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Abstract

We examine the stability of loss-minimizing training processes that are used for deep neural network
(DNN) and other classifiers. While a classifier is optimized during training through a so-called loss function,
the performance of classifiers is usually evaluated by some measure of accuracy, such as the overall accuracy
which quantifies the proportion of objects that are well classified. This leads to the guiding question of stability:
does decreasing loss through training always result in increased accuracy? We formalize the notion of stability,
and provide examples of instability. Our main result is two novel conditions on the classifier which, if either
is satisfied, ensure stability of training, that is we derive tight bounds on accuracy as loss decreases. These
conditions are explicitly verifiable in practice on a given dataset. Our results do not depend on the algorithm
used for training, as long as loss decreases with training.

1 Introduction

Our purpose in the present article is to provide rigorous justifications to the basic training method commonly
used in learning algorithms. We particularly focus on classification problems and to better explain our aim, it is
useful to introduce some basic notations.

We are given a set of objects S ⊂ Rn whose elements are classified in a certain number K of classes. Then we
introduce a function called the exact classifier that maps each s ∈ S to the index i(s) of its class. However, the
exact classifier is typically only known on a finite subset T of S called the training set.

In practice, objects in S are classified by an approximate classifier, and the mathematical problem is to identify
an optimal approximate classifier among a large set of potential candidates. The optimal approximate classifier
should agree (or, at least nearly agree) with the exact classifier on T . We consider here a type of approximate
classifier called soft approximate classifiers which may again be described in a general setting as functions

φ : s ∈ T −→ φ(s) = (p1(s), . . . , pK(s)) ∈ [0, 1]K , with p1(s) + . . .+ pK(s) = 1. (1)

Such a classifier is often interpreted as giving the probabilities that s belongs to a given class: pi(s) can be
described as the predicted probability that s is in class #i. In this framework a perfect classifier on T is a
function φ s.t. pi(s) = 1 if and only if i = i(s) (and hence pi(s) = 0 if i 6= i(s)).

In practice of course, one cannot optimize among all possible functions φ and instead some sort of discretization
is performed which generates a parametrized family φ(s, α) where the parameters α can be chosen in some other
large dimensional space, α ∈ Rµ with µ � 1 for instance. Both n and µ are typically very large numbers, and
the relation between them plays a crucial role in the use of classifiers for practical problems.

Deep neural networks (DNNs) are of course one of the most popular examples of method to construct such
parametrize family φ(s, α). In those settings φ(s, α) is obtained by applying a sequence of linear and non-linear
operations on the initial object s, one linear and non-linear operation per layer in the network. In this setting,
the parameters α are entries of matrices used for the linear operations on each layer.

Such deep neural networks have demonstrated their effectiveness on a variety of clustering and classifying
problems, such as the well-known [14] for handwriting recognition. To just give a few examples, one can refer
to [12] for image classification, [11] on speech recognition, [15] for an example of applications to the life sciences,
[18] on natural language understanding, or to [13] for a general presentation of deep neural networks.

The training process consists of optimizing in α the family φ(s, α) to obtain the “best” choice. This naturally
leads to the question of what is meant by best, which is at the heart of our investigations in this article. Here,
best means the highest performing classifier. There are indeed several ways to measure the performance of
classifiers: one may first consider the overall accuracy which corresponds to the proportion of objects that are
“well-classified.” We say that s is well-classified by φ(·, α) if pi(s)(s, α) > max1≤i≤K, i6=i(s) pi(s, α), that is φ(s, α)
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gives the highest probability to the class to which s actually belongs. Because this set will come up often in our
analysis, we introduce a specific notation for this “good” set

G(α) = {s ∈ T : pi(s)(s, α) > max
1≤i≤K, i6=i(s)

pi(s, α)}, (2)

which leads to the classical definition of overall accuracy

acc(α) =
#G(α)

#T
. (3)

For simplicity in this introduction, we assign the same weight to each object in the training set T . In practice,
objects in T are often assigned different weights, which will be introduced below.

Other measures of performance exist and are commonly used: average accuracy where the average is taken
within each class and which gives more weights to small classes, Cohen κ’s coefficient [5], etc....

However, in practice training algorithms do not optimize accuracy (whether overall accuracy or some other def-
inition) but instead try to minimize some loss function. There are compelling reasons for not using the accuracy:
for example, accuracy distinguishes between well-classified and not well-classified in a binary manner. That is,
accuracy does not account for an object close to being well classified. Moreover, accuracy is a piecewise-constant
function (taking values 0, 1/#T, 2/#T, · · · , 1) so that its gradient is zero. For these reasons, it cannot be maxi-
mized with gradient descent methods. An approximation of this piecewise constant function is computationally
intensive, particularly due the high dimensionality µ of its domain.

A typical example of a loss function is the so-called cross-entropy loss:

L̄(α) = − 1

#T

∑
s∈T

log
(
pi(s)(s, α)

)
, (4)

which is simply the average over the training set of the functions − log pi(s)(s, α). Obviously each of these functions
is minimized if pi(s)(s, α) = 1, i.e. if the classifier worked perfectly on the object s.

Minimizing (4) simply leads to finding the parameters α such that on average pi(s) is as large (as close to
1) as possible. Since L̄(α) is smooth in α (at least if φ is), one may apply classical gradient algorithms, with
stochastic gradient descent (SGD) being among the most popular due to the linear structure of L̄ and the large
size of many training sets. Indeed, since (4) consists of many terms, computing the gradient of L̄(α) is expensive.
SGD simplifies this task by randomly selecting a batch of a few terms at each iteration of the descent algorithm,
and computing the gradient of only those terms. This optimization process is referred to as training. Though
in general loss decreases through training, it need not be monotone because of e.g. effects due to stochasticity.
In this work, we assume for simplicity that loss decreases monotonically, which is approximately true in most
practical problems.

The main question that we aim to answer in this article is why should decreasing the loss function improve
accuracy. We start by pointing out the following observations which explain why the answer is not straightforward.

• If the loss function L̄ converges to 0, then the accuracy converges to 100% as in that case all predicted
probability pi(s) converge to 1. Nevertheless the training process is necessarily stopped at some time, before
L̄ reaches exactly 0, see e.g. [2]. A first question is therefore how close to 100% the accuracy is when the
loss function is very small.

• In practice, we may not be able to reach perfect accuracy (or 0 loss) on every training set. This can be due
to the large dimension, of the objects s or of the space of parameters α, which makes it difficult to computa-
tionally find a perfect minimizer even if one exists, with the usual issue of local minimizers. Moreover, there
may not even exist a perfect minimizer, due for instance to classification errors on the training set (some
objects may have been assigned to the wrong class). As a consequence, a purely asymptotic comparison
between loss and accuracy as L̄ → 0 is not enough, and we need to ask how the loss function L̄ correlates
with the accuracy away from L̄ ≈ 0.

• In general, there is no reason why decreasing L̄ would increase the accuracy, which is illustrated by the
following elementary counter-example. Consider a setting with 3 classes and an object s which belongs to
the first class and such that for the initial choice of parameter α: p1(s, α) = 0.4, p2(s, α) = p3(s, α) = 0.3.
We may be given a next choice of parameter α′ such that: p1(α′, s) = 0.45, p2(α′, s) = 0.5, p3(α′, s) = 0.05.
Then the object s is well classified by the first choice of α and it is not well classified by the second choice
α′. Yet the loss function, which is simply − log p1 here, is obviously lower for α′. Thus, while loss improves,
accuracy worsens.



• The previous example raises the key issue of stability during training, which roughly speaking means that
accuracy increases with training. Indeed, one does not expect accuracy to increase monotonically during
training, and the question becomes what conditions would guarantee that accuracy increases during train-
ing? For example, one could require that that the good set G monotonically grows during training; in
mathematical terms, that would mean that G(α) ⊂ G(α′) if α′ are parameters from a later stage of the
training. However, such a condition would be too rigid and likely counterproductive by preventing the train-
ing algorithms from reaching better classifiers. At the same time, wild fluctuations in accuracy or in the
good set G(α) would destroy any realistic hope of a successful training process, i.e., finding a high-accuracy
classifier.

• While the focus of this work is on the stability during training, another crucial question is the robustness
of the trained classifier, which is the stability of identifying classes with respect to small perturbations of
objects s ∈ S, in particular s ∈ T . The issues of robustness and stability are connected. Lack of stability
during the training can often lead to over-parametrization by extending the training process for too long.
In turn over-parametrization typically implies poor robustness outside of the training set. This is connected
to the Lipschitz norm of the classifier and we refer, for example, to [1].

• Since the marker of progress during training is the decrease of the loss function, stability is directly
connected to how the loss function correlates with the accuracy. Per the known counterexamples, such
correlation cannot always exist. Thus the key question is to be able to identify which features of the dataset
and of the classifier are critical to establish such correlations and therefore ensure stability.

Our main contributions are to bring rigorous mathematical answers to this last question, in the context
of simple deep learning algorithms with the very popular SGD algorithm. While part of our approach would
naturally extend to other settings, it is intrinsically dependent on the approach used to construct the classifier,
which is described in section 2.1. More specifically, we proceed in the following two steps.

i. We first identify conditions on the distribution of probabilities (p1(s, α), · · · , pK(s, α)) defined in (1) for each
s ∈ T which guarantee that L̄ correlates with accuracy. Specifically, we show that under these conditions,
loss is controlled by accuracy (vice-versa is trivial). At this stage such conditions necessarily mix, in a
non-trivial manner, the statistical properties of the dataset with the properties of the neural network (its
architecture and parameters), introduced in section 2.1. Since these conditions depend on the network
parameters which evolve with training, they cannot be verified before training starts, and they may depend
on how the training proceeds.

ii. The second step is to disentangle the previous conditions to obtain separate conditions on the training set
and on the neural network architecture and parameters. We are able to accomplish this on one of the
conditions obtained in step i which is well suited to the combination of linear operations and activation
function on the layer, defined in section 2.1. The main idea here is to be able to propagate backward on
the neural network the required distribution of (φ(s, α))s∈T , see Remark 3.1.

