) in Figure 4b is rarely observed but has 139
siblings. In this case, its parent receives a stronger attention because it aggregates sufficient samples
from all of its children to learn a more accurate representation. Note that the disease itself also
receives a stronger attention to facilitate easier distinction from its large number of siblings.

Unspecified essential hypertension (ICD9 401.9) in Figure 4c is very frequently observed but has only
two siblings. In this case, GRAM assigns a very strong attention to the leaf, which is logical because the
more you observe a disease, the stronger your confidence becomes. Need for prophylactic vaccination
and inoculation against influenza (ICD9 V04.81) in Figure 4d is quite frequently observed and also

7

Scatterplot of
GRAM
representations

v Choi et al. GRAM: Learn representations of medical codes leveraging medical ontologies.
KDD 2017.

KAME

• Take high-level visit
information as input.
• Propose a knowledge

attention mechanism.
• Consider general knowledge

when making prediction.

27
v Ma et al. KAME: Knowledge-based Attention Model for Diagnosis Prediction in

Healthcare. CIKM 2018.

KAME vs GRAM

• KAME is the generalization of
the state-of-the-art diagnosis
prediction model GRAM.
• When removing the proposed

knowledge-based attention
component (i.e., deleting 𝐤!),
then the proposed KAME is
reduced to GRAM.

28
v Ma et al. KAME: Knowledge-based Attention Model for Diagnosis Prediction in

Healthcare. CIKM 2018.

Performance Evaluation

29

§ The performance of the proposed KAME is better than that of all the baselines
on the three datasets.
§ Fully utilizing medical knowledge graph is important!
§ The proposed KAME achieves robust results on different datasets.

v Ma et al. KAME: Knowledge-based Attention Model for Diagnosis Prediction in
Healthcare. CIKM 2018.

Data Sufficiency Evaluation

• Divide medical codes into four groups: 0-25, 25-50, 50-75 and 75-
100, based on their frequency in the training set.

• The 0-25 group represents the most rare codes in the training set,
while codes in the 75-100 group are the most common ones.

• Calculate the average accuracy of codes in each group on the
testing set.

30
v Ma et al. KAME: Knowledge-based Attention Model for Diagnosis Prediction in

Healthcare. CIKM 2018.

Data Sufficiency Evaluation

31

Diabetes

Medicaid

v Ma et al. KAME: Knowledge-based Attention Model for Diagnosis Prediction in
Healthcare. CIKM 2018.

Interpretability Analysis
§ Interpretability of the learned medical code

representations
§ Randomly select 2000 medical codes and then

plot on a 2-D space with t-SNE using their
learned embeddings.

§ Each dot represents a diagnosis code. The
colors of the dots represents the disease
categories, i.e., cluster labels.

§ Ideally, the dots with the same color should be
in the same cluster, and there are margins
among different clusters.

32
v Ma et al. KAME: Knowledge-based Attention Model for Diagnosis Prediction in

Healthcare. CIKM 2018.

HAP

33
v Zhang et al. Hierarchical Attention Propagation for Healthcare Representation Learning.

KDD 2020.

Integrating Multimodal Electronic Health Records

34
v Li et al. Integrating Multimodal Electronic Health Records for Diagnosis Prediction. AMIA

2021.

Outline
• Introduction to Electronic Healthcare Records

• Various types of EHR data
• Different applications

• Part I: Mining structured health data
• Phenotyping
• Disease detection/Risk prediction
• Treatment recommendation

• Part II: Mining unstructured health data
• Automated ICD coding /Disease classification
• Understandable medical language translation
• Medical report generation
• Clinical trial mining

• Conclusion and Future Outlook

35

Risk Prediction

• Predicting whether a patient will suffer a given disease/condition.

36

Heart Failure?

RETAIN: REverse Time AttentIoN model

37
v Choi et al. RETAIN: An Interpretable Predictive Model for Healthcare Using Reverse Time

Attention Mechanism. NeurIPS 2016.

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps.

Another key idea in RETAIN is to generate the attention vectors by running the RNNs backward in
time; i.e., RNN↵ and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. This
idea is inspired by the common behavior of physicians: When physicians try to diagnose based on
the past records, they typically study the patient’s most recent records first, and go back in time.
Computationally, running the RNN in reversed time order has several advantages as well: The reverse
time order allows us to generate e’s and �’s that dynamically change their values when making
predictions at different time steps i = 1, 2, . . . , T . It ensures that the attention vectors will be different
at each timestamp and makes the attention generation process computationally more stable.1

We generate the context vector ci for a patient up to the i-th visit as follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)

where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to for example mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded using RNN and generate the attention weights
using MLP. Our method, on the other hand, uses MLP to embed the visit information to preserve
interpretation and uses RNN to generate two sets of attention weights, recovering the sequential
information as well as mimicking the behavior of physicians.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

RETAIN

38

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps.

Another key idea in RETAIN is to generate the attention vectors by running the RNNs backward in
time; i.e., RNN↵ and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. This
idea is inspired by the common behavior of physicians: When physicians try to diagnose based on
the past records, they typically study the patient’s most recent records first, and go back in time.
Computationally, running the RNN in reversed time order has several advantages as well: The reverse
time order allows us to generate e’s and �’s that dynamically change their values when making
predictions at different time steps i = 1, 2, . . . , T . It ensures that the attention vectors will be different
at each timestamp and makes the attention generation process computationally more stable.1

We generate the context vector ci for a patient up to the i-th visit as follows,

ci =
iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)

where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>
i log(byi) + (1� yi)

> log(1� byi)
⌘

(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to for example mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded using RNN and generate the attention weights
using MLP. Our method, on the other hand, uses MLP to embed the visit information to preserve
interpretation and uses RNN to generate two sets of attention weights, recovering the sequential
information as well as mimicking the behavior of physicians.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

LSAN

• Motivation

39

• EHR is composed of two hierarchies.
• In the hierarchy of diagnosis code, we should reduce the noise information to learn a

better embedding for each visit.
• In the hierarchy of visit, we should pay attention to the correlations among visits.

Fig. 2: Illustration of hierarchical representation of EHRs.
Hierarchy of

Diagnosis Code

Hierarchy of
Visit

v Ye et al. LSAN: Modeling Long-term Dependencies and Short-term Correlations with
Hierarchical Attention for Risk Prediction. CIKM 2020.

