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The properties of crystalline materials can be described mathematically by

tensors whose components are generally known as property constants.

Tabulations of these constants in terms of the independent components are

well known for common material properties (e.g. elasticity, piezoelectricity etc.)

aptly described by tensors of lower rank (e.g. ranks 2–4). General relationships

between constants of higher rank are often unknown and sometimes reported

incorrectly. A computer program is developed here to calculate the property

constant relationships of a property of any order, represented by a tensor of any

rank and point group. Tensors up to rank 12, e.g. the tensor of sixth-order elastic

constants c
6i j k l m n p q r s, can be calculated on a standard computer, while ranks

higher than 12 are best handled on a supercomputer. Output is provided in

either full index form or a reduced index form, e.g. the Voigt index notation

common to elasticity. As higher-order tensors are often associated with

nonlinear material responses, the program provides an accessible means to

investigate the important constants involved in nonlinear material modeling.

The routine has been used to discover several incorrect relationships reported in

the literature.

1. Introduction

The properties of crystalline materials are inherently linked to

their crystal structure and symmetry. By virtue of Neumann’s

principle (Neumann, 1885), and later confirmed by Curie

(1894) for paramagnetic materials, the constitutive behavior

relating physical properties stemming from, for example,

stored-energy functions carries the crystalline symmetry. It is

vital to understand how crystal symmetry influences physical

properties throughout the physical sciences. Thus, under-

standing these structure–property linkages has a rich history

and continues to be an active area of research, especially as

researchers explore new ways to integrate material behavior

into engineered devices, e.g. leveraging nonlinear properties.

The relationships between crystalline structure and

nonlinear properties are less well known compared with

strictly linear constitutive behavior. In part, this results from

mathematical challenges associated with material properties

described by tensors of non-trivial rank, which carry

increasing numbers of components. Also, in many cases of

coupled physical phenomena, such as piezoelectric materials

exposed to an external bias field, the resulting constitutive

equations require a combination of tensors of various high-

order ranks. Imposing crystal symmetry on such coupled

constitutive equations is challenging and requires accurate

relationships between the dependent constants to cast the
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governing equations into their simplest analytical form

involving only the independent constants for the particular

point group of interest. Several researchers have calculated

and tabulated interdependencies between tensor components

or constants, and tables of this type are spread throughout the

topical literature. Examples of such tables can be found in

several references (Fumi, 1951; Brugger, 1965; Krishnamurty

& Gopalakrishnamurty, 1968; Bechmann & Hearmon, 1969;

Chung & Li, 1974; Brendel, 1979; Fumi & Ripamonti, 1980a,b,

1983; Thurston, 1974; Weis & Gaylord, 1985; Cho & Yama-

nouchi, 1987; Newnham, 2005; Yang, 2018; Lüthi, 2007;

Kholkin et al., 2008; Shimizu et al., 2009; Tichý et al., 2010;

Clayton, 2011; de Jong et al., 2015; Zhang et al., 2019, 2020). In

our own experience, the disparate tabulations of property

relationships have presented a significant hurdle to our

targeted focus of modeling the nonlinear behavior of piezo-

electric materials under both mechanical loading and external

bias. Thus, this work is an attempt to offer a simple-to-use

computational routine to calculate symmetry relations for any

particular property of crystalline materials that is describable

by polar tensors of various rank. In doing so, this work is

expected to provide a unified resource accessible to

researchers across the physical sciences.

This article is organized as follows. In Section 2, we provide

the theoretical background needed to impose crystal and

physical symmetry restrictions on specific property tensors in

order to calculate the relationships between independent and

dependent components. Building from Section 2, the compu-

tational routine is described in detail in Section 3, including

instructions for the required input and examples of expected

output. As a demonstration of the routine, Section 4 provides

tabulations of property relationships for specific property

tensors that appear in the nonlinear stored-energy function

(Tiersten, 1975) commonly used to derive constitutive rela-

tions of electroelastic materials. To the best of our knowledge,

tables giving the relationships between the independent and

dependent components of the third odd and first even

electrostatic tensors are given explicitly for the first time.

Additionally, we provide a table with the numbers of inde-

pendent and dependent constants for each of the tensors

found in the nonlinear stored-energy function for electro-

elastic materials (Tiersten, 1975).

