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Abstract.
We consider a high contrast two phase composite such as a ceramic/polymer composite or a

fiberglass composite. Our objective is to determine the dependence of the effective conductivity Â
(or the effective dielectric constant or the effective shear modulus) of the composite on the random
locations of the inclusions (ceramic particles or fibers) when the concentration of the inclusions is high.
We consider a two dimensional model and show that the continuum problem can be approximated by
a discrete random network (graph). We use variational techniques to provide rigorous mathematical
justification for this approximation. In particular, we have shown asymptotic equivalence of the
effective constant Â for the discrete and continuum models in the limit when the relative interparticle
distance goes to zero. We introduce the geometrical interparticle distance parameter using Voronoi
tessellation, and emphasize the relevance of this parameter due to the fact that for irregular (non
periodic) geometries it is not uniquely determined by the volume fraction of the inclusions.

We use the discrete network to compute Â numerically. For this purpose we employ a computer
program which generates a random distribution of disks on the plane. Using this distribution we
obtain the corresponding discrete network. Furthermore the computer program provides the distri-
bution of fluxes in the network which is based on the Keller’s formula for two closely spaced disks.
We compute the dependence of Â on the volume fraction of the inclusions V for monodispersed
composites and obtained results which are consistent with the percolation theory predictions. For
polydispersed composites (random inclusions of two different sizes) the dependence Â(V ) is not sim-
ple and is determined by the relative volume fraction Vr of large and small particles. We found some
special values of Vr for which the effective coefficient is significantly decreased. The computer pro-
gram which is based on our network model is very efficient and it allows us to collect the statistical
data for a large number of random configurations.
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Introduction. We consider a problem of determining effective properties of a
two phase composite material in which a large number of small particles is randomly
distributed in a homogeneous medium (a matrix or a host with dispersed filler). We
consider the case when properties of the matrix and the filler are vastly different. This
question arises in a variety of engineering problems.

We next present three examples, which motivated our work.
Optimal design of electrical capacitors. It is well known that the capacity of

an electrical capacitor is proportional to the dielectric constant [39]. Most of the
materials have the dielectric constant which is not too large, usually no greater than
10 (in relative units). On the other hand several kinds of ceramic materials have
an extremely high dielectric constant (103 − 104 or even higher) [25]. However, in
many situations it is not practical to use pure ceramic as a principal element of
a capacitor because ceramic has unsatisfactory mechanical properties (too brittle).
Therefore a composite of a matrix with a low dielectric constant (which provides
the desired mechanical properties) and ceramic particles (which increase the effective
dielectric constant) is typically used in industry. Practical issues in the design of such

∗ Penn State University, Department of Mathematics, University Park, PA 16802 & Department
of Mathematics and Computer Science, University of Akron, (berlyand@math.psu.edu).

† 324 Bdl.95, 9th November str., 630009, Novosibirsk, Russia

1



2 L.Berlyand* and A. Kolpakov

composites is selection of the filler identity, size distribution and optimal array of the
filling particles.

Thermal management in the electronics industry. Modern integrated circuit de-
sign needs highly efficient “packages”(composites) for heat removal. This need is
driven by the fact that modern circuits have more ”elements” per volume (to minia-
turize the devices and make them more powerful) and therefore they generate more
heat per volume. A typical package is a compound of an epoxy based polymer filled
with ceramic (or other highly conductive material) powders so that the ratio of the
thermal conductivities is of order of 102 ([18]). The rational behind using such com-
posites is the same as for the electrical capacitors; epoxy based polymers provide
desired mechanical properties while the filler increases the heat conductivity.

Mechanical properties of fiber reinforced composite materials. Calculation of the
effective shear modulus of a transversely-random unidirectional composite of parallel
fibers (e.g. fiberglass composites) is based on the solution of a Laplace type PDE
(more precisely antiplane elasticity vectorial problem amounts to solving one scalar
PDE). The coefficients in this equation have meaning of stiffness of the matrix and
the fibers. For modern composites the contrast ratio is again quite high, for example,
in the case of the boron fibers in epoxy matrix it is about 200 − 400 ([26]).

All the above problems (the list of examples can be continued) have two main
features: random microstructure and high contrast in physical properties. Rigorous
mathematical results on homogenization of random microstrusture were obtained in
classical works [23], [34]. In these works the existence of the homogenized limit under
very generic assumption on the microstructure has been rigorously proved. Rigorously
justified explicit computational formulas are available only for a few special structures
[20], [13]. Some heuristic computational formulas and mixing rules, which are based
on physical considerations (see for example, [10] where a number of such formulas for
the effective dielectric constant are presented), are in reasonably good agreement with
experimental data only in a certain range of parameters and this range is typically
either not known or quite restrictive (e.g. small concentration).

A variety of rigorously justified bounds on the effective properties of composites
has been obtained over recent years (see [28] for the review on bounds). For high
contrast composites the bounds from [11] work well below the percolation threshold.

It is also possible to calculate effective properties of random high contrast com-
posites using numerical methods by solving directly the PDEs with rapidly oscillating
coefficients (e.g. finite elements or integral equations, see for example, [2], [15]). Then
two questions arise. The first is how large is the dimension of the problem (since the
problem is highly inhomogeneous, the corresponding grid has to have a large num-
ber of grid points). The second is how to take into account the high contrast of the
composite phases. In particular, it is necessary to address the issue of concentrated
fluxes between closely spaced inclusions which requires the use of a very fine mesh in
the domains of concentration (see also [42] for analytical study of the concentration
phenomenon). It leads to further increase of the complexity of the problem. Finally,
it is necessary to repeat this computation and average over a large number of random
configurations (i.e. to collect statistics). All these makes the problem very difficult.