Motivation

40

• Within each visit, there may
exist diagnosis codes that are
unrelated to the target task.

• In the hierarchy of visit,
capturing the temporal
patterns of disease changes is
always important.

• Distinguishing the
importance of diagnosis
codes within each visit.

• Filtering out noise by
extracting local temporal
correlations among
neighboring visits and
utilizing the long-term
dependencies information.

v Ye et al. LSAN: Modeling Long-term Dependencies and Short-term Correlations with
Hierarchical Attention for Risk Prediction. CIKM 2020.

LSAN

• Modeling the Long-term dependencies and Short-term correlations
with the utilization of a hierarchical Attention Network

41

Fig. 3: The proposed model.

v Ye et al. LSAN: Modeling Long-term Dependencies and Short-term Correlations with
Hierarchical Attention for Risk Prediction. CIKM 2020.

HAM

42

• HAM has a hierarchical attention mechanism in
the hierarchies of diagnosis code and visit.
• In the hierarchy of diagnosis code, it gets a

single dense diagnosis embedding for each visit
by summing up the diagnosis code embeddings
with code-level attention weights.
• In the hierarchy of visit, it attends the aggregated

visit embeddings by their relevance to target
disease and attains a comprehensive
representation for risk prediction.

Fig. 4: HAM.

v Ye et al. LSAN: Modeling Long-term Dependencies and Short-term Correlations with
Hierarchical Attention for Risk Prediction. CIKM 2020.

TAM

43

• TAM aggregates the visit embeddings
with two kinds of temporal information
from global and local temporal structures.
• When the features of all visit are put into

TAM, it models long-term dependencies
in the global structure by Transformer
and short-term correlations in the local
structure by a convolutional layer.

Fig. 5: TAM.

v Ye et al. LSAN: Modeling Long-term Dependencies and Short-term Correlations with
Hierarchical Attention for Risk Prediction. CIKM 2020.

Importance of Time Information

44

An example of a patient’s visit information

Information Decay in a monotonical way!

Visit 1
ICD-9 Codes:
• 682.9
• 716.90

Visit 2
ICD-9 Codes:
• 490

Visit 3
ICD-9 Codes:
• 490

Visit 4
ICD-9 Codes:

Visit 5
ICD-9 Codes:
• 375.15
• 375.20

05-21-2011

76
Days

108
Days

51
Days

76
Days

08-05-2011

11-21-2011

01-11-2012

03-27-2012

vBaytas et al. Patient subtyping via time-aware LSTM networks. KDD 2017.
vBai et al. Interpretable Representation Learning for Healthcare via Capturing Disease Progression

through Time. KDD 2018.

HiTANet: Hierarchical Time-aware Attention

• Motivations
• The importance of historical patient information with respect to current

health risk does not decay monotonically.
• The importance of previous timestamps varies among patients.

45

Visit 1
ICD-9 Codes:
• 682.9
• 716.90

Visit 2
ICD-9 Codes:
• 490

Visit 3
ICD-9 Codes:
• 490

Visit 4
ICD-9 Codes:

Visit 5
ICD-9 Codes:
• 375.15
• 375.20

05-21-2011

76
Days

108
Days

51
Days

76
Days

08-05-2011

11-21-2011

01-11-2012

03-27-2012

v Luo et al. HiTANet: Hierarchical time-aware attention networks for risk prediction on
electronic health records. KDD 2020.

The Proposed HiTANet Model

46
v Luo et al. HiTANet: Hierarchical time-aware attention networks for risk prediction on

electronic health records. KDD 2020.

Visit Analysis

47
v Luo et al. HiTANet: Hierarchical time-aware attention networks for risk prediction on

electronic health records. KDD 2020.

Comprehensive Analysis

48
v Luo et al. HiTANet: Hierarchical time-aware attention networks for risk prediction on

electronic health records. KDD 2020.

Attention Fusion & Prediction

49
v Luo et al. HiTANet: Hierarchical time-aware attention networks for risk prediction on

electronic health records. KDD 2020.

Experiments

50
v Luo et al. HiTANet: Hierarchical time-aware attention networks for risk prediction on

electronic health records. KDD 2020.

Attention Analysis

51
v Luo et al. HiTANet: Hierarchical time-aware attention networks for risk prediction on

electronic health records. KDD 2020.

MedPath

• Necessity of Incorporating Personalized Knowledge Graph
• The number of overlapping medical codes between individual patients' EHR

data and the entire KG is very small.
• The leading causes of a specific target disease for different patients vary a lot.

• Explicit Reasoning over Disease Progression Paths
• Enhance the representation learning of medical codes.
• Implicit reasoning with attention weights.
• Multi-hop explicit disease progression paths in KG.

52
v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.

WWW 2021.

MedPath

• Augmenting Health Risk Prediction via Medical Knowledge Paths

53
v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.

WWW 2021.

EHR Encoder

• Any of existing risk prediction model
• Retain [NeurIPS 2016]
• Dipole [KDD 2017]
• GRAM [KDD 2017]
• HiTANet [KDD 2020]
• …

54

s = 𝐹𝑒(X)

v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.
WWW 2021.

Personalized Graph Extraction

• Medical Knowledge Graph
• SemMed: Semantic MEDLINE (https://skr3.nlm.nih.gov/SemMed/)

• Unification of ICD Codes and SemMed Entities
• SemMed: Concept Unique Identifiers (CUIs)
• EHR data: ICD codes
• Mapping: SNOMED CT

• Path Extraction
• Source: CUIs from input EHR data
• Target: CUIs of our target disease/condition

55
v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.

WWW 2021.

Graph Encoder

56
v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.

WWW 2021.

Type-Specific Transformation

• Input CUIs
• Target CUIs
• Internal CUIs

57

𝐯" = 𝐔#𝐡" + 𝐛#

𝐡" 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑛𝑜𝑑𝑒
𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑇𝑟𝑎𝑛𝑠𝐸.

v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.
WWW 2021.

Multi-hop Message Passing

• K-hop paths

58

𝑒$ ∈ 𝐼𝑛𝑝𝑢𝑡 𝐶𝑈𝐼𝑠
𝑒% ∈ 𝑇𝑎𝑟𝑔𝑒𝑡 𝐶𝑈𝐼𝑠

𝑟" 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ.

v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.
WWW 2021.