2. Theory

The approach used in the present computational routine is

categorized as an indirect method, which requires imposing

both crystal and physical symmetry on the tensors being used

to describe a certain property. Here, physical symmetry refers

to the symmetry in the tensor components resulting from

consideration of cause-and-effect relationships, i.e. constitu-

tive behavior. To apply physical symmetry, the user must input

the physical symmetry present in the tensor brought about by

cause-and-effect relationships. We illustrate an example of this

in Section 3.2 by making use of physical symmetry stemming

from a stored-energy function (Tiersten, 1975) for electro-

elastic materials. Direct methods deal only with imposing

crystal symmetry conditions on the tensor, which is done

through the application of generator matrices or symmetry

elements of particular point groups. Both indirect and direct

methods have a deep history in solid-state physics, and the

interested reader is directed to Fumi & Ripamonti (1980a) for

additional background and context to these methods. In either

method, the end result is typically a system of equations to be

solved for the dependent and independent components. The

theory outlined in this section describes the general procedure

to generate such a system of equations by imposing crystal

symmetry and physical symmetry on a property tensor, as seen

in Sections 2.1 and 2.2, respectively.

2.1. Imposition of crystal symmetry

Recall that a tensor P of rank n defined using a basis in one

coordinate system can be transformed into the tensor P0

belonging to an alternative coordinate system by applying

orthogonal transformation matricesR to each component of P,

P0
i j k...n ¼ Ri �Rj �Rk � . . .Rn �P�� �...�; ð1Þ

where R is the rotation matrix. For tensors defined on the

rotation group SO(3), the matrices R are rotation matrices.

The set of transformation matrices that reproduce the

symmetry inherent in a crystal belonging to a particular point

group are known as generator matrices for that point group

(Newnham, 2005). The number of generator matrices depends

on the number of symmetry elements needed to reproduce the

crystal symmetry of a particular point group. If R(1), R(2),

R(3), . . . , R(N) comprise the minimum set of N generator

matrices for a particular point group, then application of any

one of the generator matrices in equation (1) must leave each

tensor component invariant or unchanged. Thus, the prime

notation is no longer needed when applying any of the

generator matrices, e.g. Pi j k...n = R
ð1Þ
i �R

ð1Þ
j �R

ð1Þ
k � . . .R

ð1Þ
n �P� � �...�. As

an example, consider the generator matrices R(1) and R(2) for

point group mm2 found from Tables 1 and 2 for the symmetry

elements m ? Z1 and m ? Z2 , respectively. Now consider the

second-rank tensor v, which transforms as �i j = Ri�Rj���� .

Application of R(1) leads to the system of equations

Rð1Þ ¼
�1 0 0

0 1 0

0 0 1

0
@

1
A )

�11 ¼ �11;
�12 ¼ ��12 ! �12 ¼ 0;
�13 ¼ ��13 ! �13 ¼ 0;
�21 ¼ ��21 ¼ 0 ! �21 ¼ 0;
�22 ¼ �22;
�23 ¼ �23;
�31 ¼ ��31 ! �31 ¼ 0;
�32 ¼ �32;
�33 ¼ �33:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2Þ

Application of R(2) adds further dependent relationships

between the tensor components,

computer programs
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Rð2Þ ¼
1 0 0

0 �1 0

0 0 1

0
@

1
A )

�11 ¼ �11;
�12 ¼ ��12 ! �12 ¼ 0;
�13 ¼ �13;
�21 ¼ ��21 ! �21 ¼ 0;
�22 ¼ �22;
�23 ¼ ��23 ! �23 ¼ 0;
�31 ¼ �31;
�32 ¼ ��32 ! �32 ¼ 0;
�33 ¼ �33:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

Combining equations (2) and (3) leads to the result of �11 ,

�22 and �33 being three independent constants and all others

being zero. At this point, this example demonstrates the

relations between tensor components after invoking crystal

symmetry. The following section considers additional reduc-

tion and relations found from imposing physical symmetry

(cause–effect relationships).

2.2. Imposition of physical symmetry

Here, physical symmetry is referred to as symmetry on

tensor components resulting from cause and effect, i.e.

constitutive relations. Physical symmetry, together with crystal

symmetry as described in Section 2.1, results in the minimum

set of relationships amongst tensor components or property

constants. Consider the simple canonical case of a linear

elastic solid having the stored (strain) energy function

U ¼ 1
2 c2i j k l Ei j Ek l; ð4Þ

where c
2i j k l

is the tensor of second-order elastic constants and

E is the strain tensor. As repeated indices imply summation

over the values 1, 2 and 3, it is apparent that the pairs of

indices (ij) and (kl) can be swapped, i.e. c
2i j k l

= c
2k l i j

. This is

referred to as a major symmetry and reduces the number of

independent constants to 36 in the most general case (prior to

invoking crystal symmetry). Furthermore, the strain tensor E

is symmetric. Thus, it is easily seen that c
2i j k l

= c
2i j l k

= c
2j i k l

=

c
2j i l k

, which are referred to as minor symmetries and reduce

the number of constants from 36 to 21. Often, constitutive

relations are nothing more than approximate models of the

actual behavior of physical systems and usually built on

assumptions. Additional assumptions can be included to

reduce the number of independent components further. For

example, the elastic Cauchy relations stem from c
2i j k l

being

completely symmetric (any two indices can be interchanged),

which reduces the number of independent constants to 15. It is

noted that the vast majority of crystalline materials do not

meet the criteria for the Cauchy relations to hold (Hehl & Itin,

2002; Haussühl, 1967).