Our hope is that the present approach and results will help develop a better understanding of why learning
algorithms perform so well in many cases but still fail in other settings. This is achieved by providing a framework
to evaluate the suitability of training sets and of neural network construction for solving various classification
problems. Rigorous analysis of neural networks has of course already started and several approaches that are
different from the present one have been introduced. We mention in particular the analysis of neural nets in
terms of multiscale contractions involving wavelets and scattering transforms; see for example [4, 16, 17] and [7]
for scattering transforms. While there are a multitude of recent papers aimed to make neural net-based algorithms
(also known as deep learning algorithms) faster, our goal is to help make such algorithms more stable.

We conclude by summarizing the practical outcomes of our work:

• First, we derive and justify an explicitly verifiable conditions on the dataset that guarantee stability. We
refer in particular to subsection 2.5 for a discussion of how to check our conditions in practice.

• Our analysis characterizes how the distribution of objects in the training set and the distribution of the
output of the classifier for misclassified objects affect stability of training.

• Finally, among many possible future directions of research, our results suggest that the introduction of
multiscale loss functions could significantly improve stability.
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discussions.



2 Main results

2.1 Mathematical formulation of deep neural networks and stability

2.2 Classifiers

A parameterized family of soft classifiers φ(·, α) : Rn → [0, 1]K must map objects s to a list of K probabilities. To
accomplish this, a classifier is a composition φ(·, α) = ρ ◦X(·, α), where X(·, α) : RK → RK and ρ is the so-called
softmax function defined by

ρ(x) = ρ(x1, · · · , xK) =

(
ex1∑K
k=1 e

xk
, · · · , exK∑K

k=1 e
xk

)
. (5)

Clearly, ρ(x) ∈ [0, 1]K and
∑K
i=1 ρi(x) = 1, so ρ ◦X(·, α) is a soft classifier no matter what what function X(·, α)

is used (though typically X(·, α) is differentiable almost everywhere). The form of the softmax function means
that we can write the classifier as

φ(s, α) = ρ ◦X(s, α) =

(
eX1(s,α)∑K
k=1 e

Xk(s,α)
, · · · , eXK∑nK

k=1 e
Xk(s,α)

)
. (6)

As in (1), denote φ(s, α) = (p1(s, α), · · · , pK(s, α)), where pk(s, α) is the probability that s belongs to class k
predicted by a classifier with parameters α. A key property of the softmax function is that it is order preserving
in the sense that if Xi(s, α) > maxj 6=iXj(s, α), then pi(s) > maxj 6=i pj(s, α). Therefore, the predicted class of s
can be determined by X(s, α). We define the key evaluation that determines whether an object is well-classified
or not, namely

δX(s, α) = Xi(s)(s, α)− max
j 6=i(s)

Xj(s, α). (7)

If δX(s, α) > 0, then Xi(s)(s, α) is the largest component of X(s, α), which means that pi(s)(s, α) is the largest
probability given by φ(s, α), and thus, s is classified correctly. Similarly, if δX(s, α) < 0, s is classified incorrectly.

As described in Section 1, a classifier learns to solve the classification problem by training on a finite set T
where the correct classifications are known. Training is completed by minimizing a loss function which measures
how far the classifier is from the exact classifier on T . While there are many types of loss functions, cross entropy
loss introduced in (4) is very common, and it is the loss function we will consider in this work. The loss in (4) is
the simple average of − log(pi(s)(s, α)) over all s ∈ T , but there is no reason we cannot use the weighted average:

L̄(α) = −
∑
s∈T

ν(s) log
(
pi(s)(s, α)

)
, (8)

where 0 < ν(s) ≤ 1 and
∑
s∈T ν(s) = 1. Weights could be uniform, i.e., ν(s) = 1/#T for all s ∈ T , or weights

can be non uniform if e.g. some s ∈ T are more important than others. We can also use ν to measure the size of
subset of T , e.g., if A ⊂ T , ν(A) =

∑
s∈A ν(s). The quantity δX(s, α) defined above facilitates some convenient

estimates on loss, which are shown in section 3.1.

2.2.1 Deep neural network structure

Deep neural networks (DNNs) are a diverse set of algorithms with the classification problem being just one of
many of their applications. In this article, however, we will restrict our attention to DNN classifiers. DNNs
provide a useful parameterized family X(·, α) : Rn → RK which can be composed with the softmax function to
form a classifier. The function X(·, α) is a composition of several simpler functions:

X(·, α) = fM (·, αM ) ◦ fM−1(·, αM−1) ◦ · · · ◦ f1(·, α1).

Each fk for 1 ≤ k ≤ M is a composition of an affine transformation and a nonlinear function. The nonlinear
function is called an activation function. A typical example is the so-called rectified linear unit (ReLU), which
is defined for any integer N ≥ 0 by ReLU(x1, · · · , xN ) = (max{0, x1}, · · · ,max{0, xN}) . Another example is the
componentwise absolute value, abs(x1, · · · , xN ) = (|x1|, · · · , |xN |). The affine transformation depends on many
parameters (e.g., matrix elements) which are denoted together as αk. The collection of all DNN parameters is
denoted α = (α1, · · · , αM−1).

Though we use DNN classifiers as a guiding example for this article, most results apply to classifiers of the
form φ(·, α) = ρ ◦ X(·, α) where ρ is the softmax function, and X is any family of functions parameterized by
α. In this article, we will use the term classifier to refer to any composition fM ◦X(◦, α), while DNN classifier
refers to a classifier where X has the structure of a DNN.



2.2.2 Training, Accuracy, and Stability

Training a DNN is the process of minimizing loss. In practice, one randomly selects a starting parameter α(0),
and then uses an iterative minimization algorithm such as gradient descent or stochastic gradient descent to find
a minimizing α. Whatever algorithm is used, the nth iteration calculates α(n) using α(t) for 0 ≤ t ≤ n− 1. Our
results do not depend on which algorithm is used for training, but will make the essential assumption that loss
decreases with training, L̄(α(t2)) ≤ L̄(α(t2)) for t2 > t1. Throughout this article, we will abuse notation slightly
by writing L̄(t) := L̄(α(t)).

Accuracy is simply the proportion of well-classified elements of the training set. Using δX and the weights
ν(s), we can define a function that measures accuracy for all times t during training:

acc(t) = ν ({s ∈ T : δX(s, α(t)) > 0}) . (9)

We will find it useful to generalize the notion of accuracy. For instance, we may want to know how many s ∈ T
are not only well-classified, but are well-classified by some margin η ≥ 0. We therefore define the good set of
margin η as

Gη(t) = {s ∈ T : δX(s, α(t)) > η}. (10)

Observe that ν(G0(t)) = acc(t). For large η, the good set comprises those elements of T that are exceptionally
well-classified by the DNN with parameter values α(t). We will also consider the bad set of margin η

B−η(t) = {s ∈ T : δX(s, α(t)) ≤ −η} (11)

which are the elements that are misclassified with a margin of η by the DNN with parameters α(t).
Stability is the idea that when, during training, accuracy becomes high enough, it remains high for all later

times. Specifically, we will prove that under certain conditions, for all ε, there exists δ and η so that if at some
time t0, ν(Gη(t0)) > 1− δ, then at all later times, acc(t) > 1− ε.

2.3 Preliminary remarks and examples

2.3.1 Relationship between accuracy and loss

Intuitively, accuracy and loss should be connected, i.e., as loss decreases, accuracy increases and vice versa.
However, as we will see in examples below, this is not necessarily the case. Nevertheless, we can derive some
elementary relations between the two. For instance, from equation (30), we may easily derive a bound on the
good set Gη(t) via L̄(t0) for some η for all times t ≥ t0:

ν(Gη(t)) ≥ 1− L̄(t0)

log (1 + e−η)
≥ 1− 2eηL̄(t0), (12)

and in particular,

ν(acc(t)) = ν(G0(t)) ≥ 1− L̄(t0)

log 2
. (13)

This shows if loss is sufficiently small at time t0, then accuracy will be high for all later times. But this is not
the same as stability; stability means that if accuracy is sufficiently high at time t0, then it will remain high for
all t > t0. To obtain stability from (12), we somehow need to guarantee that high accuracy at time t0 implies low
loss at time t0.

Example 2.1. This example will demonstrate instability in a soft classifier resulting from a small number of
elements of the training set that are misclassified. Let T be a training set with 1000 elements with uniform
weights, each classified into one of two classes. Suppose that at some time t0, after some training, the parameters
α(t0) are such that most of the δX(s, α(t0)) values are positive, but a few δX(s, α(t0)) are clustered near −0.6. An
example histogram of these δX(s, α(t0)) values is shown in Figure 1a. The loss L̄(t0) accuracy can be calculated
using (8) and (9) respectively. For the δX(s, α(t0)) values in Figure 1a, the loss and accuracy are is

L̄(t0) = 0.1845 acc(t0) = 0.95.

Suppose that at some later time t = t0, the δX(s, α(t0)) values are those shown in Figure 1b. Most δX values
have improved from t = t0 to t = t1, but a few have worsened. We can again calculate loss and accuracy:

L̄(t1) = 0.1772 acc(t1) = 0.798.

Since L̄(t1) < L̄(t0), this example satisfies the condition that loss must decrease during training. However,
accuracy has fallen considerably. This indicates an unstable classifier. The instability arises because enough
objects have sufficiently poor classifications that by improving their classification (increasing δX(s, α)), training
can still decrease loss if a few correctly classified objects become misclassified, decreasing accuracy.
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Figure 1: These two histograms of δX(s, α(t))-values show that when t = t0 (a), 95% of δX-values are positive,
but when t = t1, only 79.8% of δX values are positive, indicating a decrease in accuracy and therefore, this DNN
is unstable.