Multi-hop Message Passing

• Graph node embedding

59

Transformation matrix 𝑊&!
:

how this relation passes the information from source node 𝑒$ to 𝑒%

v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.
WWW 2021.

Structured Relational Attention

• Transition Matrix-based Attention

• A probabilistic graphical model
• Conditional random field

60
v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.

WWW 2021.

Structured Relational Attention

• Relational Self-Attention
• For modeling the differences among different patients, we need to use a

dynamic score matrix for each relation type at each hop conditioned on the
source node s, instead of using a fixed relation transition matrix 𝜏 ⋅ .

61

hop-specific transformation： 𝐀 = [𝐚W, ⋯ , 𝐚X]

v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.
WWW 2021.

Prediction

• Attentive pooling over all the target CUI entity features to obtain
graph embeddings g
• Concatenate g and s to compute the final output by FC(s⊕g)
• Cross-entropy loss

62
v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.

WWW 2021.

Results

• MedPath-TA: Transition Matrix-based Attention
• MedPath-SA: Relational Self-Attention

63
v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.

WWW 2021.

Case Study

64
v Ye et al. MedPath: Augmenting Health Risk Prediction via Medical Knowledge Paths.

WWW 2021.

MedRetriever

• ICD to CUI mapping
• 70% ICD codes have 1 to 1 maps

• Explanation
• Attention

• Hard to be understood by humans
• Path

• No evidence

65
v Ye et al. MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured

Medical Text. CIKM 2021.

Rethinking of risk prediction task

• ICD-9 401.1: Benign essential hypertension

66

Target: Heart Failure

https://www.mayoclinic.org/diseases-conditions/high-
blood-pressure/symptoms-causes/syc-20373410
https://www.mayoclinic.org/diseases-conditions/heart-
failure/symptoms-causes/syc-20373142

v Ye et al. MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured
Medical Text. CIKM 2021.

https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/symptoms-causes/syc-20373410
https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/syc-20373142

MedRetriever

67

Visit 1 Visit t
250.02 …

244.9; 272.4; 401.1
Patient EHR

EHR Encoder

EHR Representation

Text RepresentationDocument Pool

Target Information

Heart failure signs and symptoms may
include: Shortness of breath (dyspnea);
Fatigue and weakness; Swelling
(edema) in your legs, ankles and feet;
Rapid or irregular heartbeat

Text
Memory

…

Update

Prediction

Query

Heart failure. To pump blood against
the higher pressure in your vessels, the
heart has to work harder. This causes
the walls of the heart‘s pumping
chamber to thicken …

Retrieved Segments

EHR-Text Retriever

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Predictor

String
Similarity

Return
Refined Document Pool

Sem
an

tic

Rele
va

nce

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Concatenation

v Ye et al. MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured
Medical Text. CIKM 2021.

1. EHR Encoder
• RNN-based models

• LSTM
• Dipole
• Retain
• RetainEx
• Timeline

• Transformer-based models
• SAnD
• LSAN
• HiTANet

• ICD ontology-based model
• GRAM

68

Visit 1 Visit t
250.02 …

244.9; 272.4; 401.1
Patient EHR

EHR Encoder

EHR Representation

Text RepresentationDocument Pool

Target Information

Heart failure signs and symptoms may
include: Shortness of breath (dyspnea);
Fatigue and weakness; Swelling
(edema) in your legs, ankles and feet;
Rapid or irregular heartbeat

Text
Memory

…

Update

Prediction

Query

Heart failure. To pump blood against
the higher pressure in your vessels, the
heart has to work harder. This causes
the walls of the heart‘s pumping
chamber to thicken …

Retrieved Segments

EHR-Text Retriever

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Predictor

String
Similarity

Return
Refined Document Pool

Sem
an

tic

Rele
va

nce

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Concatenation

v Ye et al. MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured
Medical Text. CIKM 2021.

2. EHR-Text Retriever
• Medical Text
• Mayo Clinic
• WebMD

• Preliminary Retrieval by String
Similarity
• Levenshtein distance

• Refined Retrieval by Semantic
Relevance

69

Visit 1 Visit t
250.02 …

244.9; 272.4; 401.1
Patient EHR

EHR Encoder

EHR Representation

Text RepresentationDocument Pool

Target Information

Heart failure signs and symptoms may
include: Shortness of breath (dyspnea);
Fatigue and weakness; Swelling
(edema) in your legs, ankles and feet;
Rapid or irregular heartbeat

Text
Memory

…

Update

Prediction

Query

Heart failure. To pump blood against
the higher pressure in your vessels, the
heart has to work harder. This causes
the walls of the heart‘s pumping
chamber to thicken …

Retrieved Segments

EHR-Text Retriever

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Predictor

String
Similarity

Return
Refined Document Pool

Sem
an

tic

Rele
va

nce

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Concatenation

v Ye et al. MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured
Medical Text. CIKM 2021.

3. Text Memory

• Dynamic updates
• Fixed size

70

Visit 1 Visit t
250.02 …

244.9; 272.4; 401.1
Patient EHR

EHR Encoder

EHR Representation

Text RepresentationDocument Pool

Target Information

Heart failure signs and symptoms may
include: Shortness of breath (dyspnea);
Fatigue and weakness; Swelling
(edema) in your legs, ankles and feet;
Rapid or irregular heartbeat

Text
Memory

…

Update

Prediction

Query

Heart failure. To pump blood against
the higher pressure in your vessels, the
heart has to work harder. This causes
the walls of the heart‘s pumping
chamber to thicken …

Retrieved Segments

EHR-Text Retriever

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Predictor

String
Similarity

Return
Refined Document Pool

Sem
an

tic

Rele
va

nce

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Concatenation

v Ye et al. MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured
Medical Text. CIKM 2021.

4. Predictor

• Max pooling over segments
stored in the memory to learn
the text representation.

• EHR representation and text
representation are used to
make a prediction.