Most often, the tensor of second-order elastic constants

c
2i j k l

of a linear elastic material invokes the physical symmetry

conditions present resulting from equation (4) and symmetric

E. Thus, without crystal symmetry conditions applied, c
2i j k l

consists of 21 independent constants with no dependencies

between them. This is also the case for materials belonging to

the triclinic class (point groups 1 or 1). Invoking crystalline

symmetry as described in Section 2.1 reduces the number of

independent constants and introduces dependencies. For

example, considering again themm2 point group, upon solving

the system of equations resulting from expanding c
2i j k l

=

R
ðIÞ
i�R

ðIÞ
j�R

ðIÞ
k �R

ðIÞ
l � c2� � � � and c

2i j k l
= R

ðIIÞ
i� R

ðIIÞ
j � R

ðIIÞ
k �R

ðIIÞ
l � c2� � � � , one

finds the result of c11 , c12 , c13 , c22 , c23 , c33 , c44 , c55 and c66 as the

nine independent and non-zero second-order elastic constants

for materials belonging to point group mm2, or to the

orthorhombic class more generally.

The computational routine presented in Section 3 is based

on solving the system of equations obtained once physical and

crystal symmetry are both imposed on the tensor of interest as

described in this section.

3. Computational routine, propSym

The computational routine propSym was inspired by the

program developed by Brendel (1979), which calculated and

tabulated the relationships between the fourth-order elastic

constants, which are components of the eighth-rank elastic

modulus tensor c
4i j k l m n p q. Rather than focusing on a single

tensor property as done previously, the goal here is to allow

the user to generate similar tabulations for a tensor of their

computer programs
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Table 1
Minimum symmetry elements and case numbering convention (used in
the computational routine described in Section 3) corresponding to each
point group (Vainshtein, 1995; Newnham, 2005).

The isotropic case or spherical symmetry (Curie group11m) is also included
for comparison.

Case number Point group Minimum symmetry elements

1 1 1
2 1 1
3 2 2 k Z2

4 m m ? Z2

5 2/m 2 k Z2, m ? Z2

6 222 2 k Z1, 2 k Z2

7 mm2 m ? Z1, m ? Z2

8 mmm m ? Z1, m ? Z2, m ? Z3

9 4 4 k Z3

10 4 4 k Z3

11 4/m 4 k Z3, m ? Z3

12 422 4 k Z3, 2 k Z1

13 4mm 4 k Z3, m ? Z1

14 42m 4 k Z3, 2 k Z1

15 4/mmm 4 k Z3, m ? Z3, m ? Z1

16 3 3 k Z3

17 3 3 k Z3

18 32 3 k Z3, 2 k Z1

19 3m 3 k Z3, m ? Z1

20 3m 3 k Z3, m ? Z1

21 6 6 k Z3

22 6 6 k Z3

23 6/m 6 k Z3, m ? Z3

24 622 6 k Z3, 2 k Z1

25 6mm 6 k Z3, m ? Z1

26 6m2 6 k Z3, m ? Z1

27 6/mmm 6 k Z3, m ? Z3, m ? Z1

28 23 2 k Z3, 3 k [111]
29 m3 m ? Z1, 3 k ½111�
30 432 4 k Z3, 3 k [111]
31 43m 4 k Z3, 3 k [111]
32 m3m 4 k Z3, 3 k ½111�, m ? ½110�
33 11m 1 k Z3, 1 k Z1, m ? Z1
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choosing of arbitrary rank and symmetry (interchange of

indices). In this way, the developed method has much broader

application than the previous calculations and routines found

in the topical literature. An overview of the logic used to

generate the required system of equations and for subsequent

solving is given in Section 3.1. The execution of propSym

based on MATLAB command-line input is given in Section

3.2, along with an example of the expected outputs. Lastly,

Section 3.3 lists execution times and discusses MATLAB

version restrictions.

3.1. Overview of the code

The backbone of the routine is based on the

theory described in Section 2. Here, the general

computational steps to obtain the independent

and dependent relationships between tensor

components are highlighted. Note that the

following description provides the essence of the

routine and omits some of the fine details, to avoid

being overly cumbersome and confusing.

propSym begins once the user inputs the point

group and lists the indices that can be inter-

changed based on physical symmetry conditions.

