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Abstract (150 words) 

This study explored how population mobility flows form commuting networks across US 

counties and influence the spread of COVID-19. We utilized 3-level mixed effects negative 

binomial regression models to estimate the impact of network COVID-19 exposure on county 

confirmed cases and deaths over time. We also conducted weighting-based analyses to estimate 

the causal effect of network exposure. Results showed that commuting networks matter for 

COVID-19 deaths and cases, net of spatial proximity, socioeconomic, and demographic factors. 

Different local racial and ethnic concentrations are also associated with unequal outcomes. These 

findings suggest that commuting is an important causal mechanism in the spread of COVID-19 

and highlight the significance of interconnected of communities. The results suggest that local 

level mitigation and prevention efforts are more effective when complemented by similar efforts 

in the network of connected places. Implications for research on inequality in health and flexible 

work arrangements are discussed.  
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Introduction 

The coronavirus disease 2019 (COVID-19) pandemic has dramatically impacted societies 

globally, with over 32 million confirmed cases and over 980,000 COVID-19 deaths worldwide at 

the time of this writing1 (Hopkins, 2020). Consequently, a growing body of research seeks to 

understand the social and demographic predictors of this disease at the community level, 

identifying local etiological factors such as age structure (Dowd et al., 2020), population density  

(Sy et al., 2020), and racial composition of the residents  (Millett et al., 2020). In addition to local 

factors, equally important it is to understand the role of social contacts  (Block et al., 2020) within 

and across communities, such as the extent to which the movement of people between communities 

facilitate the transmission of this infectious disease. One important type of such movement is 

commuting for work, a routine mobility activity that millions of people in the US engage in, 

typically on a daily basis  (McKenzie, 2015). Many of the local and state level mitigation and 

prevention policies have involved some form of social distancing recommendations to “flatten the 

curve”, in recognition that close physical proximity among people (in the regular course of their 

daily activities such as in the workplace, at church, or in school) can contribute significantly 

contributor to the spread of this disease. 

Research on the transmission of this disease across space, between places such as work 

areas and residential areas is still in its infancy, yet important evidence is starting to emerge.  For 

instance, (Bai et al., 2020) analyzed inter-county commuting flows in the state of New York and 

found that “community spreader” counties were characterized by high commuting flows to and 

from other counties. These findings are consistent with prior research focused on the spread of 

other infectious diseases which finds that commuting is an important mechanism through which 

                                                           
1 As of 09.25.2020 
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diseases may be transmitted to new populations. For example,  (Xu et al., 2019) linked road traffic 

among Chinese cities to the incidence of Influenza A (H1N1) during the 2009 pandemic. 

Understanding how exposures to coronavirus in an area’s commuting network affects local cases 

and deaths is important in guiding thinking and policy in support of remote working schedule and 

other flexible work arrangements. Because many types of jobs do not permit remote work, certain 

populations, often underpaid and socioeconomically vulnerable minority groups, are 

disproportionately affected both at work and at home by increased risk of exposure to this disease. 

Moreover, these same groups are further disadvantaged disproportionately by school closures and 

the need to find alternative arrangements for the care of school age children and other dependents. 

We contribute to the extant literature on the social and spatial dynamics of COVID-19 by 

analyzing population across United States (US) counties which we consider to be linked via a 

network of commuting ties. We assess the extent to which county rates of COVID-19 deaths and 

cases are predicted by COVID-19 cases in linked counties, controlling for relevant structural and 

sociodemographic characteristics and spatial contiguity. We leverage methodological strategies 

from computational statistics to assess model fit and estimate significance while accounting for 

spatial and network dependencies within the data. Our findings demonstrate that commuting 

networks are an important determinant of the spread of COVID-19, as measured by deaths and 

confirmed cases.  
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Methods 

COVID-19 Data and Analytic Strategy 

We analyze a population of all US counties. Data on total number of COVID-19 confirmed 

cases and total number of COVID-19 deaths are drawn from a database maintained by USA Facts2, 

which is updated daily and contains counts by county and state. We utilize 3-level mixed effects 

negative binomial models, analyzing COVID-19 cases and deaths of county-time periods 