2.4 Main Results

As explained above, to establish stability, we must bound L̄(t0) in terms of the accuracy at t0. Assuming that
accuracy at t0 is high, we may separate the training set into a large good set Gη(t0) for some η > 0 its small
complement GCη (t0). Using (30), we may make the following estimate, details for which are found in Section 4.

L̄(t0) ≤ (K − 1)e−η +
∑

s∈GCη (t0)

ν(s) log
(

1 + (K − 1)e−δX(s,α(t0))
)
. (14)

The first term in (14) is controlled by η. If η is even moderately large, then the second term dominates (14),
with most of the loss coming from a few s ∈ GCη (t0). It is therefore sufficient to control the distribution of

{δX(s, α(t0)) : s ∈ GCη (t0)}. There are two primary reasons why this distribution may lead to large L̄(t0), both
relating to β := mins∈T δX(s, α(t0)):

1. There is a single δX(s, α(t0)) that is very large and negative, that is, β � 0.

2. β is not far from zero, but there are many δX(s, α(t0)) near β.

To obtain a good bound on L̄(t0), we must address both issues:

1. Assume that δX(s, α(t0)) > −1 for all s ∈ T , i.e., the bad set B−1(t0) is empty.

2. Impose a condition that prevents {δX(s, α(t)) : s ∈ T} form concentrating near β. Such conditions are
called small mass conditions since they only concern δX(s, α(t0)) for s in the small mass of objects in
GCη (t0). Example 2.1 illustrates this issue.

In the following subsections, we introduce two small mass conditions that lead to stability, and discuss the
advantages of each. We will show that each condition leads to small loss L̄(t0) and ultimately to stability.

2.4.1 First result

The first small mass condition we will consider ensures that the distribution of δX(s, α(t0)) values decays very
quickly near β, the minimum δX(s, α(t0)) value, so there cannot be a concentration of δX near β, resulting in
high accuracy at t0 implying low loss at t0. Additionally, by applying this condition at all times, not just at t = t0,
we can improve the estimate (12). How precisely this condition accomplishes these dual purposes is presented in
Section 4.1.

Definition 2.1. The set {δX(s, α(t)) : s ∈ T} satisfies condition A at time t if there exist constants Λ ≥ 1,
m0 > 0, ψ > 0, and 0 < φ < 1 so that for x1 = 0, β and all x2 > x1,

ν

({
s ∈ T : δX(s, α(t0)) <

x1 + x2

2

})
−m0 ≤ Λν ({s ∈ T : δX(s, α(t0)) < x1})φ

+ Λν ({s ∈ T : δX(s, α(t0)) < x2})ψ+1

(15)



With condition A in hand, we can state the first stability result. Proofs and supporting lemmas are left for
Section 3.

Theorem 2.1. Suppose that T ⊂ Rn with weights ν(s) is a training set for a classifier such that {δX(s, α(t)) :
s ∈ T} which satisfies condition A for some constants Λ ≥ 1, ψ = 1, 0 < φ < 1,and m0 = 0. for all t ≥ t0. Then
for every ε > 0 there exist δ(Λ, ε), η(Λ, ε) > 0 such that if good and bad sets at t = t0 satisfy

ν(Gη(t0)) > 1− δ and B−1(t0) = ∅, (16)

then for all t ≥ t0,
acc(t) = ν(G0(t)) ≥ 1− ε. (17)

and

ν(Gη∗(t)) > 1− ε− (3/4)
− log(3ΛL̄(t0))

2η∗ (18)

for all η∗: 0 < η∗ < − log(3ΛL̄(t0)).

Remark 2.1. The conclusion of theorem 2.1 depends on the hypothesis that condition A holds. Short of brute
force calculation on a case-by-case basis, there is at present no way to determine whether condition A holds
for a given training set T and parameter values α(t0), and for which constants Λ, ψ, φ, and m0 it might hold.
Furthermore, Theorem 2.1 does not control the dynamics of training with sufficient precision to guarantee that
if condition A holds at t0 then it will also hold for all t > t0. Therefore, we have to further strengthen the
hypotheses by insisting that condition A holds for all t > t0.

Remark 2.2. Though a more general version of Theorem 2.1 can be proved for ψ > 0 and m0 ≥ 0, both the
statement and proof are much more tractable with ψ = 1 and m0 = 0.

Remark 2.3. For Theorem 2.1, it is sufficient to choose

δ =
1

2Λ
and η = max

1,

(
1

φ
log

((
10(K − 1)

log 2

)φ
3Λ

ε

))2

, log

(
30Λ(K − 1)

log 2

)2
 . (19)

2.4.2 Unconditional result

Our second condition will also limit the number of δX values that may cluster near β. It does this by ensuring
that if a few δX(t0) are clustered near β, then there must be more δX values that are larger than the δX values
in the cluster. This means that not all of the s ∈ GCη (t0) can have δX(s, α(t0)) near β.

Definition 2.2. The set {δX(s, α(t0)) : s ∈ T} satisfies condition B at time t0 if there exist a mass m0 and
constants κ > 1, and δ, σ > 0 such that for all intervals I ⊂ R,

ν ({s ∈ T : δX(s, α(t0)) ∈ κI}) ≥ min
{
δ, max

{
m0, (1 + σ) ν ({s ∈ T : δX(s, α(t0)) ∈ I})

}}
, (20)

where κI is the interval with the same center as I but whose width is multiplied by κ.

Condition B comes with a notable advantage: it is a consequence of a similar condition on the training set T
called the no small data clusters condition:

Definition 2.3. Let ν̄ be the extension of the measure ν from T to Rn by ν̄(A) = ν(A∩ T ) for all A ⊂ Rn. The
no small isolated data clusters condition holds if there exists m′0 > 0, κ′ > 1 and δ, σ′ > 0 so that for each slab
Sl in Rn,

ν̄(κ′Sl) ≥ min
{
δ, max

{
m′0, (1 + σ′) ν̄(Sl)

}}
. (21)

where κ′Sl is the slab with the same center as Sl, but whose width is multiplied by κ′.

We can now present our second stability theorem:

Theorem 2.2. Assume that the set {δX(s, α(t0)) : s ∈ T} satisfies condition B as given by definition (2.2) at
some time t0. Then for every ε > 0 there exists a constant C = C(K,κ, σ) such that if

m0 ≤
ε

C
, η ≥ log

1

ε
+ C, δ0 ≤ C ε ηlog(1+σ)/ log κ, (22)

and if good and bad sets at t = t0 satisfy

ν(Gη(t0)) > 1− δ0 and B−1(t0) = ∅, (23)



then for all t ≥ t0,
acc(t) = ν(G0(t)) ≥ 1− ε. (24)

and
ν(Gη∗(t)) ≥ 1− 2 log 2 ε eη

∗
. (25)

For all η∗ > 0.

The following theorem guarantees that if the training set T satisfies the no small data clusters condition, then
the set {δX(s, α(t0)) : s ∈ T} satisfies condition B, no matter what what the values of the parameters α(t0) are.
Theorem 2.3 is useful because it allows us to establish stability based solely on training set T , without needing
to begin training. Unlike Theorem 2.1 and 2.2, Theorem 2.3 only applies to classifiers consisting of a DNN with
softmax as its last layer.

Theorem 2.3. Let T ⊂ Rn be a training set for a DNN with weights ν(s) and whose activation functions are
the absolute value function. For all κ > 1, δ > 0 and σ > 0, there exists κ′ > 1, δ, and σ′ > 0 so that if
the no small isolated data clusters condition holds on T with constants κ′, δ, and σ′, then condition B holds on
{δX(s, α(t0)) : s ∈ T} with constants κ, δ, and σ. for any α(t0).

2.4.3 Examples of applications of Condition A and B

Revisiting example 2.1. 1Conditions A and B and their associated Theorems 2.1 and 2.2 guarantee stability, so
why does stability fail in Example 2.1? The answer lies in the constants found in conditions A and B. Condition
A is satisfied relative to constants m0, Λ, φ, and ψ, while condition B is satisfied relative to constants κ, σ, δ,
and m0. We will determine for which constants conditions A and B are satisfied. For both conditions, we will
consider a typical m0 value of m0 = 0.003.

Theorem 2.1 requires ψ = 1. Taking x1 = β(t0), we find via brute force calculation that for the δX values
given in example Λ must exceed 18.0. In the proof of Theorem 2.1, we will see that δ and η must be chosen so
that 3ΛL̄(t0) < 1 However, in Example 2.1,

3ΛL̄(t0) ≥ 3 · 18 · 0.1845 > 1.

Therefore, though Theorem 2.1 guarantees the existence of δ small enough and η large enough to get stability,
such δ and η for Example 2.1 will not satisfy the primary hypothesis of the theorem, that is ν(Gη(t0)) > 1− δ.

Theorem 2.2 requires κ = 2. If I = [−1,−0.2], then ν({s ∈ T : δX(s, α(t0)) ∈ I}) = ν({s ∈ T : δX(s, α(t0)) ∈
κI}) = 0.047, so either σ = 0, which is not allowed in condition B, or δ < .047. But if δ < 0.047, then since
ν(G0(t0)) = 0.95, it is impossible to obtain ν(Gη(t0)) > 1− δ for any η > 0.

Since Example 2.1 can only satisfy conditions A and B with constants that are either too large or too small,
we cannot apply the stability theorems to it.

To see how Theorems 2.1 and 2.2 can be applied, consider the following example.

Example 2.2. Suppose a classifier properly classifies all elements in its training set at t0. In fact, for some large
η, ν(Gη(t0) = 1. How large high will accuracy be at later times?