Conventions for user input and expected output

are described in Section 3.2. Then, the Ng

generator matrices for that point group

from Table 2 are retrieved from the function

inputSym, which calls the primary function

getComps. In getComps, a For loop iterates

through all possible 3N combinations of index

values, where N is the rank of the tensor or the

number of indices that appear; e.g. c
2i j k l

has four

indices present and thus N = 4 and the For loop

iterates over 34 = 81 possible combinations of

index values. Within the For loop, MATLAB’s

native function ind2sum maps each possible 3N

index combination to a single index, which

circumvents the need for N nested For loops.

Each index combination is stored in a 3N � N cell

array indR, which describes all possible indices that are called

during the expansion of the right-hand side of equation (1).

For each index combination, the function tensor is called,

which receives a list of minor and major symmetries and

outputs a string representing the reduced index form for that

particular component. Upon each iteration, the output of

tensor is stored as a 3N cell array cs. The reduced index

form follows the convention seen in Table 3 and is a gener-

alization of the Voigt index form popularized by Nye (1957,

1985).

Application of the reduced index form is dictated by the

physical symmetry input by the user and greatly speeds up the

execution of the routine if applied. The current version of

tensor applies the reduced index form only up to four

indices. Once the initial For loop completes, only the Nc

unique elements in cs are retained, and these are stored in an

Nc � 1 vector cm. The vector cm is then concatenated Ng

times to form a vector C of size (Ng � Nc) � 1. The entries of

C form the left-hand side of the system of equations to be

solved, e.g. the left-hand side seen in equations (2) and (3). At

this point, another For loop is initiated that iterates from 1 to

Ng � Nc or the length of the vector C. At each iteration, the

inner product involving generator matrices seen in equation

(1) is expanded over repeated indices. During the expansion,

the function tensor is applied to each tensor component to

give a reduced index form. At this point, the generated system

of equations is cast into a matrix form of size Nc � Ng � Nc

and solved using Gaussian elimination. The resultant matrix

coming from this Gaussian elimination is multiplied by the

computer programs
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Table 3
Reduced index convention for full symmetry (any interchange of indices)
between 2, 3 or 4 indices, e.g. �

1 i j
! �

1 i
, �

2 i j k
! �

2 i
, �

3 i j k l
! �

3 i
.

Full index Reduced index

11 111 1111 1
22 222 2222 2
33 333 3333 3
23 223 2223 4
13 113 1113 5
12 112 1112 6

233 2233 7
133 1133 8
122 1122 9
123 2333 10

1333 11
1222 12
1123 13
2213 14
3312 15

Table 2
Generator matrices corresponding to the minimum symmetry elements seen in Table 1
(Vainshtein, 1995; Newnham, 2005).

1, 1 2 k Z1 2 k Z2 2 k Z3

1 0 0

0 1 0

0 0 1

0
@

1
A

1 0 0

0 �1 0

0 0 �1

0
@

1
A

�1 0 0

0 1 0

0 0 �1

0
@

1
A

�1 0 0

0 �1 0

0 0 1

0
@

1
A

m ? Z1 m ? Z2 m ? Z3 m ? ½110�

�1 0 0

0 1 0

0 0 1

0
@

1
A

1 0 0

0 �1 0

0 0 1

0
@

1
A

1 0 0

0 1 0

0 0 �1

0
@

1
A

0 1 0

1 0 0

0 0 �1

0
@

1
A

3 k Z3 3 k Z3 3 k [111] 3 k ½111�

�1=2 31=2=2 0

�31=2=2 �1=2 0

0 0 1

0
@

1
A

1=2 �31=2=2 0

31=2=2 1=2 0

0 0 �1

0
@

1
A

0 1 0

0 0 1

1 0 0

0
@

1
A

0 �1 0

0 0 �1

�1 0 0

0
@

1
A

4 k Z3 4 k Z3 6 k Z3 6 k Z3

0 1 0

�1 0 0

0 0 1

0
@

1
A

0 �1 0

1 0 0

0 0 �1

0
@

1
A

1=2 31=2=2 0

�31=2=2 1=2 0

0 0 1

0
@

1
A

�1=2 �31=2=2 0

31=2=2 �1=2 0

0 0 �1

0
@

1
A
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unique terms in the vector cm. At this point, all of the

dependent relationships between constants have been formed

and the remainder of the code acts to reproduce these rela-

tionships in a sensible manner in preparation for being

displayed as output.