71

Visit 1 Visit t
250.02 …

244.9; 272.4; 401.1
Patient EHR

EHR Encoder

EHR Representation

Text RepresentationDocument Pool

Target Information

Heart failure signs and symptoms may
include: Shortness of breath (dyspnea);
Fatigue and weakness; Swelling
(edema) in your legs, ankles and feet;
Rapid or irregular heartbeat

Text
Memory

…

Update

Prediction

Query

Heart failure. To pump blood against
the higher pressure in your vessels, the
heart has to work harder. This causes
the walls of the heart‘s pumping
chamber to thicken …

Retrieved Segments

EHR-Text Retriever

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Predictor

String
Similarity

Return
Refined Document Pool

Sem
an

tic

Rele
va

nce

Heart failure. To pump blood against the
higher pressure in your vessels, the heart has to
work harder. This causes the walls of the
heart‘s pumping chamber to thicken …
Thickened, narrowed or torn blood vessels
in the eyes. This can result in vision loss.
Dementia. Narrowed or blocked arteries can
limit blood flow to the brain, leading to a
certain type …

Concatenation

v Ye et al. MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured
Medical Text. CIKM 2021.

Experimental Results

72
v Ye et al. MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured

Medical Text. CIKM 2021.

Experimental Results

73
v Ye et al. MedRetriever: Target-Driven Health Risk Prediction via Retrieving Unstructured

Medical Text. CIKM 2021.

Case Study

74

Outline
• Introduction to Electronic Healthcare Records

• Various types of EHR data
• Different applications

• Part I: Mining structured health data
• Phenotyping
• Disease detection/Risk prediction
• Treatment recommendation

• Part II: Mining unstructured health data
• Automated ICD coding/Disease classification
• Understandable medical language translation
• Medical report generation
• Clinical trial mining

• Conclusion and Future Outlook

75

Multimorbidity

• Co-occurrence of multiple medical
conditions
• Traditional way of prescribing is

based on doctors’ intuition.
• Clinical decisions can be sub-optimal

due to knowledge gaps.

76

Challenges of Managing Multimorbidity

• Adverse drug reactions:
• 6.7% of patients in US suffer from serious

drug reactions
• 0.32 of such are fatal
• Leading to a yearly cost of over $136

billion

• Solution:
• Computer-assisted treatment

recommendation?

77

Hidden Knowledge from Electronic Health Records

• EHRs capture comprehensive
medical histories of patients:
• Diagnosis
• Medications
• Treatment plans
• Lab test results…

• Discover hidden knowledge from
existing EHR data

78

LEAP

• Decompose treatment recommendation
into sequential decision making.
• Learning prescribing practice from EHR

data
• Use distributed representation to

encode diagnoses and medications.
• Use Recurrent Neural Network (RNN) to

model the generation probability of the
next medication in the treatment plan.

79
v Zhang et al. LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for

Multimorbidity. KDD 2017.

Reinforcement Fine-Tuning

80

Diagnosis

Prescription from doctor

Adverse drug interaction database

LEAPmodel

Prescription by LEAPmodel

Input

Generate

Reward

v Zhang et al. LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for
Multimorbidity. KDD 2017.

Challenges for Medication Recommendation

81

Complex
Dependency

Drug-drug
Interaction

M
ed

ic
at
io
ns

Di
se
as
es

past history

future
Rx

predict

Dx, Rx, and
CPT codes

Patient history

v Shang et al. GAMENet: Graph Augmented MEmory Networks for Recommending
Medication Combination. AAAI 2019.

GAMENet: Graph Augmented Memory Networks

82

Patient Representation Graph Augmented
Memory Network

v Shang et al. GAMENet: Graph Augmented MEmory Networks for Recommending
Medication Combination. AAAI 2019.

Patient Representation Module

83

Embedding
𝒆∗# = 𝑾∗,)𝒄∗#

Patient Representation
[𝒉\] , 𝒉^]]

𝒉\] = 𝑅𝑁𝑁\ 𝒆\W , ⋯ , 𝒆\] (diagnosis)
𝒉^] = 𝑅𝑁𝑁^(𝒆^W , ⋯ , 𝒆^]) (procedure)

Visit codes 𝒄∗]

1

1
.
.
.
0

0

1
.
.
.
0

Data Input Embeddings
Network Dual-RNN Patient

Representation
Graph Augmented Memory

Module
Memory
Output

Combined
Loss

Sigmod
Output

MB

DDI GraphEHR Graph

.

.

.

...

...

...
DM

…
…

1,01.2

��

.0

1,11

1,00

…

1

.

0.8

1

INPU
T

OUTPU
T

v Shang et al. GAMENet: Graph Augmented MEmory Networks for Recommending
Medication Combination. AAAI 2019.

Graph Augmented Memory Module (I, G, O, R)

84

Graph augmented memory network that comprises of memory
components I, G, O, R.

1

1
.
.
.
0

0

1
.
.
.
0

Data Input Embeddings
Network Dual-RNN Patient

Representation
Graph Augmented Memory

Module
Memory
Output

Combined
Loss

Sigmod
Output

MB

DDI GraphEHR Graph

.

.

.

...

...

...
DM

…
…

1,01.2

��

.0

1,11

1,00

…

1

.

0.8

1

v Shang et al. GAMENet: Graph Augmented MEmory Networks for Recommending
Medication Combination. AAAI 2019.

Graph Augmented Memory Module (I, G, O, R)

85

Medical embedding ℎ"! , ℎ#! generates patient query 𝑞!.

G RO
Generalization Output Response

I (input)

𝒒] = 𝑓 𝒉\] , 𝒉^]

v Shang et al. GAMENet: Graph Augmented MEmory Networks for Recommending
Medication Combination. AAAI 2019.

Graph Augmented Memory Module (I, G, O, R)

86

RO
Output Response

G (generalization)
Memory Bank (MB)

Dynamic Memory (DM)
I

Input

v Shang et al. GAMENet: Graph Augmented MEmory Networks for Recommending
Medication Combination. AAAI 2019.

Output and Response Module (I, G, O, R)

87

Patient query

Output from
static memory

Output from
dynamic memory

Medication prediction
�̀�# = 𝜎([𝒒# , 𝒐*# , 𝒐%#])

v Shang et al. GAMENet: Graph Augmented MEmory Networks for Recommending
Medication Combination. AAAI 2019.