First suppose that T is a two-class training set for a classifier which satisfies the condition A for all t ≥ t0 for
some constants Λ ≥ 1, ψ = 1, 0 < φ < 1 and m0 = 0. Theorem 2.1 tells us that given ε > 0, if η is large enough,
then

acc(t) > 1− ε

for all t > t0. But how small can ε be? Remark 2.3 gives a relationship between η and ε, and in particular,
provided η is sufficiently large, we may choose

ε =

(
10

log 2

)φ
3Λ

eφ
√
η
.

Since η is large, ε is small. Therefore, at all later times, we are guaranteed high accuracy. Additionally, good sets
also remain large. For example, by choosing

η∗ =
log(3/4)

2 log ε
(η − log(3Λ))

A simple computation with (18) using L̄(t0) ≤ e−η shows that

ν(Gη∗(t)) > 1− 2ε.



for all t > t0. Therefore, Gη∗(t) set remains large for all t, the price paid being that η∗ < η. If η is very large, we
can in fact note that η∗ ∼ √η.

Alternatively, we may choose

η∗ =
log 3/4

2 log 2
(η − log(3Λ))

gives

ν(Gη∗(t)) ≥
1

2
− ε,

meaning the median of the distribution of δX values is greater than η∗ with now η∗ ∼ η.
Similarly, if condition B is satisfied at t = t0 for some constants δ, κ, σ and m0, instead of condition A, then

we can apply theorem 2.2. Using (22), we conclude that letting

ε = max{m0C, e
C−η}

we have
acc(t) > 1− ε.

Since m0 is small and η is large, ε is also small, so accuracy remains high. By letting η∗ = log(2/ log 2), (25), we
have

ν(Gη∗(t)) > 1− 2ε,

so this good set also remains large but with a significantly worse η∗ than for condition A.
Finally, if η∗ = − log(4ε log 2), then

ν(Gη∗(t)) > 1/2,

so again the median of the δX distribution is greater than η∗. Nevertheless, here we still have that η∗ ∼ η.

2.5 How to verify conditions A and B for a given dataset

In this section, we discuss how to verify conditions A and B and the no-small-isolated data clusters condition to
ensure stability of training algorithms in a real-world setting. For completeness, we review notations:

• We consider classifiers of the form φ(·, α(t)) = ρ◦X(·, α(t)) where ρ is the softmax function and X(·, α(t)) :
Rn → RK depends on parameters α(t) where t is the present iteration of the training process.

• T is a training set for the classifier containing objects s. For each s, i(s) is the index of the correct class of
s.

• Each object s has a positive weight ν(s) with
∑
s∈T ν(s) = 1.

• δX(s, α(t)) = Xi(s)(s, α(t))−maxj 6=i(s)Xj(s, α(t)).

Now we will explain how to verify each of the conditions, and how to use them to guarantee stability.

• Condition A. Train the classifier until a time t0 when a reasonable degree of accuracy is achieved. Calculate
the values of δX(s, α(t0)) for each s ∈ T . One way to do this is to choose the typical values ψ = 1, φ = 1/2,
and m0 ≈ 0.001 so that the only constant to solve for in (15) is Λ. To this end, make the observation:

minimal Λ such that
(15) is satisfied

= max
x1∈{β,0},x2>x1

ν
({
s ∈ T : δX(s, α(t0)) < x1+x2

2

})
−m0

ν ({s ∈ T : δX(s, α(t0)) < x1})φ + ν ({s ∈ T : δX(s, α(t0)) < x2})ψ
.

(26)
Therefore, finding the optimal Λ is a matter of solving a maximization problem. For fixed x1, the right hand
side of (26) is piecewise constant with discontinuities at δX(s, α(t0)) for s ∈ T . Thus, the maximization
problem is solved by sampling the right hand side of (26) at x1 = 0 and x1 = β, and x2 = δX(s, α(t0)) for
all s ∈ T and then finding the maximum of the resulting list of samples.

With condition A satisfied for some known constants, one may apply Theorem 2.1. However, as seen with
Example 2.1, if Λ is too large, Theorem 2.1 may still require Gη(t0) larger than it actually is. It may be
possible to decrease Λ by repeating the maximization process with smaller φ or larger m0. If an acceptable
Λ is found, 2.1 guarantees stability. If not, one may need to train longer to find an acceptable Λ.



• No-small-isolated data clusters condition. Assume that the classifier is a deep neural network with the
absolute value function as its activation function. By verifying the no-small-isolated data clusters condition,
we are guaranteed that condition B holds for all time. Therefore, we need only verify once that the no-
small-isolated data clusters condition holds, which is its principal advantage. To verify this condition, choose
constants δ = 0.01, κ′ = 2, and m0 ≈ 0.001. Let P be the set of all slabs Sl in Rn such that ν(κSl∩T ) ≤ δ
and ν(Sl ∩ T ) > m0. We are left with finding the constant σ′ which satisfies (21) for all slabs in P :

maximal σ′ such that (21) is satisfied = min
Sl∈P

ν(κSl ∩ T )

ν(Sl ∩ T )
− 1. (27)

As in verifying condition A, we will solve this minimization problem by discretizing the domain of mini-
mization, P , and sampling the objective function only on that discretization. It should be noted that the
dimension of P is n + 1. Since n (the dimension of the space containing T ) is typically high, this means
that a sufficiently fine discretization is necessarily quite large.

After finding σ′, we may be sure that condition B is satisfied at every iteration of the training algorithm
for known constants. Therefore, we may apply Theorem 2.2 to guarantee stability.

3 Proof of Theorems 2.1, 2.2 and 2.3

3.1 Elementary estimates

Here, we will show the details and derivations of many several simple equations, inequalities, and some technical
lemmas.

Estimates for loss. As mentioned in Section 2.3.1, the quantity δX(s, α) facilitates convenient estimates for
loss. To start, (6) gives

pi(s)(s, α) =
eXi(s)(s,α)∑K
k=1 e

Xk(s,α)
=

1∑K
k=1 e

Xk(s,α)−Xi(s)(s,α)
=

1

1 +
∑
k 6=i(s) e

Xk(s,α)−Xi(s)(s,α)
. (28)

For each k 6= i(s), Xk(s, α)−Xi(s)(s, α) ≤ maxk 6=i(s)Xk(s, α)−Xi(s)(s, α) = −δX(s, α). Using (7) and (28), we
obtain estimates on pi(s)(s, α):

1

1 + (K − 1)e−δX(s,α)
≤ pi(s)(s, α) ≤ 1

1 + e−δX(s,α)
. (29)

Finally, (29) gives estimates on loss:∑
s∈T

ν(s) log
(

1 + e−δX(s,α)
)
≤ L̄(α) ≤

∑
s∈T

ν(s) log
(

1 + (K − 1)e−δX(s,α)
)
. (30)

In particular, if there are only two classes, the inequalities in (29) and (30) are equalities.

Derivations of (12) and (13). Equations (12) and (13) show how low loss leads to high accuracy. Starting
from the lower bound for loss in (30), we make the following estimates for any t:

L̄(t) ≥
∑
s∈T

ν(s) log(1 + e−δX(s,α(t)))

≥
∑

s∈GCη (t)

ν(s) log(1 + e−δX(s,α(t)))

≥ log(1 + e−η)
∑

s∈GCη (t)

ν(s)

= ν(GCη (t)) log(1 + e−η)

= (1− ν(Gη(t))) log(1 + e−η). (31)

Observe that log(1 + x) ≥ x/2 for 0 ≤ x ≤ 1. It follows that

ν(Gη(t)) ≥ 1− 2eηL̄(t).

With the assumption that loss is decreasing, and t ≥ t0, we conclude that

ν(Gη(t)) ≥ 1− 2eηL̄(t) ≥ 1− 2eηL̄(t0).



On the other hand, we can obtain an improved estimate for ν(acc(t)) by applying (31) with η = 0:

ν(acc(t)) ≥ 1− L̄(t)

log 2
≥ 1− L̄(t0)

log 2
.

Derivation of (14). Equation (14) shows that when Gη(t) is large, the sum (8) is dominated by a few terms
that correspond to poorly classified objects. To derive (14), start from the upper bound in (30), and then make
the following series of estimates:

L̄(t) =
∑
s∈T

ν(s) log
(

1 + (K − 1)e−δX(s,α(t))
)

=
∑

s∈Gη(t)

ν(s) log
(

1 + (K − 1)e−δX(s,α(t))
)

+
∑

s∈GCη (t)

ν(s) log
(
1 + (K − 1)e−δX(s, α(t))

)
≤ log

(
1 + (K − 1)e−η

) ∑
s∈Gη(t)

ν(s) +
∑

s∈GCη (t)

ν(s) log
(

1 + (K − 1)e−δX(s,α(t))
)

≤ (K − 1)e−ην(Gη(t)) +
∑

s∈GCη (t)

ν(s) log
(

1 + (K − 1)e−δX(s,α(t))
)

≤ (K − 1)e−η +
∑

s∈GCη (t)

ν(s) log
(

1 + (K − 1)e−δX(s,α(t))
)
.

The following two technical lemmas will be used in later proofs.

Lemma 3.1. Suppose 0 < Λδ < 1/2. The inequality

∞∑
k=0

e2k log(Λδ)− 1+η

2k+1 ≤ C e−
√
−2 log(Λδ)(1+η)

can always be satisfied for some C = C(Λ, ε, η) ≤ 13/4

The proof of Lemma 3.1 is essentially a long series of elementary estimates which are not very enlightening.
Consequently, it is relegated to the appendix.

Lemma 3.2. For any p > 0 and any κ ≥ 2,

p−1∑
0

κi e−κ
i

≤ 2. (32)

Proof. Observe that for x ≥ 2, one trivially has that

x2 e−x ≤ 1,

so that
p−1∑

1

κi e−κ
i

≤
p−1∑

1

κ−i ≤
p−1∑

1

2−i ≤ 1.