3.2. Inputs and expected outputs

To execute the routine, the user is required to input or

specify the point group, the rank of the tensor (number of

indices present in the tensor), the indices that participate in

pair-wise major symmetry, index sets that can interchange

elements (minor symmetries), a letter to label the tensor, and

whether full index output is desired. As an example, the input

produces the output

which is the example case for point group mm2 discussed in

Section 2.2. It gives the relations for the second-order elastic

constants for materials belonging to the orthorhombic class

(or engineering materials with ‘orthotropic’ symmetry). Now,

consider the exemplified input. The point group is given by the

respective case number seen in Table 1. The order of the case

numbers is chosen such that point groups belonging to the

same Laue group are together. Note that this ordering differs

from that used by others, e.g. Groth (1895). The rank of the

tensor is the number of indices present in the general form. In

this example, the elastic modulus tensor c
2i j k l

consists of N = 4

indices (i, j, k, l). The major symmetry list ½1; 2; 3; 4� consti-
tutes all of the indices that contribute to a major symmetry. In

this case, the major symmetry of c
2i j k l

gives c
2k l i j

, which

indicates that each of the first four indices (1, 2, 3, 4) is

involved in the major symmetry. The minor symmetry list gives

sets of indices that can be interchanged. In this example, c
2i j k l

=

c
2j i k l

= c
2i j l k

indicates that the first (1) and second (2) indices

can be interchanged and the third (3) and fourth (4) indices

can be interchanged; thus, the cell input {[1,2],[3,4]} is

used. The label c is evident in the output. Lastly, an option to

display full index relationships is made available, which allows

the user to save a complete mapping of tensor indices to the

independent constants. Additional examples for tensors of

various physical symmetries are given in Section 4. If the user

selects full matrix output, a symbolic array containing the

indices and reduced tensor components is produced. An

abbreviated portion of the full matrix output for the current

example is

which would display 81 rows if shown in full. The full index

output is stored in the variable fmat after execution. The user

can save fmat or transform it into an array to be used directly

in models.

3.3. Computational requirements and efficiency of the
program

propSym is based on MATLAB in conjunction with the

MATLAB Symbolic Math Toolbox and was tested on versions

R2018b, R2019b and R2020a. To the best of our knowledge,

no native MATLAB function is newer than R2006. No com-

patibility issues were found in a compatibility report generated

by executing the command codeCompatibilityReport.

propSym does rely on MATLAB conversion of double-

precision numbers back into symbolic form. For example,

sym(1.732050807568877) returns the symbolic form

3^(1/2). The versions and cases tested could all be

successfully converted to the appropriate symbolic form.

Examples of execution times for point group mm2 for the

tensors found in equation (5), which is the stored-energy

computer programs
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function for electroelastic materials (Tiersten, 1975), are given

in Table 4.

As can be seen, most of these cases execute in a matter of

seconds. Note that the mm2 point group requires a minimum

of two generator matrices. The execution time scales

approximately linearly for the number of generator matrices,

at least up to rank 10. Table 4 describes the necessary inputs

and associated execution times for various electroelastic

properties. Symmetry results for these properties are discussed

in Section 4. The calculations followed from inputting the

associated minor symmetry and major symmetry inputs from

Table 4 via the MATLAB command window input, as seen in

the example highlighted in Section 3.2. For each case, the full

index output was not chosen to be generated, only the reduced

table outputs.

These execution times are based on a laptop computer with

128 GB usable memory, a 64 bit Intel Core i7-8850H CPU

with a processing rate of 2.60 GHz, and MATLAB R2020a.

During execution of the c
4 i j k l m n p q tensor, MATLAB utilizes

around 4 GB of memory. The laptop was used to calculate

tensors up to 14th rank, e.g. the higher-rank elasticity tensors

c
5i j k l m n p q r s (fifth-order elastic constants), c6i j k l m n p q r s t u (sixth-

order elastic constants) and c
7i j k l m n p s r s t u x y (seventh-order

elastic constants), which executed in 00:00:23.77, 00:05:27.78

and 01:12:45.00 (hh:mm:ss.xx), respectively. The

c
7i j k l m n p s r s t u x y peak memory usage reached 17.5 GB. This

suggests that 14th rank tensors, when physical symmetry is

applied, are the practical upper limit when utilizing standard

desktop or laptop computers. The eighth-rank case is the

practical upper limit on a standard computer when no physical

symmetry is applied, which executes in 02:20:03.42

(hh:mm:ss.xx).

While the rank 10, 12 and 14 examples were primarily used

to evaluate the efficiency of the code, to the best of our

knowledge this is the first instance where the components of

the tensors c
6i j k l m n p q r s t u and c

7i j k l m n p s r s t u x y have been fully

reduced in terms of their independent components. Usage of

advanced processing techniques like GPUs and the expanded

memory capabilities of super computers would extend the

upper limit on tensor rank even further.