Outline
• Introduction to Electronic Healthcare Records

• Various types of EHR data
• Different applications

• Part I: Mining structured health data
• Phenotyping
• Disease detection/Risk prediction
• Treatment recommendation

• Part II: Mining unstructured health data
• Automated ICD coding/Disease classification
• Understandable medical language translation
• Medical report generation
• Clinical trial mining

• Conclusion and Future Outlook

88

ICD Coding

• International Classification of Diseases (ICD)
• The World Health Organization (WHO) currently develops and

maintains the list for use by Member States.

89

https://www.who.int/

Clinical Notes
• A key component to communicate the current status of a

patient.
• Support transitions of care, care planning, quality

reporting, and billing.

• Include:
• Discharge summary
• Attending and/or Resident
• Nurse
• Specialist

• Radiology, Pathology, ECG, Nutrition, Respiratory, Social work, ...
• Consultant
• Referring physician
• Emergency Department

90

Automated ICD Coding Task

91

• Multilabel Classification Task

Source: Cao et al., HyperCore, ACL 2020

1. Multiple Codes
2. Noisy text inputs
3. synonym

Models

• C-MemNN [Prakash et al., AAAI’17]
• CAML [Mullenbach et al., NAACL’18]
• MultiResCNN [Li et al., AAAI’20]
• MSATT-KG [Xie et al., CIKM’19]
• HyperCore [Cao et al., ACL’20]
• Fusion [Luo et al., Findings of ACL’21]

92

Condensed Memory Networks for Clinical Diagnostic Inferencing

• Input • Output

93

(410.7)
(427.5)

(584)

Partially shown
example of a
relevant Wikipedia
page

v Prakash et al. Condensed Memory Networks for Clinical Diagnostic Inferencing . AAAI’17.

End-to-End Memory Networks

94v Sukhbaatar et al. End-To-End Memory Networks. In NeurIPS 2015.

95

(Wiki Pages)

(Wiki Titles)

(Question)

(Sentences)

(Choices)

v Prakash et al. Condensed Memory Networks for Clinical Diagnostic Inferencing . AAAI’17.

Condensed Memory Networks for Clinical Diagnostic Inferencing

96v Prakash et al. Condensed Memory Networks for Clinical Diagnostic Inferencing . AAAI’17.

Models

• C-MemNN [Prakash et al., AAAI’17]
• CAML [Mullenbach et al., NAACL’18]
• MultiResCNN [Li et al., AAAI’20]
• MSATT-KG [Xie et al., CIKM’19]
• HyperCore [Cao et al., ACL’20]
• Fusion [Luo et al., Findings of ACL’21]

97

Explainable Prediction of Medical Codes from Clinical Text

• Motivation:
• Important information for code assignment usually contained in short

snippets of text.
• Convolutional Neural Networks (CNN)

98
v Mullenbach et al. Explainable Prediction of Medical Codes from Clinical Text, NAACL’18.
v Kim, Yoon. Convolutional Neural Networks for Sentence Classification, EMNLP’17.

Explainable Prediction of Medical Codes from Clinical Text

• Challenge 1:
• Large label space

• Code-wise Attention or Per-label
attention

99v Mullenbach et al. Explainable Prediction of Medical Codes from Clinical Text, NAACL’18.

Explainable Prediction of Medical Codes from Clinical Text

• Challenge 2:
• Small training set problem: some labels only have few training samples.

100v Mullenbach et al. Explainable Prediction of Medical Codes from Clinical Text, NAACL’18.

Insufficient training on 𝛽+

Explainable Prediction of Medical Codes from Clinical Text

• Solution:
• ICD code description

• Add a regularizer
• If code ℓ is rarely observed in the training

data, this regularizer will encourage its
parameters to be similar to those of other
codes with similar descriptions.

101v Mullenbach et al. Explainable Prediction of Medical Codes from Clinical Text, NAACL’18.

Obtained by a max-pooling CNN

Models

• C-MemNN [Prakash et al., AAAI’17]
• CAML [Mullenbach et al., NAACL’18]
• MultiResCNN [Li et al., AAAI’20]
• MSATT-KG [Xie et al., CIKM’19]
• HyperCore [Cao et al., ACL’20]
• Fusion [Luo et al., Findings of ACL’21]

102

MultiResCNN Model

• Motivation:
• Lengths of text and grammar

vary a lot in the MIMIC-III
dataset.
• It may not be sufficient to

learn decent document
representations from a flat
and fixed-length
convolutional architecture.

103
v Li et al., ICD Coding from Clinical Text Using Multi-Filter Residual Convolutional Neural

Network , AAAI’20.

MultiResCNN Model

• Motivation:
• Lengths of text and grammar vary a lot in the MIMIC-III dataset

• Solution:
• Multi-Filter Residual Convolutional Neural network (Multi-ResCNN)

• Multi-filter convolutional layers are used to capture the change of scaling.
• A residual convolutional layer is used to enlarge receptive field (i.e., increasing the

dimension of features or making feature more abstract).

104
v Li et al., ICD Coding from Clinical Text Using Multi-Filter Residual Convolutional Neural

Network , AAAI’20.

MultiResCNN Model

105
v Li et al., ICD Coding from Clinical Text Using Multi-Filter Residual Convolutional Neural

Network , AAAI’20.

Multi-Filter Convolutional Layer

106
v Li et al., ICD Coding from Clinical Text Using Multi-Filter Residual Convolutional Neural

Network , AAAI’20.

Residual Convolutional Layer

107
v Li et al., ICD Coding from Clinical Text Using Multi-Filter Residual Convolutional Neural

Network , AAAI’20.

Models

• C-MemNN [Prakash et al., AAAI’17]
• CAML [Mullenbach et al., NAACL’18]
• MultiResCNN [Li et al., AAAI’20]
• MSATT-KG [Xie et al., CIKM’19]
• HyperCore [Cao et al., ACL’20]
• Fusion [Luo et al., Findings of ACL’21]

108

MSATT-KG
• Motivation:

• Clinical note is composed of multiple long and heterogeneous textual narratives.
• The code label space is large and the label distribution is extremely unbalanced.

• Solution:
• Multi-scale Feature Attention and Structured Knowledge Graph Propagation

• A densely connected convolutional neural network is used to produce variable n-gram
features layer by layer.