(N=31,380), nested within counties (N=3,139), nested within states (N=51, includes DC). These 

models are implemented using the menbreg command in Stata 16  (StataCorp, 2019). Negative 

binomial models are well suited to predicting overdispersed count outcomes (Osgood, 2000), 

making them well suited to this research application. We incorporate state-level random intercepts 

to account for cross-state variation in COVID-19 outcomes which may have been driven by state-

level policy differences (e.g., different masking requirements and enforcement of business 

lockdowns) and county-level random intercepts to account for unmeasured variation across 

counties in COVID-19 susceptibility and response. County-time periods, our first-level units of 

analysis, are based on the number of new COVID-19 cases and deaths for a given county within a 

given two weeks. Within each county are nested ten of these county-time periods, ranging from 

April 1st to August 18th, 2020. We use total county population (based on the 2018 American 

Community Survey 5-year population estimates) as an exposure term for all models, making the 

model coefficients interpretable as population rates. All models are estimated using Huber-White 

robust standard errors.  

 

 

                                                           
2 https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/ 

https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
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Permutation Tests  

As a result of the network and spatial interdependencies which we hypothesize to exist 

among counties, conventional, analytic tests of statistical significance may fail to produce accurate 

confidence estimates  (LeSage, 2015). Instead, we utilize a permutation testing, a flexible, 

simulation-based approach  (Breiman, 2001; Graif et al., 2019). For each predictor, we conduct 

100 permutations in which the values of the predictor are randomly permuted across all 

observations, breaking any association with COVID-19 mortality rates. Each permuted dataset is 

used to calculate model error, generating a distribution of what model error would look like if the 

predictor had no effect. The observed error is then compared to this distribution in order to assess 

the contribution which the predictor makes to model fit. A relatively low proportion of permuted 

cases which produced a lower error than that which was observed shows a significant contribution 

to model fit. 

In these permutation tests, we use mean arctangent absolute percentage error (MAAPE) to 

capture average model error. MAAPE is computed by averaging the arctangent of the ratio of error 

to observed value for each observation, as shown in Equation 1. MAAPE has the advantage of 

capturing error as a percent, making it less sensitive to outliers than MAE, while also being robust 

to observations for which the true value of y is 0 (an advantage over MAPE)  (Kim & Kim, 2016). 

 𝑀𝐴𝐴𝑃𝐸 =
1

𝑁
∑  𝑎𝑟𝑐𝑡𝑎𝑛 (

|𝑦𝑖 − 𝑦̂𝑖|

𝑦𝑖
)

𝑁

𝑖=1

 (1) 

 

Network and Spatial Measures 

We used data on intercounty commuting, used to construct a weighted average of network-

lagged COVID-19 exposure, were drawn from the LEHD Origin-Destination Employment 

Statistics (LODES) dataset, which is publicly available from the U.S. Census Bureau (US Census 
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– LEHD)  (Graif et al., 2017; Kelling et al., 2020) . This measure was created according to Equation 

2, where a given home county (h) is connected to W work counties. 𝐶ℎ−𝑤 represents the number 

of commuters from county h who commute to county w, while 𝐶ℎ−𝑡𝑜𝑡𝑎𝑙 represents the total number 

of outgoing commuters from county h. An additional measure of COVID-19 exposure was also 

created based on spatial proximity using average rate of confirmed cases of all (queen) contiguous 

counties (e.g., Equation 3 for a county which borders B counties). We incorporate a temporal lag 

into the construction of these measures by using cases from the prior two-week time period. We 

also incorporate measures capturing network and spatial change in COVID-19 cases from the prior 

to current time period which use identical weighting (Equations 4 and 5). Finally, we control for 

each county’s own COVID-19 case rate during the prior 2 weeks.  