4. Results and verification

This work was motivated by trying to find a reduced form of

the effective properties of piezoelectric materials in terms of

the minimum number of independent tensor components. The

effective properties are derived from the thermodynamic

potential function given by Tiersten (1975) for electroelastic

materials,

U ¼ 1
2 c2i j k lEi jEk l � ei j kWiEj k � 1

2�2i j
WiWj

þ 1
6 c3i j k l m nEi jEk lEmn þ 1

2 d1i j k l m
WiEj kElm

� 1
2 bi j k lWiWjEk l � 1

6�3i j k
WiWjWk

þ 1
24 c4i j k l m n p qEi jEk lEmnEpq þ 1

6 d2i j k l m n pWiEj kElmEnp

þ 1
4 a1i j k l m nWiWjEk lEmn � 1

6 d3i j k l m
WiWjWkElm

� 1
24�4i j k l

WiWjWkWl; ð5Þ

where W and E describe the electric field and strain, respec-

tively. The property tensors c
2i j k l

, ei j k , �2i j
, c

3i j k l m n , d1i j k l m
,

bi j k l , �3i j k
, c

4i j k l m n p q , d2i j k l m n p , a1i j k l m n , d3i j k l m
and �

4i j k l
are

the second-order elastic, piezoelectric, second-order electric

permeability, third-order elastic, first odd electroelastic, elec-

trostrictive, third-order electric permeability, fourth-order

elastic, second odd electroelastic, first even electroelastic,

third odd electroelastic and fourth-order electric permeability,

respectively (Tiersten, 1975). The use of the numbering

follows from Tiersten’s convention. This is needed to differ-

entiate between tensors like d
1i j k l m

and d
3i j k l m

, which have

the same number of indices but different symmetries. The

property tensors govern the degree to which W and E influ-

ence the stored energy, which clearly includes nonlinear

effects and cases that stem from coupling between W and E.

The computational routine described here can be used to

reduce each of these tensors into a minimum number of

components. Then, any material property derivable from

equation (5) can be described in terms of the minimum

number of components. To demonstrate the utility of the

routine, we have formed tables for each of the tensors

involved in the stored energy. The tables are too lengthy to be

reproduced here, but can be viewed at https://sites.psu.edu/

kube/spr/ or easily generated using the computational routine.

The site http://www.chriskube.com/ contains links to download

the MATLAB source code for the computational routine.

To the best of our knowledge, the relationships between

components of the third odd electroelastic tensor d
3i j k l m

and

first even electroelastic tensor a
1i j k l m n are calculated here for

the first time [Thurston (1974) reports d
3 i j k l m

but does not

reduce the symmetry fully and reports the equivalent

symmetry as d
1i j k l m

]. Relationships between components for

the first odd electroelastic tensor d
1 i j k l m

, sometimes referred

to as third-order piezoelectric constants ("i j k lm), have been

given recently (Zhang et al., 2019). However, incorrect rela-

tionships were observed for the third-order piezoelectric

constants. Namely, Zhang and co-workers mistakenly

conclude that the third-order piezoelectric constants for point

groups 42m, 62m, 432 and 43m are zero, which disagrees with

the present results and those published previously [see Table 1
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Table 4
Execution times for electroelastic properties for materials belonging to
the mm2 point group.

Property
Minor
symmetry input

Major
symmetry
input

Execution
times
(ss.xx)

�
2 i j

{[1,2]} [ ] 00.14
�

3 i j k
{[1,2,3]} [ ] 00.20

�
4 i j k l

{[1,2,3,4]} [ ] 00.32
ei j k {[2,3]} [ ] 00.29
d

1 i j k l m
{[2,3],[4,5]} [2:5] 00.79

d
2 i j k l mn p {[2,3],[4,5],[6,7]} [2:7] 03.39

bi j k l {[1,2],[3,4]} [ ] 00.49
a
1 i j k l m n {[1,2],[3,4],[5,6]} [3:6] 01.76
d

3 i j k l m
{[1,2,3],[4,5]} [ ] 01.08

c
2 i j k l

{[1,2],[3,4]} [1:4] 00.24
c
3 i j k l m n {[1,2],[3,4],[5,6]} [1:6] 00.69
c
4 i j k l m n p q {[1,2],[3,4],[5,6],[7,8]} [1:8] 02.66
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of Nelson & Lax (1971) and Table 16.5 of Thurston (1974)].

This result is seen in Table 5, which gives the number of

independent tensor components for each of the tensors

considered. Results such as Table 5 allow one easily to see the

complexity of particular tensors, their anisotropic behavior

and whether physical phenomena display certain behavior.