• Multi-scale feature attention is used to adaptively select most informative n-gram features.
• Graph convolutional neural network to capture the hierarchical relationships among

medical codes and the semantics of each code.

109
v Xie et al., EHR Coding with Multi-scale Feature Attention and Structured Knowledge

Graph Propagation, CIKM’19.

MSATT-KG

110

• The method is mainly composed of
three parts:

• (1) clinical document multi-scale feature
extraction;

• (2) two-level attention mechanism for
better document representation
learning;

• (3) structured knowledge graph
propagation.

v Xie et al., EHR Coding with Multi-scale Feature Attention and Structured Knowledge
Graph Propagation, CIKM’19.

Models

• C-MemNN [Prakash et al., AAAI’17]
• CAML [Mullenbach et al., NAACL’18]
• MultiResCNN [Li et al., AAAI’20]
• MSATT-KG [Xie et al., CIKM’19]
• HyperCore [Cao et al., ACL’20]
• Fusion [Luo et al., Findings of ACL’21]

111

HyperCore

112

• Motivation:
• Most of existing methods independently

predict each code, ignoring two important
characteristics: Code Hierarchy and Code
Co-occurrence.

• Solution:
• Hyperbolic and Co-graph Representation

• Code Hierarchy: ICD codes are organized
under a tree-like hierarchical structure.

• Code Co-occurrence: To capture the
correlations of codes.

• A hyperbolic representation learning method
to learn the Code Hierarchy Relation.

v Cao et al., HyperCore: Hyperbolic and Co-graph Representation for Automatic ICD
Coding, ACL’20.

HyperCore

113

• Hyperbolic Space:
• The density is less at the edge of the

space.

v Cao et al., HyperCore: Hyperbolic and Co-graph Representation for Automatic ICD
Coding, ACL’20.

HyperCore

114
v Cao et al., HyperCore: Hyperbolic and Co-graph Representation for Automatic ICD
Coding, ACL’20.

Models

• C-MemNN [Prakash et al., AAAI’17]
• CAML [Mullenbach et al., NAACL’18]
• MultiResCNN [Li et al., AAAI’20]
• MSATT-KG [Xie et al., CIKM’19]
• HyperCore [Cao et al., ACL’20]
• Fusion [Luo et al., Findings of ACL’21]

115

Fusion
• Motivation:

• The clinical notes are noisy and complex,
where only some key phrases are highly
related to the coding.

• Most existing only use the local features
for coding obtained using different filters.
The inner-relations between different
local features are not considered.

• Solution:
• A feature compressed ICD coding model:

Fusion
• Attention-based Soft-pooling is used to

remove redundant information and keep
the key information.

• A Feature Aggregation Layer is used to
model the inner-reactions between
different local features.

116
v Luo et al., Fusion: Towards Automated ICD Coding via Feature Compression , Findings

of ACL’21.

Fusion

• This model consists of five modules: the input layer, the compressed
convolutional layer, the feature aggregation layer, the code-wise attention layer,
and the prediction layer.

117
v Luo et al., Fusion: Towards Automated ICD Coding via Feature Compression , Findings

of ACL’21.

Experimental Results

118
v Luo et al., Fusion: Towards Automated ICD Coding via Feature Compression , Findings

of ACL’21.

Outline
• Introduction to Electronic Healthcare Records

• Various types of EHR data
• Different applications

• Part I: Mining structured health data
• Phenotyping
• Disease detection/Risk prediction
• Treatment recommendation

• Part II: Mining unstructured health data
• Automated ICD coding /Disease classification
• Understandable medical language translation
• Medical report generation
• Clinical trial mining

• Conclusion and Future Outlook

119

Task

• Background:
• Medical notes are hard to

understand for the ordinary
users due to the medical
jargons and abbreviations.

• Target:
• Automatically translate the

professional medical notes
into layman style.

120

Unsupervised Clinical Language Translation
• Motivation:

• Professional, clinical jargon makes it hard
for patients to access their medical records.

• Existing methods are limited by expert
curation, like the dictionary.

• Solution:
• The two-step unsupervised translation

method
• A word translation system that translates

professional words into consumer-
understandable words.

• Language models and back-translation to
consider the contextual lexical and syntactic
information for better quality of translation.

121vWeng et al., Unsupervised Clinical Language Translation, KDD’19.

MedLane

• Motivation:
• The simplification of the medical text is popular area but lacks of proper

benchmark and data.

• Solution:
• A new dataset named MedLane to support the development and

evaluation of automated clinical language understanding approaches.
• A new model called Declare that follows the human annotation procedure

as the new SOTA baseline.
• New evaluation metric named AScore.

122
vLuo et al., Benchmarking Automated Clinical Language Understanding, EMNLP’21

(under review).

MedLane

123
vLuo et al., Benchmarking Automated Clinical Language Understanding, EMNLP’21

(under review).

Declare

Given a tokenized professional medical sentence W = [w_1,w_2, … , w_n], where n
denotes the number of tokens, the locator aims to dig out possible phrases that need
to be simplified or translated. In the neural interpreter, the chosen phrases will be
replaced with full-term expressions selected from the medical dictionary. Finally, the
replaced sentence will pass the polisher to generate the final output Y. These three
parts tightly work together and enhance each other.

124
vLuo et al., Benchmarking Automated Clinical Language Understanding, EMNLP’21

(under review).

Experiment

125
vLuo et al., Benchmarking Automated Clinical Language Understanding, EMNLP’21

(under review).

Experiment

126
vLuo et al., Benchmarking Automated Clinical Language Understanding, EMNLP’21

(under review).

Outline
• Introduction to Electronic Healthcare Records

• Various types of EHR data
• Different applications

• Part I: Mining structured health data
• Phenotyping
• Disease detection/Risk prediction
• Treatment recommendation

• Part II: Mining unstructured health data
• Automated ICD coding /Disease classification
• Understandable medical language translation
• Medical report generation
• Clinical trial mining

• Conclusion and Future Outlook

127

Task Description

• Medical Report Generation: Computer generates medical
description that contains the clinical findings and treatment sugges
tions given medical images.

128

FINDINGS: The cardiac silhouette and

mediastinum size are within normal

limits. There is no pulmonary edema.

There is no focal consolidation. There

are no XXXX of a pleural effusion.

There is no evidence of pneumothorax.