 ∑  
𝐶ℎ−𝑤

𝐶ℎ−𝑡𝑜𝑡𝑎𝑙

𝑊

𝑤=1

 (
𝐶𝑎𝑠𝑒𝑠𝑤

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑤
) (100,000) (2) 

 ∑  
1

𝐵

𝐵

𝑏=1

 (
𝐶𝑎𝑠𝑒𝑠𝑏

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑏
) (100,000) (3) 

 ∑  
𝐶ℎ−𝑤

𝐶ℎ−𝑡𝑜𝑡𝑎𝑙

𝑊

𝑤=1

 (
∆𝐶𝑎𝑠𝑒𝑠𝑤

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑤
) (100,000) (4) 

 ∑  
1

𝐵

𝐵

𝑏=1

 (
∆𝐶𝑎𝑠𝑒𝑠𝑏

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑏
) (100,000) (5) 

 

 

Causal Attribution Framework 

We used the Rubin-Neyman causal inference potential outcomes framework  (Rubin, 2005) 

to estimate the causal effect of each of the county-level characteristics, including economic 

disadvantage, percentage of population over the age of 65, etc. (see Table 1 for details), on the 
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number of deaths by COVID-19 in that county. To estimate the causal effects, we applied the well-

established weighting procedure in causal inference by following a two-step mechanism: First, we 

weight each data sample so as to adjust for the effect of confounding and generate a weighted 

population that we can consider “as if randomized.” Second, we perform a weighted regression 

where we regress total number of deaths by COVID-19 against county-level characteristics. We 

repeated this two-step procedure for each county-level characteristic separately, each time 

designating a characteristic as “treatment,” and estimated the causal effect of that characteristic on 

total number of deaths by COVID-19.  

We used the following state-of-the-art weighting methods for causal inference from 

observational data.  Each of the three methods that we applied use a different methodology for 

computing the weights (in the weight model). (I) Covariate balancing propensity score weighting 

(CBPSW): Propensity score is defined as the probability of receiving the treatment given the 

covariates and is used in estimating the causal effect of binary treatments on outcomes. Propensity 

density is its counterpart for coping with continuous treatments. CBPSW was recently proposed 

and it estimates the weights based on the propensity score (for binary treatments) and propensity 

density (for continuous treatments) while maximizing covariate balance between the treated and 

controlled via an additional balancing constraint in the optimization  (Fong et al., 2018; Imai & 

Ratkovic, 2014) (II) Inverse probability of treatment weighting: This method weights each of data 

samples proportionate to the inverse of the propensity score  (Robins et al., 2000). (III) Super 

learner:  This method offers a doubly robust estimate of causal effects computed through an 

ensemble of propensity score estimators  (Pirracchio et al., 2015; Van der Laan et al., 2007). The 

methods that we have used have been shown to be reliable, effective, and efficient in estimating 
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causal effects from observational data in various applications  (Khademi et al., 2019; Khademi & 

Honavar, 2019, 2020). 

  The weighted outcome regression model determines the causal effect of each county level 

characteristic on deaths by COVID-19 through statistical hypothesis testing. We tested for the null 

hypothesis that each such causal effect is zero. A statistically non-significant p-value would 

determine a non-significant causal effect. A statistically significant p-value shows a significant 

causal effect and the degree (and sign) of the causal effect is determined by the magnitude (and 

sign) of the estimated coefficient for the treatment in the outcome regression model. We used 0.05 

as the statistical significance level. 