Validation of the computational results was based on

comparison with other reports in the literature (Brugger, 1965;

Brendel, 1979; Thurston, 1974; Newnham, 2005; Tichý et al.,

2010; Clayton, 2011; de Jong et al., 2015; Yang, 2018; Zhang et

al., 2019), in addition to the output of our independently

developed Python code PyMTensor. The PyMTensor code

utilizes much of the same logic to generate the required system

of equations as presented here and can also be applied for

tensors of any rank and point group. Results from the current

code and PyMTensor were corroborated for all of the

components in the tensors considered in the electroelastic

stored energy [equation (5)]. The first cross checks with the

literature were with the work of Brendel (1979) for the fourth-

order elastic constants and Brugger (1965) for the third-order

elastic constants. All relationships established by the present

code, PyMTensor, Brendel (1979) and Brugger (1965) agree.

Once the propSym output had been verified, propSym was

used to discover several incorrect values reported in the

literature. For example, for the first-order piezoelectric tensor

ei j k , agreement is observed amongst the computational

routines of Newnham (2005), Clayton (2011) and Tichý et al.

(2010) for the 27 point groups: 1, 1, 2,m, 2/m, 222,mm2,mmm,

42m, 4/m, 4mm, 4/mmm, 3, 3, 32, 3m, 3m, 6, 6/m, 6mm, 6/mmm,

6m2, 23, 432, m3, 43m and m3m. However, discrepancies exist

amongst the others. For example, mutual agreement is not

found for the 4 point group; the component e15 is noted as�e15
by Newnham (2005) and is not present in the tables of Clayton

(2011), but is given by Tichý et al. (2010) and de Jong et al.

(2015) and in the present results. Also for the point group 4,

the e33 component is reported as non-zero by Tichý et al.

(2010), but zero by Newnham (2005), Clayton (2011) and de

Jong et al. (2015) and in the present results. Similarly, for the

point groups 4 and 6, Clayton (2011) considers the compo-

nents e15 , e31 and e33 to be zero, which is not the case for

Newnham (2005), Tichý et al. (2010) and the present results.

Some published tables do not recognize 622 (Clayton, 2011; de

Jong et al., 2015) and 422 (Clayton, 2011) as point groups

exhibiting piezoelectricity, while the present results indicate

they do exhibit piezoeletricity, in agreement with Newnham

(2005) and Tichý et al. (2010).

At the beginning of this study, it was expected that typo-

graphical errors and disagreements could be present for

tabulations involving higher-rank tensors. However, the

disagreements involving the leading-order piezoelectric

constants ei j k were surprising. These observed discrepancies

served as further motivation to develop and offer the

computer programs
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Table 5
Number of non-zero constants (number of independent constants) for different physical properties from Tiersten’s equation throughout all the point
groups.