3.2 Upper bound on the loss function for condition A

A key part of the proof of Theorem 2.1 is to obtain an upper bound on the Loss function at the initial time t0,
as given by

Lemma 3.3. Suppose that T ⊂ Rn with measure ν(s) is a training set for a softmax DNN which satisfies condition
A for some constants Λ ≥ 1, ψ = 1 and 0 < φ < 1 and for t = t0. If for some η > 0,

ν(Gη(t)) > 1− δ (33)

for δ < 1/2Λ and
B−1(t) = ∅, (34)

then the cross-entropy loss is bounded by:

L̄(t) ≤ e−η + Ce−
√
−2 log(Λδ)(1+η), (35)

where C is a constant less than 13e/4.



Proof. For each k = 0, 1, 2, · · · ..., let

ηk = β +
−β + η

2k
and Ik = {s ∈ T : δX(s, α(t0)) < ηk} ,

where β := mins∈T δX(s, α(t0)). Observe the relation (ηk + β)/2 = ηk+1. For fixed k, apply condition A for
x1 = β and x2 = ηk:

ν(Ik+1) = ν ({s ∈ T : δX(s, α(t0)) < ηk+1})

= ν

({
s ∈ T : δX(s, α(t0)) <

ηk + β

2

})
= ν

({
s ∈ T : δX(s, α(t0)) <

x1 + x2

2

})
.

This implies that

ν(Ik+1) = Λν ({s ∈ T : δX(s, α(t0)) < x1})φ + Λν ({s ∈ T : δX(s, α(t0)) < x2})ψ+1

= Λν ({s ∈ T : δX(s, α(t0)) < β})φ + Λν ({s ∈ T : δX(s, α(t0)) < ηk})ψ+1

= 0 + Λν(Ik)2 by the definition of β

= Λν(Ik)2

Since η0 = η, (33) gives
ν(I0) = ν ({s ∈ T : δX(s, α(t)) < η}) = 1− ν(Gη) ≤ δ.

Therefore, by induction

ν(Ik) ≤ Λ2k−1δ2k .

We may now simply bound loss from above. Recall that the cross-entropy loss may be bounded by

L̄(t) ≤
∑
s∈T

ν(s) log
(

1 + (K − 1)e−δX(s,α(t))
)
.

Since β is the minimum δX value, δX(s, α(t0)) > β for all s ∈ T , so either s ∈ Gη(t) or s ∈ Ik \ Ik+1 for some
k. Additionally, log(1 + (K − 1)e−x) is decreasing in x, so if δX(s, α(t0)) ∈ Ik \ Ik+1, then δX(s, α(t0)) > ηk+1.
Therefore,

log
(

1 + (K − 1)e−δX(s,α(t))
)
≤ log

(
1 + (K − 1)e−ηk+1

)
.

Using these facts, we make the following estimate

L̄(t0) ≤
∑

s∈Gη(t)

ν(s) log
(

1 + (K − 1)e−δX(s,α(t0))
)

+

∞∑
k=0

∑
s∈Ik\Ik+1

ν(s) log
(

1 + (K − 1)e−δX(s,α(t0))
)

≤
∑

s∈Gη(t)

ν(s) log
(
1 + (K − 1)e−η

)
+

∞∑
k=0

∑
s∈Ik\Ik+1

ν(s) log
(
1 + (K − 1)e−ηk+1

)
= log

(
1 + (K − 1)e−η

) ∑
s∈Gη(t)

ν(s) +

∞∑
k=0

log
(
1 + (K − 1)e−ηk+1

) ∑
s∈Ik\Ik+1

ν(s).

As a consequence, we have that

L̄(t0) ≤ ν(Gη(t))(K − 1)e−η +

∞∑
k=0

ν(Ik \ Ik+1)(K − 1)e−ηk+1

≤ (1− δ)(K − 1)e−η +

∞∑
k=0

ν(Ik)(K − 1)e−ηk+1

≤ (K − 1)e−η +

∞∑
k=0

(K − 1)Λ2k−1δ2ke−ηk+1 ,



and

L̄(t0) = (K − 1)e−η + (K − 1)

∞∑
k=0

Λ2k−1δ2ke−β−
η−β
2k+1

≤ (K − 1)e−η + (K − 1)e−β
∞∑
k=0

e2k log(Λδ)− η−β
2k+1 .

Since β > −1, we have

L̄(t0) ≤ (K − 1)e−η + (K − 1)e

∞∑
k=0

e2k log(Λδ)− η+1

2k+1 .

By Lemma 3.1, we can find a constant C less than 13e/4 such that

e

∞∑
k=0

e2k log(Λδ)− η+1

2k+1 ≤ Ce−
√
−2 log(Λδ)(1+η).

Thus,

L̄(t) ≤ (K − 1)
(
e−η + Ce−

√
−2 log(Λδ)(1+η)

)
.

3.3 Proof of Theorem 2.1

With Lemma 3.3, we are now ready to prove Theorem 2.1. Fix ε > 0. Let δ0 = 1/2Λ, and choose δ < δ0. We
may apply Lemma 3.3 to see that

L̄(t0) ≤ P (η, δ,Λ) := (K − 1)
(
e−η + Ce−

√
−2 log(Λδ)(1+η)

)
.

Observe that limη→∞ P (η, δ,Λ) = 0, so by choosing η0 sufficiently large and η > η0, we can make loss arbitrarily
small (see Remark 2.3 for an explicit estimate on η0).

Since loss is decreasing in time, if L̄(t0) is small, then L̄(t) is also small for all t > t0. By making L̄(t) small,
we will be able bound the size of good sets from below. To start, we will show that if L̄(t0) < 1/3Λ, then

G− log(3ΛL̄(t0))(t) > 1− 1

2Λ
(36)

for all t. Suppose, to the contrary, that G− log(3ΛL̄(t0))(t) ≤ 1− 1
2Λ for some t. Then the size of the complement

of the good set is bounded below:

GC− log(3ΛL̄(t0))(t) >
1

2Λ

Therefore,

L̄(t0) ≥ L̄(t)

≥
∑
s∈T

ν(s) log(1 + e−δX(s,α(t)))

≥
∑

s∈GC− log(3ΛL̄(t0))

ν(s) log(1 + e−δX(s,α(t))),

which gives

L̄(t0) ≥ ν(GC− log(3ΛL̄(t0))(t)) log(1 + elog(3ΛL̄(t0)))

>
1

2Λ
log(1 + 3ΛL̄(t0)).

Since log is concave down, log(1 + x) < x log(2) for 0 < x < 1. Thus,

L̄(t0) >
1

2Λ
3ΛL̄(t0) log(2) =

3

2
log(2)L̄(t0) > L̄(t0).



This is a contradiction, so G− log(3ΛL̄(t0))(t) > 1− 1
2Λ .

We will now use (36) to bound the size of all good sets from below. Suppose that L̄(t0) < 1/3Λ. Let
ηk = −2−k log(3ΛL̄(t0)) for all k = 0, 1, 2, · · · . Clearly, there is a recurrence relation: ηk+1 = ηk/2. For fixed k,
let x1 = 0 and x2 = ηk. Then by condition A we can estimate the size of the complement of Gηk(t) for all t. First
remark that

ν
(
GCηk+1

(t)
)

= ν ({s ∈ T : δX(s, α(t)) < ηk+1})

= ν

({
s ∈ T : δX(s, α(t)) <

0 + ηk
2

})
= ν

({
s ∈ T : δX(s, α(t)) <

x1 + x2

2

})
.

Applying now condition A, we obtain

ν
(
GCηk+1

(t)
)
≤ Λ

(
ν ({s ∈ T : δX(s, α(t)) < x1})φ + ν ({s ∈ T : δX(s, α(t)) < x2})2

)
≤ Λ

(
ν ({s ∈ T : δX(s, α(t)) < 0})φ + ν ({s ∈ T : δX(s, α(t)) < ηk})2

)
≤ Λ

(
ν
(
GC0 (t)

)φ
+ ν

(
GCηk(t)

)2)

From (13),

ν(GC0 (t)) = 1− acc(t) ≤ L̄(t0)

log 2
.

Therefore,

ν
(
GCηk+1

(t)
)
≤ Λ

((
L̄(t0)

log 2

)φ
+ ν

(
GCηk(t)

)2)
(37)

Since ηk is decreasing with k, ν(GCηk(t)) is also decreasing in k. This means that if for some k0,

ν
(
GCηk0

(t)
)
≤
√

2

(
L̄(t0)

log 2

)φ/2
, (38)

then (38) also holds with ηk0 replaced by ηk for all k > k0. Therefore, for all k > k0, we may use (37) to estimate:

ν
(
GCηk(t)

)
≤ Λ

((
L̄(t0)

log 2

)φ
+ ν

(
GCηk−1

(t)
)2
)
≤ Λ

((
L̄(t0)

log 2

)φ
+ 2

(
L̄(t0)

log 2

)φ)
= 3Λ

(
L̄(t0)

log 2

)φ
. (39)

On the other hand, if k ≤ k0,

ν
(
GCηk(t)

)
>
√

2

(
L̄(t0)

log 2

)φ/2
,

or equivalently, (
L̄(t0)

log 2

)φ
<

1

2
ν
(
GCηk(t)

)2
.

Thus, for k < k0, we can use (37) to obtain

ν(GCηk(t)) ≤ Λ

((
L̄(t0)

log 2

)φ
+ ν

(
GCηk−1

(t)
)2
)
≤ Λ

(
1

2
ν
(
GCηk−1

(t)
)2

+ ν
(
GCηk−1

(t)
)2
)

=
3

2
ν
(
GCηk−1

(t)
)2

.

By induction,

ν(GCηk(t)) ≤
(

3

2
Λ

)2k−1

ν (Gη0(t))
2k
.