 

Sociodemographic Controls 

Research has indicated that communities that have lower socioeconomic status can have 

more preexisting health conditions, lower access to healthcare, lower access to high-speed internet 

that could enable remote work, and are less able to engage in social distancing during the Covid-

19 pandemic  (Chiou & Tucker, 2020; Weill et al., 2020). For these reasons, several 

sociodemographic controls are included in the analyses. These measures were drawn from the 

2014-2018 American Community Survey (ACS) 5-year estimates. Note that these measures are 

county-level attributes, i.e., considered to be invariant over time for the two-week time periods 

defining the level-one units. Economic disadvantage was measured as the first principal 

component produced following an analysis of unemployment rate, median income, percent in 

poverty, percent female-headed households, percent college graduates, percent owner-occupied 

housing units, and percent vacant housing units (eigenvalue = 3.2).  We also include the percent 

of residents of 65 years or older, as well as binary indicators of whether the county is above average 
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regarding (1) percent non-Hispanic White, (2) percent non-Hispanic Black, and (3) Hispanic. 

Finally, we include a measure of the percent of the county with urban residence, as measured in 

2010. Table 1 shows descriptive statistics for all measures described above. 

 

Table 1. Descriptive statistics for entire analytic sample 

 Mean SD Min. Max. 

Outcomes     
Total COVID-19 deaths 5.29 42.57 0 2578.00 

Total COVID-19 confirmed cases 166.25 945.21 0 41134.00 

Predictors     

Network lagged confirmed case rate (tn-1) 122.43 129.19 .60 1371.39 

Δ network lagged confirmed case rate (tn-1 - tn) 19.79 73.75 -856.49 810.75 

Spatially lagged confirmed case rate (tn-1) 102.60 139.12 0 2346.52 

Δ spatially lagged confirmed case rate (tn-1 - tn) 20.06 98.14 -2195.78 2761.80 

Confirmed case rate (tn-1) 102.26 209.10 -52.25 13726.10 

Economic disadvantage -.01 1.77 -6.17 8.43 

% 65 and older 18.37 4.58 3.80 55.60 

Above avg. NHW .64 --- 0 1 

Above avg. NHB .27 --- 0 1 

Above avg. Hispanic .21 --- 0 1 

% Urban population 41.34 31.50 0 100 

Notes: N = 31,380 county-times nested within 3,139 counties, nested within 51 states (includes DC) 

 

Results 

Table 2 displays coefficient and standard error estimates from multilevel negative binomial 

models predicting total deaths and total confirmed cases using the full analytic sample. Results 

from these models are consistent with prior literature and theoretical expectations. As shown, the 

commuting network-based measures are robust predictors of both total deaths and total cases. This 

is true for both the network measure based on confirmed cases at the prior time period and the 

network measure capturing change in cases from the prior time period. Note that, when these 

network measures are taken into account, spatial contiguity is not a strong predictor of COVID-19 

spread across counties. Estimated coefficients for other measures are also consistent with extant 

research and our expectations. Economic disadvantage, concentration of racial/ethnic minority 
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groups, and urban population are associated with higher rates of COVID-19 cases and deaths, 

while a higher concentration of non-Hispanic White population is associated with lower COVID-

19 cases and deaths  (Tai et al., 2020). Population percent aged 65 years and older is negatively 

associated with cases, but positively associated with deaths  (Le Couteur et al., 2020). As expected, 

a county’s case rate at the prior time point is a strong predictor of cases at the current time point.  

Table 2. Negative binomial models (with state and county random intercepts) predicting COVID-19 

outcomes across 10 time periods based on network, spatial, and time lagged cases 

 Total Deaths Total confirmed cases 

 Beta SE Beta SE 

Network lagged confirmed case rate (tn-1) .0029 *** (.001) .0037 *** (.001) 

Δ network lagged confirmed case rate (tn-1 - tn) .0007 * (.000) .0044 *** (.000) 

Spatially lagged confirmed case rate (tn-1) .0003  (.000) .0003  (.000) 

Δ spatially lagged confirmed case rate (tn-1 - tn) .0003 † (.000) .0004 † (.000) 

Confirmed case rate (tn-1) .0018 *** (.000) .0010 *** (.000) 

Economic disadvantage .0471 ** (.015) .0285 ** (.009) 