IMPRESSION: Normal chest x-XXXX.n Highly standardized and structured text
n Reflecting clinical findings (Importance)

Generation and Retrieval

129

Image
Caption
Model

Medical
Report

Generation-Based

Retrieval
From

database

Medical
Report

Retrieval-Based

Models

• Generation:
• TieNet [Wang et al., CVPR’18]
• CoAtt [Jing et al., ACL’18]
• MvH [Yuan et al., MICCAI’19]
• SentSAT + KG [Zhang et al., AAAI’20]

• Retrieval
• HRGR-Agent [Li et al., NeurIPS’18]
• KERP [Li et al., AAAI’19]
• MedWriter [Yang et al., ACL’21]

130

TieNet: Text-Image Embedding Network for Common
Thorax Disease Classification and Reporting in Chest X-rays

• Main Contributions:
• TieNet, A CNN-RNN text-image embedding network
• Boost the disease classification with generated text
• Design multi-level attention for embedding extraction (Image spatial

attention and text attention)

131
vWang et al., TieNet: Text-Image Embedding Network for Common Thorax Disease

Classification and Reporting in Chest X-rays, CVPR 2018.

132
vWang et al., TieNet: Text-Image Embedding Network for Common Thorax Disease

Classification and Reporting in Chest X-rays, CVPR 2018.

TieNet

133
vWang et al., TieNet: Text-Image Embedding Network for Common Thorax Disease

Classification and Reporting in Chest X-rays, CVPR 2018.

Xu et al., Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention, ICML 2015.

a: soft visual attention map

𝐇 = 𝐡,, … , 𝐡- ∈ R%"×-

Attention:
𝐌 = 𝐆𝐇

TieNet

134
vWang et al., TieNet: Text-Image Embedding Network for Common Thorax Disease

Classification and Reporting in Chest X-rays, CVPR 2018.

𝐇 = 𝐡,, … , 𝐡- ∈ R%"×-

Attention:
𝐌 = 𝐆𝐇

Limitation:
Medical reports
contain several
sentences, and one
LST may not work well.

On the Automatic Generation of Medical Imaging Reports

• Main Contributions:
• A multi-task learning framework which can simultaneously predict the tags

and text descriptions.
• A co-attention mechanism for localizing sub-regions related to different

diseases.
• We build a hierarchical LSTM to generate long paragraphs.

135vJing et al., On the Automatic Generation of Medical Imaging Reports, ACL 2018.

On the Automatic Generation of Medical Imaging Reports

136vJing et al., On the Automatic Generation of Medical Imaging Reports, ACL 2018.

Automatic Radiology Report Generation based on Multi-view
Image Fusion and Medical Concept Enrichment

• Motivation:

• Main Contributions:
• Large scale CNN encoder pretraining with chest x-ray images
• Multi-view visual feature consistency with sentence-level attentions
• Apply medical concepts to the decoder with word-level attentions

137
vYuan et al., Automatic Radiology Report Generation based on Multi-view Image Fusion

and Medical Concept Enrichment, MICCAI 2019.

frontal lateral

Automatic Radiology Report Generation based on Multi-view
Image Fusion and Medical Concept Enrichment

138
vYuan et al., Automatic Radiology Report Generation based on Multi-view Image Fusion

and Medical Concept Enrichment, MICCAI 2019.

Automatic Radiology Report Generation based on Multi-view
Image Fusion and Medical Concept Enrichment

• Image Encoder
• Resnet-152

• Chest Radiographic Observations
• Multi-label classification

• Medical Concepts
• Descriptive information related to the visual content
• Medical text indexer (MTI) in Open-I
• Multi-label classification

139
vYuan et al., Automatic Radiology Report Generation based on Multi-view Image Fusion

and Medical Concept Enrichment, MICCAI 2019.

Sentence Decoder with Attentions

140

Word Decoder with Attentions

141

medical concept
embeddings

word hidden
state

vYuan et al., Automatic Radiology Report Generation based on Multi-view Image Fusion
and Medical Concept Enrichment, MICCAI 2019.

When Radiology Report Generation Meets Knowledge Graph

Main Contributions:
• Utilize a pre-constructed graph neural network on multiple disease findings

to assist the generation of reports
• New evaluation metric for radiology image reporting with the assistance of

the same composed graph

142vZhang et al., When Radiology Report Generation Meets Knowledge Graph, AAAI 2020.

Graph Construction with Prior Knowledge

143

The solid boxes are classes which have corresponding nodes in graph. The dotted boxes are organs or
tissues and are not part of target classes. Classes linked to the same organ or tissue are connected to
each other in the graph.

Prior Knowledge from clinical studies: https://www.med-ed.virginia.edu/courses/rad/cxr/

144vZhang et al., When Radiology Report Generation Meets Knowledge Graph, AAAI 2020.

Spatial
Attention

Models

• Generation:
• TieNet [Wang et al., CVPR’18]
• CoAtt [Jing et al., ACL’18]
• MvH [Yuan et al., MICCAI’19]
• SentSAT + KG [Zhang et al., AAAI’20]

• Retrieval:
• HRGR-Agent [Li et al., NeurIPS’18]
• KERP [Li et al., AAAI’19]
• MedWriter [Yang et al., ACL’21]

145

Hybrid Retrieval-Generation Reinforced Agent for Medical Image
Report Generation

Main Contributions:
• HRGR-Agent employs a retrieval policy module, which chooses to either

retrieve a template sentence or generate a new sentence.
• HRGR-Agent is updated via reinforcement learning, guided by sentence-

level and word-level rewards.

146
vLi et al., Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report

Generation, NeurIPS 2018.

Hybrid Retrieval-Generation Reinforced Agent for Medical Image
Report Generation

147
vLi et al., Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report

Generation, NeurIPS 2018.

Knowledge-driven encode, retrieve, paraphrase for medical
image report generation

Main Contributions:
• KERP = abnormality graph construction + graph-to-report paraphrase
• KERP first employs an Encode module that transforms visual features into

a structured abnormality graph using retrieved text templates.
• KEPR uses a Paraphrase module that rewrites the templates according to

the extracted graph.

148
vLi et al., Knowledge-driven encode, retrieve, paraphrase for medical image report

generation, AAAI 2019.