c
2 i j k l

ei k �
2 i j

c
3 i j k l m n d

1 i j k l m
bi j k l �

3 i j k
c
4 i j k l m n p q d

2 i j k l m n p a
1 i j k l m n d

3 i j k l m
�

4 i j k l

1 21 (21) 18 (18) 6 (6) 56 (56) 63 (63) 36 (36) 10 (10) 126 (126) 168 (168) 126 (126) 60 (60) 15 (15)
1 21 (21) 0 (0) 6 (6) 56 (56) 0 (0) 36 (36) 0 (0) 126 (126) 0 (0) 126 (126) 0 (0) 15 (15)
2 13 (13) 8 (8) 4 (4) 32 (32) 29 (29) 20 (20) 4 (4) 70 (70) 80 (80) 68 (68) 28 (28) 9 (9)
m 13 (13) 10 (10) 4 (4) 32 (32) 34 (34) 20 (20) 6 (6) 70 (70) 88 (88) 68 (68) 32 (32) 9 (9)
2/m 13 (13) 0 (0) 4 (4) 32 (32) 0 (0) 20 (20) 0 (0) 70 (70) 0 (0) 68 (68) 0 (0) 9 (9)
222 9 (9) 3 (3) 3 (3) 20 (20) 12 (12) 12 (12) 1 (1) 42 (42) 36 (36) 39 (39) 12 (12) 6 (6)
mm2 9 (9) 5 (5) 3 (3) 20 (20) 17 (17) 12 (12) 3 (3) 42 (42) 44 (44) 39 (39) 16 (16) 6 (6)
mmm 9 (9) 0 (0) 3 (3) 20 (20) 0 (0) 12 (12) 0 (0) 42 (42) 0 (0) 39 (39) 0 (0) 6 (6)
4 11 (7) 7 (4) 3 (2) 28 (16) 27 (15) 18 (10) 3 (2) 64 (36) 76 (40) 63 (34) 26 (14) 8 (5)
4 11 (7) 7 (4) 3 (2) 28 (16) 26 (14) 18 (10) 3 (2) 64 (36) 76 (40) 63 (34) 26 (14) 8 (5)
4/m 11 (7) 0 (0) 3 (2) 28 (16) 0 (0) 18 (10) 0 (0) 64 (36) 0 (0) 63 (34) 0 (0) 8 (5)
422 9 (6) 2 (1) 3 (2) 20 (12) 10 (5) 12 (7) 0 (0) 42 (25) 32 (16) 39 (22) 10 (5) 6 (4)
4mm 9 (6) 5 (3) 3 (2) 20 (12) 17 (10) 12 (7) 3 (2) 42 (25) 44 (24) 39 (22) 16 (9) 6 (4)
42m 9 (6) 3 (2) 3 (2) 20 (12) 12 (7) 12 (7) 1 (1) 42 (25) 36 (20) 39 (22) 12 (7) 6 (4)
4/mmm 9 (6) 0 (0) 3 (2) 20 (12) 0 (0) 12 (7) 0 (0) 42 (25) 0 (0) 39 (22) 0 (0) 6 (4)
3 15 (7) 13 (6) 3 (2) 50 (20) 55 (21) 30 (12) 7 (4) 118 (42) 160 (56) 117 (42) 54 (20) 10 (5)
3 15 (7) 0 (0) 3 (2) 50 (20) 0 (0) 30 (12) 0 (0) 118 (42) 0 (0) 117 (42) 0 (0) 10 (5)
32 12 (6) 5 (2) 3 (2) 31 (14) 23 (8) 18 (8) 2 (1) 69 (28) 74 (24) 66 (26) 24 (8) 8 (4)
3m 12 (6) 8 (4) 3 (2) 31 (14) 32 (13) 18 (8) 5 (3) 69 (28) 86 (32) 66 (26) 30 (12) 8 (4)
3m 12 (6) 0 (0) 3 (2) 31 (14) 0 (0) 18 (8) 0 (0) 69 (28) 0 (0) 66 (26) 0 (0) 8 (4)
6 9 (5) 7 (4) 3 (2) 28 (12) 25 (11) 18 (8) 3 (2) 64 (24) 76 (28) 63 (24) 26 (10) 6 (3)
6 9 (5) 6 (2) 3 (2) 28 (12) 30 (10) 18 (8) 4 (2) 64 (24) 84 (28) 63 (24) 28 (10) 6 (3)
6/m 9 (5) 0 (0) 3 (2) 28 (12) 0 (0) 18 (8) 0 (0) 64 (24) 0 (0) 63 (24) 0 (0) 6 (3)
622 9 (5) 2 (1) 3 (2) 20 (10) 8 (3) 12 (6) 0 (0) 42 (19) 32 (10) 39 (17) 10 (3) 6 (3)
6mm 9 (5) 5 (3) 3 (2) 20 (10) 17 (8) 12 (6) 3 (2) 42 (19) 44 (18) 39 (17) 16 (7) 6 (3)
6m2 9 (5) 3 (1) 3 (2) 20 (10) 15 (5) 12 (6) 2 (1) 42 (19) 42 (14) 39 (17) 14 (5) 6 (3)
6/mmm 9 (5) 0 (0) 3 (2) 20 (10) 0 (0) 12 (6) 0 (0) 42 (19) 0 (0) 39 (17) 0 (0) 6 (3)
23 9 (3) 3 (1) 3 (1) 20 (8) 12 (4) 12 (4) 1 (1) 42 (14) 36 (12) 39 (13) 12 (4) 6 (2)
432 9 (3) 0 (0) 3 (1) 20 (6) 6 (1) 12 (3) 0 (0) 42 (11) 24 (4) 39 (9) 6 (1) 6 (2)
m3 9 (3) 0 (0) 3 (1) 20 (8) 0 (0) 12 (4) 0 (0) 42 (14) 0 (0) 39 (13) 0 (0) 6 (2)
43m 9 (3) 3 (1) 3 (1) 20 (6) 12 (3) 12 (3) 1 (1) 42 (11) 36 (8) 39 (9) 12 (3) 6 (2)
m3m 9 (3) 0 (0) 3 (1) 20 (6) 0 (0) 12 (3) 0 (0) 42 (11) 0 (0) 39 (9) 0 (0) 6 (2)
11m 9 (2) 0 (0) 3 (1) 20 (3) 0 (0) 12 (2) 0 (0) 42 (4) 0 (0) 39 (4) 0 (0) 6 (1)
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computational routine presented here, which allows the user

to input their own tensor of interest of arbitrary rank.
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