% 65 and older .0184 ** (.007) -.0285 *** (.005) 

Above avg. NHW -.3510 *** (.060) -.2164 *** (.041) 

Above avg. NHB .1963 *** (.058) .1933 ** (.062) 

Above avg. Hispanic .0680  (.068) .3074 *** (.055) 

% Urban population .0061 *** (.001) .0025 *** (.001) 

Two-week time period (ref. 4/1-4/14)       
4/15-4/28 .0268  (.063) .0295  (.038) 

4/29-5/12 .0718  (.063) .0424  (.045) 

5/13-5/26 -.1195 † (.065) .1300 * (.052) 

5/27-6/9 -.1840 ** (.070) .1958 *** (.056) 

6/10-6/23 -.4006 *** (.077) .3480 *** (.079) 

6/24-7/7 -.5674 *** (.138) .4828 *** (.077) 

7/8-7/21 -.7162 *** (.123) .6501 *** (.085) 

7/22-8/4 -.5829 *** (.140) .7632 *** (.100) 

8/5-8/18 -.4671 *** (.136) .8684 *** (.103) 

Constant -11.9601 *** (.181) -7.9921 *** (.107) 

ln(alpha) -.4932 *** (.073) -.6243 *** (.051) 

State-level variance .3184 *** (.088) .0971 *** (.030) 

County-level variance .4817 *** (.047) .1993 *** (.019) 

Notes: Exposure = County race-specific population 2014-2018, ACS 5-year estimates; NHB = Non-Hispanic 

Black; ***p < .001; ** p < .01; * p < .05; † p < 0.10 

 

The permutation test results shown in Table 3 provide further support for these findings. 

The p-values shown in Table 3 are based on the proportion of trials in which a model based on a 
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random permutation of each respective variable outperformed the original model based on the 

observed data, as measured by MAAPE. Based on this alternative measure of significance, the 

network-based measures still emerge as very salient predictors, i.e., these measures meaningfully 

improve model fit. Specifically, the network-based measures improved model fit in all trials for 

the models predicting deaths and cases (i.e., no model in which this measure was permuted 

outperformed the original model based on observed data).  

Table 3. Negative binomial models (with state and county random intercepts) predicting COVID-19 

outcomes across 10 time periods based on network, spatial, and time lagged cases: Permutation test results 

 Total deaths Total confirmed cases 

 Beta Proportion Beta Proportion 

Network lagged confirmed case rate (tn-1) .0029 .00 .0037 .00 

Δ network lagged confirmed case rate (tn-1 - tn) .0007 .00 .0044 .00 

Spatially lagged confirmed case rate (tn-1) .0003 .43 .0003 .01 

Δ spatially lagged confirmed case rate (tn-1 - tn) .0003 .10 .0004 .00 

Confirmed case rate (tn-1) .0018 .00 .0010 .00 

Economic disadvantage .0471 .00 .0285 .24 

% 65 and older .0184 .03 -.0285 1.00 

Above avg. NHW -.3510 1.00 -.2164 .95 

Above avg. NHB .1963 .99 .1933 1.00 

Above avg. Hispanic .0680 .20 .3074 .40 

% Urban population .0061 1.00 .0025 1.00 

Notes: Exposure = County race-specific population 2014-2018, ACS 5-year estimates; NHB = Non-Hispanic 

Black; ***p < .001; ** p < .01; * p < .05; † p < 0.10 

 

Sensitivity Tests 

We conducted several tests to assess how findings changed with alternative model 

specifications.  In order to better separate network effects from possible unmeasured spatial 

confounders, we re-estimated the models using network measures based on (1) only contiguous 

counties and (2) only non-contiguous counties. Tables 4 and 5 show estimates from these models 