From (36), ν (Gη0
(t)) ≤ 1/2Λ, so

ν
(
GCηk(t)

)
≤
(

3

2
Λ

)2k−1(
1

2Λ

)2k

≤
(

3

4

)2k

=

(
3

4

)− log(3ΛL̄(t0))
ηk

. (40)



For any k, either (39) and (40) holds, so for all k ≥ 0,

ν
(
GCηk(t)

)
≤
(

3

4

)− log(3ΛL̄(t0))
ηk

+ 3Λ

(
L̄(t0)

log 2

)φ
. (41)

We wish to find a bound on good sets for all η∗ with 0 < η∗ < − log(3ΛL̄(t0)), not just η∗ = ηk for some k. By
the monotonicity of good sets, if ηk+1 < η∗ ≤ ηk,

ν
(
GCηk+1

(t)
)
≤ ν

(
GCη∗(t)

)
≤ ν

(
GCηk(t)

)
. (42)

Since ηk = 2ηk+1, 1/2η∗ < 1/ηk. Applying (41) to (42), we have

ν
(
GCη∗(t)

)
≤
(

3

4

)− log(3ΛL̄(t0))
ηk

+ 3Λ

(
L̄(t0)

log 2

)φ
≤
(

3

4

)− log(3ΛL̄(t0))

2η∗

+ 3Λ

(
L̄(t0)

log 2

)φ
.

Since ν(Gη∗(t)) = 1− ν(Gη∗(t)), for all η∗ with 0 < η∗ < log(3ΛL̄(t0)),

ν (Gη∗(t)) > 1−
(

3

4

)− log(3ΛL̄(t0))

2η∗

− 3Λ

(
L̄(t0)

log 2

)φ
, (43)

and since G0(t) = ∪η∗>0Gη∗(t),

acc(t) = ν (G0(t))

= lim
η∗→0

ν (Gη∗(t))

> lim
η∗→∞

1−
(

3

4

)− log(3ΛL̄(t0))

2η∗

− 3Λ

(
L̄(t0)

log 2

)φ
= 1− 3Λ

(
L̄(t0)

log 2

)φ
.

(44)

Finally, by choosing η0 sufficiently large and η > η0, we can make L̄(t0) sufficiently large that 3Λ(L̄(t0)/ log 2)φ < ε.
Therefore,

acc(t) > 1− ε

and

ν (Gη∗(t)) > 1− ε−
(

3

4

)− log(3ΛL̄(t0))

2η∗

,

concluding the proof.

3.4 Upper bound on the loss for condition B

Just as for Theorem 2.1, the first step in the proof of Theorem 2.2 is to derive an upper bound on the loss function
based now on condition B.

Lemma 3.4. Suppose that T ⊂ Rn with weights ν(s) is a training set for a softmax DNN which satisfies condition
B in the sense of definition 2.2, at time t0 for m0 and some constants κ, δ > 0 and σ > 0. If for some δ0 > 0,
and δ0 < δ,

ν(Gη(t0)) > 1− δ0 (45)

and
B−1(t0) = ∅, (46)

then the cross-entropy loss is bounded by:

L̄(t0) ≤ Cm0 + (K − 1)

(
e−η + δ0 e

−η/κ + δ0
σ + 1

ηγ
(e+ 2κγ)

)
, (47)

for any 0 < γ ≤ min{1, log(1 + σ)/ log κ}.



Proof. Consider x ∈ [−1, η) and ` > 0 such that I := [x− `, x+ `) ⊂ [−1, η). By condition B, we have either that

ν ({s ∈ T : δX(s, α(t0)) ∈ I}) ≤ m0,

or that
ν ({s ∈ T : δX(s, α(t0)) ∈ κ I}) ≥ min{δ, (1 + σ) ν ({s ∈ T : δX(s, α(t0)) ∈ I})}.

Applying condition B repeatedly j times in this last case, we conclude that

ν
({
s ∈ T : δX(s, α(t0)) ∈ κj I

})
≥ min{δ, (1 + σ)jν ({s ∈ T : δX(s, α(t0)) ∈ I})}.

By (45), ν ({s ∈ T : δX(s, α(t0)) < η}) ≤ δ0. Therefore, provided κjI ⊂ (−∞, η),

δ0 ≥ ν
({
s ∈ T : δX(s, α(t0)) ∈ κj I

})
≥ min{δ, (1 + σ)jν ({s ∈ T : δX(s, α(t0)) ∈ I})}.

Since δ0 < δ, we conclude that

ν ({s ∈ T : δX(s, α(t0)) ∈ I}) ≤ max

(
m0,

δ0
(σ + 1)j

)
(48)

for all j so that κjI ⊂ (−∞, η), or equivalently, for all j so that x+κj` ≤ η. Obviously, (48) is best for j as large
as possible with the largest value given by

jmax =

⌊
log
(
η−x
`

)
log κ

⌋
>

log
(
η−x
`

)
log κ

− 1.

Therefore,

ν ({s ∈ T : δX(s, α(t0)) ∈ I}) ≤ m0 +
δ0

(σ + 1)jmax

< m0 +
δ0

(σ + 1)
log( η−x` )

log κ −1

We have thus proved the bound

ν ({s ∈ T : δX(s, α(t0)) ∈ I}) < m0 + δ0 (σ + 1)

(
`

η − x

)γ
, (49)

where γ = log(σ + 1)/ log κ. If condition B holds for some σ, it also holds for all smaller σ, so we may assume
without loss of generality that σ < κ− 1, and therefore 0 < γ < 1. Similarly we may assume that κ ≥ 2.

Now we will apply (49) to explicit intervals. Let p = blog(η)/ log κc and let Ii = [κi, κi+1) for all i ∈ N with
i < p. We also define I−1 = [−1, 1) and Ip = [κp, η). For i ≥ 0, Ii is centered at xi = 1+κ

2 · κ
i and has half-width

`i = κ−1
2 · κ

i. Therefore by (49),

ν ({s ∈ T : δX(s, α(t0)) ∈ Ii}) ≤ m0 + δ0 (1 + σ)

(
`i

η − xi

)γ
. (50)

The interval I−1 is centered at 0 and has width 1, so

ν ({s ∈ T : δX(s, α(t0)) ∈ I−1}) ≤ m0 + δ0 (1 + σ)

(
1

η

)γ
. (51)

Finally since κp > κlog η/ log κ−1, we simply bound for Ip

ν ({s ∈ T : δX(s, α(t0)) ∈ Ip}) ≤ δ0. (52)

For each s ∈ T , either δX(s, α(t0)) ≥ η, or δX(s, α(t0)) ∈ Ii for integer i ≥ −1. Therefore,

L̄(t0) ≤
∑
s∈T

ν(s) log
(

1 + (K − 1)e−δX(s,α(t0))
)

=
∑
s∈T

δX(s,α(t0))≥η

ν(s) log
(

1 + (K − 1)e−δX(s,α(t0))
)

+

p−1∑
i=−1

∑
s∈T

δX(s,α(t0))∈Ii

ν(s) log
(

1 + (K − 1)e−δX(s,α(t0))
)

≤ log(1 + (K − 1)e−η)
∑
s∈T

δX(s,α(t0))≥η

ν(s) +

p−1∑
i=−1

log
(
1 + (K − 1)e− inf Ii

) ∑
s∈T

δX(s,α(t0))∈Ii

ν(s).



Of course by decomposing

L̄(t0) ≤ (K − 1)e−ην(Gη(t0)) +

p−1∑
i=−1

log
(
1 + (K − 1)e− inf Ii

)
ν ({s ∈ T : δX(s, α(t0)) ∈ Ii})

≤ (K − 1) e−η + log (1 + (K − 1)e) ν ({s ∈ T : δX(s, α(t0)) ∈ I−1})
+ (K − 1) e−η/κ ν ({s ∈ T : δX(s, α(t0)) ∈ Ip})

+ (K − 1)

p−1∑
i=0

e−κ
i

ν ({s ∈ T : δX(s, α(t0)) ∈ Ii}) .

We now use (50), (51) and (52) to derive

L̄(t0) ≤Cm0 + (K − 1)e−η + (K − 1) δ0 e
−η/κ + δ0 (σ + 1)

log(1 + e (K − 1))

ηγ

+ δ0 (σ + 1)(K − 1)

p−1∑
i=0

(
(κ− 1)κi

2η − (1 + κ)κi

)γ
e−κ

i

.

(53)

We need to estimate the value of the sum above. The smallest value of the denominator occurs when i is at its
maximum value of p− 1 = log2 η − 1. Thus, since γ < 1,

p−1∑
i=1

(
(κ− 1)κi

2η − (1 + κ)κi

)γ
e−κ

i

≤
p−1∑
i=0

(
(κ− 1)κi

2η − η (1 + 1/κ)

)γ
e−κ

i

=
κγ

ηγ

p−1∑
i=0

κγ ie−κ
i

≤ κγ

ηγ

p−1∑
i=0

κie−κ
i

.

By Lemma 3.2, this yields that

p−1∑
0=1

(
(κ− 1)κi

2η − (1 + κ)κi

)γ
e−κ

i

≤ 2
κγ

ηγ
. (54)

Applying (54) to (53), we arrive at

L̄(t0) ≤ Cm0 + (K − 1)

(
e−η + δ0 e

−η/κ + δ0
σ + 1

ηγ
(e+ 2κγ)

)
,

which finishes the proof.

3.5 Proof of Theorem 2.2

We start with the trivial bound derived from (30) by a sort of Chebyshev inequality∑
s∈Gc

η∗ (t)

ν(s) log(1 + e−η
∗
) ≤ L̄(t) ≤ L̄(t0). (55)

As a consequence, we obtain from Lemma 3.4 that provided Gc−1(t0) = ∅ and ν(Gη(t0)) > 1− δ0,

ν(Gc0(t)) ≤ Cm0 +
K − 1

log 2

(
e−η + δ0 e

−η/κ + δ0
σ + 1

ηγ
(e+ 2κγ)

)
.