149
vLi et al., Knowledge-driven encode, retrieve, paraphrase for medical image report

generation, AAAI 2019.

Writing by Memorizing: Hierarchical Retrieval-based Medical
Report Generation

• How physicians write medical reports in real life?

150

physicians
exam images

Analyzing
pathological

findings

Recall
report

templates

Write/Update
sentence
templates

Write/Update
sentence
templates

Analyzing
pathological

findings

n Hierarchical text retrieval
n Iterative image analysis

vYang et al., Writing by Memorizing: Hierarchical Retrieval-based Medical Report
Generation, ACL 2021.

Contributions

• We propose MedWriter——The first to model the memory retrieval
mechanism in both report and sentence levels.
• we design a new multi-query attention mechanism to fuse the

retrieved information for medical report generation.
• Experiments on two large-scale medical report generation

datasets, i.e., Openi and MIMIC-CXR show that MedWriter achieves
better performance compared with state-of-the-art baselines.

151
vYang et al., Writing by Memorizing: Hierarchical Retrieval-based Medical Report

Generation, ACL 2021.

MedWriter: Overview

152
vYang et al., Writing by Memorizing: Hierarchical Retrieval-based Medical Report

Generation, ACL 2021.

MedWriter

153
vYang et al., Writing by Memorizing: Hierarchical Retrieval-based Medical Report

Generation, ACL 2021.

Experiment setup

• Datasets
• Open-I [1]: 7,470 chest Xrays with 3,955 radiology reports. Sample 2,902

cases and 5,804 images.
• MIMIC-CXR [2]: 377,110 chest X-rays with 227,827 radiology reports.

Sample 71,386 reports and 142,772 images.

• Evaluation Metrics
• Language evaluation: CIDEr, ROUGE-L, BLEU 1-4 scores
• Clinical evaluation: ROC-AUC scores achieved by generated reports
• Human evaluation: Two radiologists give ratings for 50 report

154
[1] https://openi.nlm.nih.gov/faq#collection
[2] https://physionet.org/content/mimic-cxr/2.0.0/

https://openi.nlm.nih.gov/faq
https://physionet.org/content/mimic-cxr/2.0.0/

Results

155
vYang et al., Writing by Memorizing: Hierarchical Retrieval-based Medical Report

Generation, ACL 2021.

Results

• Human Evaluation
• Randomly select 50 samples from the Open-i test set
• Collect ground-truth reports and the generated reports from both MvH+AttL
• Ratings: 1, 2, 3, 4, and 5 (the higher, the better)

156
vYang et al., Writing by Memorizing: Hierarchical Retrieval-based Medical Report

Generation, ACL 2021.

Outline
• Introduction to Electronic Healthcare Records

• Various types of EHR data
• Different applications

• Part I: Mining structured health data
• Phenotyping
• Disease detection/Risk prediction
• Treatment recommendation

• Part II: Mining unstructured health data
• Automated ICD coding /Disease classification
• Understandable medical language translation
• Medical report generation
• Clinical trial mining

• Conclusion and Future Outlook

157

Traditional Drug Discovery & Development Process

158

1. Statistics show 50% of trials delayed, 25% of cancer trials failed due to enrollment.
2. The recruitment cost is high, estimated around 6,000 to 7,500 USD per patient.

vGao et al., COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching,
KDD 2020.

What is patient trial matching?

159

• Electronic Health Records (EHR): A type of high-dimensional
sequence data
• Procedures
• Diagnosis
• Drugs

• Clinical trials: Unstructured text data
• Inclusion Criteria
• Exclusion Criteria

vGao et al., COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching,
KDD 2020.

COMPOSE

160

EHR Memory
Network

BERT

Convolutions

Highw
ay N

etw
ork

Highw
ay N

etw
ork

Highw
ay N

etw
ork

Trial EC
Embedding

Query

Matched
Memory

…

FC

Matching
Prediction

'𝒚

Trial EC
(Inclusion and

Exclusion criteria)

Erase Add

0.1

0.3

0.4

0.2

Attentively
READ

Inclusion
criteria

Exclusion
criteria

Pull

Push
Memory

𝓛𝒅

Composite Similarity
Loss Term

Patient Data
(EHR)

Taxonomy Guided Multi-granularity
Medical Concept Embedding

vGao et al., COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching,
KDD 2020.

Outline
• Introduction to Electronic Healthcare Records

• Various types of EHR data
• Different applications

• Part I: Mining structured health data
• Phenotyping
• Disease detection/Risk prediction
• Treatment recommendation

• Part II: Mining unstructured health data
• Automated ICD coding /Disease classification
• Understandable medical language translation
• Medical report generation
• Clinical trial mining

• Conclusion and Future Outlook

161

Representations Learning from Health Data

162

Analytics Tasks using EHR Data

163

ICD

Phenotyping Risk Prediction
Medication

Recommendation

Disease
Classification

Understandable Medical
Language Translation

Medical Report
Generation

Clinical Trial
Mining

Challenges of Mining Heterogeneous Health Data

164

Source: https://goku.me/blog/deep-learning-with-
ehr-systems

• Multi-modality

Challenges of Mining Heterogeneous Health Data

165

• Small Sample Size

• Lack of Label

• Fairness

Challenges of Mining Heterogeneous Health Data

• Interpretability & Robustness

• Domain Knowledge

166

Open Discussions for Each Task

167

Phenotyping

• How to handle
irregularity in EHR data?

• How to model relations
between different types
of medical codes?

Risk Prediction

• How to reasonably
incorporate interventions?

• Do personal behaviors
influence the predictions?
How to model them?

Medication
Recommendation

• Will doctors preference
influence results?

• Different types of insurance
may cover different drugs.
How to handle it?

• Socioeconomic status?

Open Discussions for Each Task

168

ICD

Disease
Classification

Understandable Medical
Language Translation

Medical Report
Generation

Clinical Trial
Mining

• How to handle the
large label size issue?

• How to use
multimodal data?

• How to denoise the
clinical notes?

• Personalized/user-
centric translation?

• Medical Q&A?
• Medical dialogue

systems?

• How to align image
and text?

• How to design fair
evaluation metrics?

• How to incorporate
other modalities?

• Can we predict the
outcome of clinical
trials?

• How to find doctors?

169