(respectively). As shown, the network effects persist in both cases, further supporting our finding 

that commuting networks matter for the spread of COVID-19 beyond spatial proximity.  
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Table 4. Negative binomial models (with state and county random intercepts) predicting COVID-19 

outcomes across 10 time periods based on network, spatial, and time lagged cases. Network based on only 

contiguous counties 

 Total Deaths Total confirmed cases 

 Beta SE Beta SE 

Network lagged confirmed case rate (tn-1) .0016 *** (.000) .0027 *** (.000) 

Δ network lagged confirmed case rate (tn-1 - tn) .0006 *** (.000) .0028 *** (.000) 

Spatially lagged confirmed case rate (tn-1) .0009 * (.000) .0004  (.000) 

Δ spatially lagged confirmed case rate (tn-1 - tn) .0004 * (.000) .0007 * (.000) 

Confirmed case rate (tn-1) .0019 *** (.000) .0011 *** (.000) 

Economic disadvantage .0407 ** (.015) .0262 ** (.009) 

% 65 and older .0196 ** (.007) -.0270 *** (.005) 

Above avg. NHW -.3323 *** (.059) -.2020 *** (.042) 

Above avg. NHB .1920 *** (.056) .1878 *** (.057) 

Above avg. Hispanic .0670  (.068) .3110 *** (.055) 

% Urban population .0063 *** (.001) .0028 *** (.001) 

Two-week time period (ref. 4/1-4/14)       
4/15-4/28 .0649  (.058) .0075  (.036) 

4/29-5/12 .1035 † (.061) .0323  (.051) 

5/13-5/26 -.0903  (.068) .0850  (.059) 

5/27-6/9 -.1643 * (.072) .1546 * (.068) 

6/10-6/23 -.3869 *** (.083) .3365 *** (.100) 

6/24-7/7 -.5375 *** (.133) .6002 *** (.110) 

7/8-7/21 -.6019 *** (.127) .8233 *** (.112) 

7/22-8/4 -.4160 * (.167) .8870 *** (.123) 

8/5-8/18 -.3349 * (.157) .9290 *** (.124) 

Constant -11.9509 *** (.186) -7.9040 *** (.109) 

ln(alpha) -.4609 *** (.077) -.5884 *** (.056) 

State-level variance .3206 *** (.082) .1006 *** (.027) 

County-level variance .4696 *** (.046) .1917 *** (.018) 

Notes: Exposure = County race-specific population 2014-2018, ACS 5-year estimates; NHB = Non-Hispanic 

Black; ***p < .001; ** p < .01; * p < .05; † p < 0.10 

 

To aid our causal inference, we also conducted several analyses using different weighting 

strategies on a cross-sectional version of our data in which outcomes are cumulative counts of a 

county’s cases or deaths, and network and spatially lagged measures are based on these cumulative 

counts. Results from these models are shown in Table 6. As shown, these alternative model 

specifications produced substantively similar results with regard to the commuting network 
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effects, offering further support for our conclusions. Results of all of the causal effect estimators 

consistently show that the percentage of population over the age of 65 and economic  

Table 5. Negative binomial models (with state and county random intercepts) predicting COVID-19 

outcomes across 10 time periods based on network, spatial, and time lagged cases. Network based on only 

non-contiguous counties. 

 Total Deaths Total confirmed cases 

 Beta SE Beta SE 

Network lagged confirmed case rate (tn-1) .0020 *** (.001) .0020 *** (.001) 

Δ network lagged confirmed case rate (tn-1 - tn) .0004  (.000) .0029 *** (.000) 

Spatially lagged confirmed case rate (tn-1) .0013 *** (.000) .0019 *** (.000) 

Δ spatially lagged confirmed case rate (tn-1 - tn) .0006 *** (.000) .0022 *** (.000) 

Confirmed case rate (tn-1) .0019 *** (.000) .0011 *** (.000) 

Economic disadvantage .0407 ** (.015) .0219 * (.009) 

% 65 and older .0178 ** (.007) -.0296 *** (.005) 