We can make sure that the right-hand side is less than ε if for some constant C(K,σ, κ)

m0 ≤
ε

C
, η ≥ log

1

ε
+ C, δ0 ≤ C ε ηγ .

Of course one could even be rather explicit on C

C = max

(
log

K − 1

log 2
,
K − 1

log 2
(σ + 1) (e+ 2κγ)

)
.

This immediately proves the first part of Theorem 2.2.
For the second part, we note that the above choice of η and δ0 also guarantees that

L̄(t0) ≤ ε log 2.



Therefore by (55) and for η∗ ≥ 0, we have that

ν(GCη∗(t)) ≤ ε
log 2

log(1 + e−η∗)
≤ 2 log 2 ε eη

∗
.

We finish the proof by a technical remark which may, in some cases, improve the estimates. Define a strip

S = {s : x− ` ≤ δX(s, α(t)) ≤ x+ `}.

We may directly apply the bound (49), proved previously, which we recall below: For any η > x+ `,

ν(S) < m0 + ν(Gcη(t)) (σ + 1)
`γ

(η − x)γ
.

This implies that

ν(S) < m0 + 2 log 2 ε eη (σ + 1)
`γ

(η − x)γ
.

One may optimize in η by finding the minimum of

f(η) =
eη

(η − x)γ
= ex

eη−x

(η − x)γ
,

which is obtained at η − x = γ. Therefore

ν(S) <

m0 + 2 log 2 ε `γ ex (σ + 1)
eγ

γγ
if ` ≤ γ,

m0 + 2 log 2 ε `γ ex+` (σ + 1) if ` > γ.

(56)

This of course has to be compared with the trivial bound

ν(S) ≤ ν(Gcx+`) ≤ 2 log 2 ε ex+`,

which makes it obvious that (56) is only useful if ` is small enough.

3.6 Proof of Theorem 2.3

The proof is performed by induction on the number of layers in the network. For this reason it is worth taking a
more general perspective on the doubling assumption behind condition B.

For any measure µ on Rd, we consider the following condition

∀u ∈ Rd \ {0}, ∀s ∈ R, µ ({x, |u · x− s| ≤ κ}) = min
{
δ, max

{
m0, (1 + σ)µ ({x, |u · x− s| ≤ 1})

}}
. (57)

We denote by L : RN → Rd any non-linear function that is a combination of a shift, linear operation and as
a non-linear function the absolute value; namely

L(x)i =

∣∣∣∣∣∣
N∑
j=1

Mij(xj + sj)

∣∣∣∣∣∣ , (58)

where s ∈ RN is the shift and M ∈MN,d(R) is a matrix.
We then have Theorem 2.3 as a consequence of

Theorem 3.5. Assume that the measure µ satisfies (57) and L is given by (58). Then the pushforward L#µ also
satisfies (57) though with the new constants m′0, δ

′, σ′, κ′.

We recall that L#µ is defined by L#µ(O) = µ(L−1(O)).

Remark 3.1. Theorem 3.5 allows us to propagate condition B backwards. That is, we transfer condition B on the
values taken by the last layer of a DNN before softmax to a similar condition on the second to last layer, then
the third to last layer, until we reach a condition on the training set.

To prove Theorem 3.5, we decompose L into a linear part and the absolute value with propositions on each.



Proposition 3.6. Assume that the measure µ satisfies (57) and that M ∈MN,d(R). Then the pushforward M#µ
also satisfies (57) with the same constants.

Proof. We simply observe that if |u · x− s| ≤ κ then any y s.t. M y = x also satisfies that

|(MT u) · y − s| ≤ κ.

Hence

M#µ ({x, |u · x− s| ≤ κ}) = µ
(
{x, |(MT u) · x− s| ≤ κ}

)
,

M#µ ({x, |u · x− s| ≤ 1}) = µ
(
{x, |(MT u) · x− s| ≤ 1}

)
.

Since (57) holds on µ for all u, it trivially holds on M# µ.

The second and last part consists in handling the absolute value with

Proposition 3.7. Denote by A : RN → RN the absolute value function A(x) = (|x1|, x2 . . . , xN ). Assume that
µ solves (57) then A# µ solves (57) with the new constants σ′ = σ/2, δ′ = δ, m′0 = m0 (1 + max(σ/4, 4/σ)),
κ′ = κk with k = 1 + k̄ log 1

δ for some universal constant k̄.

Proof. Consider any strip
S = {|u · x− a| ≤ 1}.

The inverse image A−1(S) consists of S and of

S′ = {|u′ · x− a| ≤ 1}, u′ = (−u1, u2, . . . , uN ).

For any κ′, we have of course that A−1(κ′ S) = κ′ S ∪ κ′ S′ and typically we want to apply (57) to those two
strips. The issue however is that the intersections κ′ S ∩ S′ or κ′ S′ ∩ S may be non empty.

To be more precise, let us decompose

S1 = (κ′ S) ∩ S′, S2 = (κ′ S) \ S′, S′1 = (κ′ S′) ∩ S, S′2 = (κ′ S′) \ S.

The assumption (57) guarantees that µ(S1) + µ(S2) ≥ σ µ(S) for example already for κ′ = κ. But we could have
that µ(S2) << µ(S1) leading to an issue since S1 is contained in S′ and hence in A−1(S).

We hence treat differently several cases for some constant C to be chosen later

Case 1: If µ(S) ≥ C µ(S′) or µ(S′) ≥ C µ(S). Those are equivalent so we may freely assume µ(S) ≥ C µ(S′).
This is the simplest case where we may take κ′ = κ. Applying (57) to S, we find that either µ(S) ≤ m0, µ(κS) ≥ δ
or

µ(κS) = µ(S1) + µ(S2) ≥ (1 + σ)µ(S).

If µ(S) ≤ m0 then µ(S) + µ(S′) ≤ m0 (1 + 1/C). If µ(κS) ≥ δ then µ(κS ∪ κS′) ≥ δ.
On the other hand µ(S1) ≤ µ(S′) ≤ µ(S)/C so

µ(κS ∪ κS′) ≥ µ(κS) ≥ (1 + σ)µ(S) ≥ (1 + σ)(1− 1/C) (µ(S) + µ(S′))

≥ (1 + σ)(1− 1/C)µ(S ∩ S′).

This lets us immediately conclude if we choose 1/C = σ/4 for example in which case (57) holds for A#µ with
δ′ = δ, m′0 = m0(1 + σ/4), σ′ = σ/2 and κ′ = κ.

Case 2: If µ(S′)/C ≤ µ(S) ≤ C µ(S′). We now look at κk S or κ′ = κk for some k. Observe that by using
(57) k times, we have that

µ(κk S) ≥ (1 + σ)k µ(S), or µ(κk S) ≥ δ, or finally µ(S) ≤ m0.

In the second case, we are done again. In the third case, we have that µ(S) + µ(S′) ≤ (1 +C)µ0 = (1 + 4/σ)µ0.
And in the first case, we may deduce that

µ(κk (S ∪ κS′)) ≥ (1 + σ)k µ(S) ≥ (1 + σ)k

C + 1
(µ(S) + µ(S′)) ≥ (1 + σ)k

C + 1
µ(S ∪ S′).

We recall that we chose C = 4/σ for the previous case so

(1 + σ)k

C + 1
=

(1 + σ)k

1 + 4/σ
≥ 1 +

σ

2



provided that

k ≤ log(1 + σ/2) + log(1 + 4/σ)

log(1 + σ)
≤ 1 + k̄ log

1

σ
,

for some constant k̄.
Therefore using either κ′ = κ or κ′ = κk ≥ κ with k = 1 + k̄ log 1

σ , we have that

µ(κ′ (S ∪ S′)) ≥ (1 + σ/2)µ(S ∪ S′).

Hence (57) holds A#µ with δ′ = δ, m′0 = m0(1 + 4/σ), σ′ = σ/2 and κ′ = κk.

4 Appendix

4.1 Derivations of Conditions A and B

The goal co conditions A and B is to ensure that {δX(s, α(t0)) : s ∈ GCη (t0)} does not concentrate near its
minimum β. Conditions A and B accomplish this goal in different ways.

4.1.1 Condition A

If there is no concentration of δX(s, α(t0)) near β, we expect that for a small interval whose left endpoint is β,
more δX values are in the right half of this interval than in the left. In other words, for small a > 0,

ν ({s ∈ T : β ≤ δX(s, α(t0)) < β + a}) < ν ({s ∈ T : β + a ≤ δX(s, α(t0)) < β + 2a}) . (59)

Since β = mins∈T δX(s, α(t0)), we may write (59) equivalently as

ν ({s ∈ T : δX(s, α(t0)) < β + a}) < 1

2
ν ({s ∈ T : δX(s, α(t0)) < β + 2a}) . (60)

Now replace 1/2 with a continuous parameter Λ:

ν ({s ∈ T : δX(s, α(t0)) < β + a}) < Λν ({s ∈ T : δX(s, α(t0)) < β + 2a}) . (61)

Since all masses are less than 1, we can control concentration near β better by increasing the exponent on the
right side of (61):

ν ({s ∈ T : δX(s, α(t0)) < β + a}) < Λν ({s ∈ T : δX(s, α(t0)) < β + 2a})ψ+1
, ψ > 0. (62)

By letting x1 = β and x2 = β + 2a, we may write this condition as

ν

({
s ∈ T : δX(s, α(t0)) <

x1 + x2

2

})
< Λν ({s ∈ T : δX(s, α(t0)) < x2})ψ+1

, ψ > 0. (63)

We will see in the proof of Lemma 3.3 that (63) leads to an excellent bound on L̄(t0).
The inequality (12) provides a lower bound for G`(t) via L̄(t0) for ` > 0, but by adjusting condition A slightly,

we can improve this inequality. In particular, we would like to apply a condition like (63) with x1 = 0 and x2 = 2`
to obtain a bound on ν(GC` (t)) = ν({s ∈ T : δX(s, α(t)) < `}):