Above avg. NHW -.3566 *** (.059) -.2207 *** (.040) 

Above avg. NHB .1820 ** (.058) .1716 ** (.062) 

Above avg. Hispanic .0779  (.068) .3276 *** (.055) 

% Urban population .0062 *** (.001) .0026 *** (.001) 

Two week time period (ref. 4/1-4/14)       
4/15-4/28 .0136  (.067) .0514  (.040) 

4/29-5/12 .0564  (.068) .0714  (.046) 

5/13-5/26 -.1305 † (.067) .1552 ** (.052) 

5/27-6/9 -.1949 ** (.072) .2130 *** (.057) 

6/10-6/23 -.4107 *** (.078) .3662 *** (.080) 

6/24-7/7 -.5675 *** (.141) .5164 *** (.078) 

7/8-7/21 -.7066 *** (.127) .6784 *** (.087) 

7/22-8/4 -.5932 *** (.142) .7961 *** (.110) 

8/5-8/18 -.5011 *** (.135) .8969 *** (.116) 

Constant -11.9407 *** (.180) -7.9712 *** (.115) 

ln(alpha) -.4806 *** (.072) -.5905 *** (.051) 

State-level variance .3090 *** (.087) .1007 *** (.031) 

County-level variance .4873 *** (.048) .2042 *** (.021) 

Notes: Exposure = County race-specific population 2014-2018, ACS 5-year estimates; NHB = Non-Hispanic 

Black; ***p < .001; ** p < .01; * p < .05; † p < 0.10 

 

disadvantage have significant and considerable causal effects on the total number of deaths by 

COVID-19. The results of these causal analyses demonstrate the vulnerability of elderly and those 

economically disadvantages to COVID-19. 
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Table 6.  Estimates and statistical significance of the causal effects of county-level characteristics on deaths 

by COVID-19. 

Covariate Balancing Propensity Score Weighting (CBPSW)  

 Estimate SE Z-value  P-value 

Network lagged confirmed case rate .003  .000  45.937  <0.001  

Economic disadvantage .282  .112  2.512  .012  

Percent 65 and older .438  .009  46.881  <0.001  

At least 25% NHB -2.095  .084  -25.040  .000  

At least 25% Hispanic .003  .000  18.067  .000  

Percent urban population .031  .001  36.574  .000  

Spatially lagged confirmed case rate .001  .000  4.129  .000  

     

Inverse Probability of Treatment Weighting (IPTW)  

 Estimate SE Z-value  P-value 

Network lagged confirmed case rate .003  .000  13.391  .000  

Economic disadvantage .353  .054  6.590  .000  

Percent 65 and older .438  .009  47.331  <0.001  

At least 25% NHB -2.100  .084  -25.015  .000  

At least 25% Hispanic .003  .000  18.285  .000  

Percent urban population .031  .001  38.371  <0.001  

Spatially lagged confirmed case rate .001  .000  8.497  .000  

     

Super Learner  

 Estimate SE Z-value  P-value 

Network lagged confirmed case rate .003  .000  13.132  .000  

Economic disadvantage .335  .076  4.418  .000  

Percent 65 and older .440  .009  46.767  <0.001  

At least 25% NHB -2.100  .090  -23.403  .000  

At least 25% Hispanic .003  .000  17.861  .000  

Percent urban population .031  .001  42.346  <0.001  

Spatially lagged confirmed case rate .001  .000  6.739  .000  

 

 

Discussion 

This study found that an area’s population exposure to COVID-19 in the area’s commuting 

network contributes to higher local levels of confirmed COVID –19 cases and deaths, above and 

beyond the area’s socioeconomic disadvantage, age composition, urban status, and racial and 

ethnic composition. Importantly, the local effect of network exposure to COVID –19 cases is 
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robust to controlling for spatial contiguity to COVID-19 cases exposure, and to controlling for 

prior local levels of COVID-19 exposures. The causal effect estimates of the network and spatial 

lag variables are consistent with the previous estimates. These results have important implications 

for future research and policy. They showed that, during this pandemic, places have been 

significantly affected by their residents’ exposures to infection through their commuting networks 

across the country. This indicates that policies that focus on local level mitigation and prevention 

efforts are more effective when complemented by similar efforts in the many extra-local connected 

places across the states and the country. 

Given the growing research suggesting that vulnerable populations are less able to work 

remotely and engage in physical distancing during this pandemic, our results also indicate the acute 

need for work level protections, such as providing paid sick days, increasing minimal wages, 

providing health safety equipment to essential workers, to assisting with childcare for working 

parents who have to work while the schools are closed or in remote mode. These necessary 

provisions will not only help save the lives and health of workers who cannot afford to socially 

distance themselves from their work environments, but they have the great potential to spillover 

and improve the fates of whole communities that their workers go back home to. 

As expected, an area’s socioeconomic disadvantage contributed to both higher death rates 

and cases relative to the local population. The area’s concentration of whites was associated with 

a protective effect against both infection cases and COVID-19 deaths. The concentration of 

minorities, both above average share of Hispanics and non-Hispanic Blacks was associated with 

higher rates of confirmed cases, consistent with a large body of work that has documented the 

many challenges associated with COVID-19 risk that burden minority communities, including the 
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higher likelihood to be in frontline occupations and in other low paid occupations that have little 

flexibility and cannot be easily be transitioned to remote work format.3 

 

Limitations.  

These data come with several limitations. The analytical focus was on counties in part due 

to restrictions regarding the COVID-19 data availability across the country. To the extent that the 

data access and granularity expands in future months, analyses at more local levels will be very 

valuable. Still, analyses on other important transmittable diseases like influenza have examined 

place-to-place transmission patterns for geographic units as large as states and counties  (Bozick 

& Real, 2015) with important lessons that have inspired further research. 

The network measures used in this study were limited by the data access constraints to 

information updated on an annual basis, and thus they do not capture the fast-occurring changes 

during this ongoing pandemic. While these measures captured the commuting network prior the 

pandemic, those links have likely been weakened by layoffs or remote work transitions. Still, the 

information on the COVID-19 rates within the commuting network was captured as it changed 

over time. Given that the pandemic likely contributed to weakening rather than strengthening pre-

existing commuting links across places, the fact that nevertheless we still see strong effects 

suggests to us that adjustments in the future to these data to reflect the rapid changes in 

employment status will likely reveal even stronger effects of commuting exposures to COVID-19. 

  

                                                           
3 https://www.brookings.edu/research/to-protect-frontline-workers-during-and-after-covid-19-we-must-define-
who-they-are/ 

https://www.brookings.edu/research/to-protect-frontline-workers-during-and-after-covid-19-we-must-define-who-they-are/
https://www.brookings.edu/research/to-protect-frontline-workers-during-and-after-covid-19-we-must-define-who-they-are/
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Implications and Future Directions.  

Many businesses across the country have restricted their employment during the COVID-

19 pandemic, some have even closed temporarily or permanently, while others allowed employees 

to work remotely for the purpose of “social distancing” and in the hope of “flattening the curve”  

(Bartik et al., 2020). Understanding how these mobility changes and restrictions contribute to 

containing the COVID-19 transmission is an important next step for future research. Moreover, it 

is known that some population groups are more likely to be in occupations (e.g., health care 

providers, grocery workers, bus drivers, meatpacking workers) that have been on the frontlines in 

the fight against COVID-19, unable to comply with social distancing recommendations and 

policies. Understanding how workplace networks and risk transmission differentially affect 

disadvantaged and minority populations is of great importance in future research. Importantly, also 

understanding the types of workplace connections and other social network-based distancing 

strategies  (Block et al., 2020) that can work best to contain the pandemic risk without further 

isolating the most vulnerable populations and communities is essential. 
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