1− ν(G`(t)) = ν({s ∈ T : δX(s, α(t)) < `}) ≤ Λν({s ∈ T : δX(s, α(t)) < 2`})ψ+1 = Λ(1− ν(G2`))
ψ+1 (64)

Assuming that the map ` 7→ ν(G`(t)) is continuous at ` = 0 (i.e., there is no s ∈ T with δX(s, α(t)) = 0), then
in the limit as `→ 0:

1− ν(G0(t)) ≤ Λ(1− ν(G0(t)))ψ+1. (65)

Dividing both sides of (65) by 1− ν(G0(t)) and using (13), we obtain

1 ≤ Λ(1− ν(G0(t)))ψ ≤ Λ

(
L̄(t0)

log 2

)ψ
. (66)

If L̄(t0) is small, (66) may not be satisfied. We do not want to exclude distributions {δX(s, α(t0)) : s ∈ T} with
small L̄(t0), so (63) is insufficient. A simple solution to this problem is to add a new term depending on x1 to
the right side of (63). The new term must vanish when x1 = β so that the loss bound obtained from (63) still



holds. The new term must also not exclude distributions with small L̄(t0) when x1 = 0. The obvious candidate
is ν({s ∈ T : δX(s, α(t)) < x1)})φ for some power φ > 0, so the TDSM condition becomes

ν

({
s ∈ T : δX(s, α(t0)) <

x1 + x2

2

})
< Λν ({s ∈ T : δX(s, α(t0)) < x2})ψ+1

+ Λν ({s ∈ T : δX(s, α(t0)) < x1})φ , ψ, φ > 0.

(67)

Applying the analysis used to obtain (66) to (67), we get

1 ≤ Λ

(
L̄(t0)

log 2

)ψ
+ Λ

(
L̄(t0)

log 2

)φ−1

. (68)

This is satisfied trivially as long as Λ ≥ 1 and 0 < φ < 1.

4.1.2 Condition B

Consider a small interval J = [β− x, β+ x] for x > 0. There may be some δX(s, α(t0)) values in the right half of
I, but if the δX(s, α(t0)) values do not cluster near β, then there should be more δX(s, α(t0)) values to the right
of J . In other words, If we increase the width of J from 2x to 2κx for some κ > 1, leaving its center in place, the
number of δX(s, α(t0)) values it contains should increase:

ν ({s ∈ T : δX(s, α(t0)) ∈ [β − κx, β + κx]}) > ν ({s ∈ T : δX(s, α(t0)) ∈ [β − x, β + x]}) . (69)

Now let I be any interval. Denoting by κI the interval whose center is the same as I but whose width is increased
by a factor of κ, (69) becomes

ν ({s ∈ T : δX(s, α(t0)) ∈ κI}) > ν ({s ∈ T : δX(s, α(t0)) ∈ I}) . (70)

We can strengthen (70) by introducing a factor of (1 + σ) on the right hand side, where σ > 0:

ν ({s ∈ T : δX(s, α(t0)) ∈ κI}) > (1 + σ)ν ({s ∈ T : δX(s, α(t0)) ∈ I}) . (71)

Of course T is a finite set, so one can take I arbitrarily small containing a single element, in which case κI may
still contain only that same element. Therefore, it is necessary to introduce m0, a small mass which accounts for
when I is so small that (71) may not hold. When the left right hand side of (71) is too small, (71) need not hold:

ν ({s ∈ T : δX(s, α(t0)) ∈ κI}) > max {m0, (1 + σ)ν ({s ∈ T : δX(s, α(t0)) ∈ I})} . (72)

Finally, If I is too large, it is to be expected that increasing its width does not increase its mass much, e.g., if
I contains all δX(s, α(t0)) values. Moreover, we will use condition B to control the distribution of only a small
number of misclassified objects. Therefore, if we introduce δ which is the maximum mass of intervals we will
consider with condition B:

ν ({s ∈ T : δX(s, α(t0)) ∈ κI}) > min {δ,max {m0, (1 + σ)ν ({s ∈ T : δX(s, α(t0)) ∈ I})}} . (73)

This completes the derivation of condition B.

4.2 Proof of Lemma 3.1

Here we present the proof of Lemma 3.1

Proof. For simplicity, write εK = x. Since 0 < ε < 1/(2K), we consider 0 < x < 1/2. First, observe that∑
k≥0

e2klog(x)− η+1

2k+1 − Ce−
√

2| log(x)|(η+1) ≤ 0

if and only if

C ≥
∑
k≥0

e2klog(x)− η+1

2k+1 +
√

2| log(x)|(η+1).

To simplify the problem, let y =
√
− log(x) and z = 1

y

√
η+1

2 . Then

2k log(x)− η + 1

2k+1
+
√

2| log(x)|(η + 1) = −2−k(z − 2k)2y2.



Since 0 < x < 1/2 and η > 1, we have y >
√

log 2 and z > 1
y
√

2
or equivalently, y ≥ max{

√
log 2, 1/(z

√
2)}. The

problem is reduced to finding C such that

C ≥ h(y, z) :=
∑
k≥0

e−2−k(z−2k)2y2

for all y ≥ max{
√

log 2, 1/(z
√

2)}. We proceed to find

C0 = max
y≥max{

√
log 2,1/(z

√
2)}, z>0

h(y, z)

so that it is always possible choose C ≤ C0.
It is easy to calculate

∂

∂y
h(y, z) = −2y

∑
k≥0

2−k
(
2k − z

)2
e−2−k(z−2k)

2
y2

< 0

for y, z > 0. Thus, for fixed z = z′,

max
y≥max{

√
log 2,1/(z′

√
2)}
h(y, z′) = h(max{

√
log 2, 1/(z′

√
2)}, z′).

Therefore, C0 = max{a, b} where

a = max
z≥1/
√

2 log(2)

h(
√

log 2, z), and b = max
0<z≤1/

√
2 log 2

h(1/(z
√

2), z).

Therefore, we will estimate a and b.
First we will estimate a. Let

pk(z) = 2−2−k(2k−z)2

so that h(
√

log 2, z) =
∑
k≥0 pk(z). Note 0 ≤ pk(z) ≤ 1 for all z ∈ R and k ≥ 0. Observe also that (2k − z)2 is a

convex function, so it is bounded below by any tangent line. In particular,

(2k − z)2 ≥ 2k
(

3

4
2k − z

)
and

(2k − z)2 ≥ 2k+1

(
z − 3

4
2k+1

)
.

From these, we obtain two upper bounds on pk(z):

pk(z) ≤ 2k

z
2−( 3

4 2k−z)

and

pk(z) ≤ 2k

z
2−2(z− 3

4 2k+1).

The former is useful for z ≤ 2k−1. The latter is useful for z ≥ 2k+1. Recall also the following identities:

n∑
k=1

ak =
a (an − 1)

a− 1

and
∞∑
k=n

ak =
an

1− a
for a < 1.



First consider z < 2. We may write

h(
√

log 2, z) = p0(z) + p1(z) +

∞∑
k=2

pk(z)

≤ 2 +

∞∑
k=2

2−( 3
4 2k−z)

≤ 2 + 4

∞∑
k=2

2−
3
4 2k

≤ 2 + 4

∞∑
k=4

2−
3
4k

= 2 + 4
2−

3
4×4

1− 2−3/4

≤ 2 +
5

4
= 3.25

Now, suppose z ≥ 2. Then there is an integer m ≥ 2 so that 2m−1 ≤ z < 2m. We write

h(
√

log 2, z) = pm−1(z) + pm(z) +

m−2∑
k=0

pk(z) +

∞∑
k=m+1

pk(z),

and estimate both sums:

m−2∑
k=0

pk(z) ≤
m−2∑
k=0

2−2(z− 3
4 2k+1)

≤ 2−2m
m−2∑
k=0

2
3
2 2k+1

≤ 2−2m
2m−2∑
k=1

8k

= 2−2m 8(82m−2 − 1)

7

=
8

7
2−2m−2

≤ 4

7
,

∞∑
k=m+1

pk(z) ≤
∞∑

k=m+1

2−( 3
4 2k−z)

≤ 22m
∞∑

k=m+1

2−
3
4 2k

≤ 22m
∞∑

k=2m+1

2−
3
4k

= 22m 2−
3
4 2m+1

1− 2−3/4

=
2−2m−1

1− 2−3/4

≤ 5

8
.

Since clearly pm−1(z) and pm(z) are less than 1, we have

h(
√

log 2, z) ≤ 2 +
4

7
+

5

8
≈ 3.196

for z ≥ 2. Thus, a ≤ 3.25.
Now we will calculate b = max0<z≤1/

√
2 log 2 h(1/(z

√
2), z). Let

qk(z) = e
−2−k−1

(
1− 2k

z

)2

.

Then

q′k(z) =
e
−2−k−1

(
2k

z −1
)2 (

2k

z − 1
)

z2
.

The sign of q′k(z) is the sign of (2k/z − 1). For 0 ≤ z ≤ 1/
√

2 log 2 < 1, (2k/z − 1) > 0, so qk(z) is increasing for
all z ∈ (0, 1) and k ≥ 0. Therefore,

b = h
(

1/
√

2, 1
)



=
∑
k≥0

e−2−k−1(2k−1)2

=
∑
k≥0

e−2−k−1(22k−2k+1+1)

=
∑
k≥0

e−
1
2 (2k−2+2−k)

=
∑
k≥0

e−
1
2 (2k/2−2−k/2)2

= e0 + e−
1
2 (21/2−2−1/2)2

+
∑
k≥2

e−
1
2 (2k/2−2−k/2)2

≤ 9

5
+
∑
k≥2

e−2k−2

≤ 9

5
+
∑
k≥1

e−k

=
9

5
+

1

e− 1

<
5

2
.

We conclude that C0 = max{a, b} ≤ 3.25
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