We propose a different approach that approximates the continuum problem with
a discrete network connecting neighboring particles. The notions of a neighbor and
a neighborhood of a particle play essential role in our consideration. We introduce
these notions using Voronoi tessellation (see below) which leads to a natural definition
of the neighboring particles (disks) and the “boundary” disks that is disks which lie
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near the external boundary. We observe that while for periodic structures the volume
fraction of the particles uniquely determines the distances between the particles, this
is no longer true for irregular structures and one should search for a new interpartilce
distance parameter, which describes the local geometry when the inclusions are close
to touching. We introduce the interparticle distance parameter for highly packed
composites using Voronoi tessellation and obtain a rigorous asymptotic approximation
with respect to this parameter.

We also remark that the domains of the flux concentration in some sense deter-
mine the effective properties (this will be shown in our analysis). That is why the
computation of the solution outside these domains does not provide useful information
but leads to an essential increase in the complexity of the problem. This further mo-
tivates our interest in developing a relatively simple (suitable for collecting statistical
data in numerical experiments and capturing the percolation effects) and at the same
time rigorously justified model of a random composite. Note that the high contrast
in physical properties is essential in our consideration and in the case of an arbitrary
contrast ratio (not necessarily high) the corresponding analysis becomes much more
cumbersome.

We consider a medium with piecewise constant characteristics, which corresponds
to a two phase composite. Highly conducting inclusions are replaced by the ideally
conducting inclusions (with infinite conductivity). This approach is in agreement with
bounds [11] which imply that if the contrast ratio is greater than several hundreds,
then for many practical purposes it can be taken to be infinite. More precisely if
one plots the effective conductivity versus the contrast ratio using formulas from [11],
then the curve becomes almost horizontal after the contrast ratio reaches certain value
(2000-3000 for typical polymer/ceramic composites).

Finally we mention that our approach allows to obtain an analytical error estimate
in which all constants are explicitly defined. This estimate will be presented in the
forthcoming paper [7].

We now present an overview of the paper. In the section 1 we introduce a discrete
network model which corresponds to a continuum two phase composite of a matrix
and particles or fibers (0-3 or 1-3 composites, [32]) (subsections 1.1 and 1.2).

The network model is a system of Kirchhoff’s type on a graph with appropriate
boundary conditions. The sites of the graph correspond to the particles and the values
of (local) fluxes between nearest particles are assigned to the edges of the graph.
These values are the key parameters of the model and we use the Keller’s formula
[20] (see also [37]) to compute the local fluxes between the neighboring disks (which
corresponds to the cross section of the fibers). We also obtained an algebraic formula
for the effective conductivity, which corresponds to the network model (subsection
1.3).

We implemented a computer program for solving the proposed discrete model. It
takes a reasonable amount of time and it allows us to perform several thousand runs
to obtain the statistical data and to compute physical parameters averaged over a
large number of random arrays of the inclusions (filler).

In subsection 1.4 we use our model to solve numerically the problem for a monodis-
persed (random inclusions of the same size) and polydispersed (random inclusions of
two different sizes) filler. For the monodispersed filler we obtain the dependence of
the effective coefficient Â on the volume fraction V of the filler which agrees with
theoretical predictions based on the percolation theory considerations.

For the polydispersed case the dependence of the effective coefficient Â on the
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volume fraction V of the filler is not simple and is determined by the relative volume
fraction Vr of large and small particles. There are some special values of Vr for which
the effective coefficient is decreased by factor two, see Fig. 1.6. The latter shows an
interesting new feature of the high-contrast closely-packed composites and sheds light
on the important practical question: how one should grind the filling powder for such
composites. We provide a comparison of this result with the dilute irregular case and
the periodic closely packed case and observe that the polysipersity effect is much more
pronounced and qualitatively different in the highly packed irregular high contrast
composites. We also note that mathematical understanding and justification of this
effect poses a challenging open problem for mathematicians working on percolation
theory.

Section 2 is devoted to the derivation and mathematical justification of the dis-
crete network approximation.

We remark here that the discrete circuit (network) models for various high con-
trast models have been used extensively in physics literature ([1],[12],[17],[22],[35] ,[36].
However, the relationship between the original continuum model and the correspond-
ing discrete problem have not been analyzed mathematically. In the work [24] high
contrast conductivity problems were first formulated and analyzed using variational
methods. In [24] an asymptotic analysis in the high contrast ratio parameter had
been carried out for a random checkerboard model, which can be reduced to a lattice
percolation problem. Note that in our case there is no high contrast parameter (the
contrast is infinitely large). Moreover our asymptotic analysis is done with respect
to the geometrical interparticle distance parameter and there is no underlying lattice
percolation in our problem. The latter means that our problem should be described
using continuum percolation models. In the work [9] L. Borcea and G. Papanico-
laou pioneered rigorous mathematical characterization of electro-magnetic properties
of high contrast, continuous problems using the network approximation and asymp-
totics in the high contrast ratio parameter. They introduced an idea of using the
Kozlov’s solution([24]) at a saddle point as a basic building block of the network.
This allows to express the effective conductivity in terms of the principal curvatures
at the saddle points of the phase functions. Their results apply to a large class of
inhomogeneous high contrast materials and they have been used successfully in two-
dimensional imaging applications when the properties of materials are not known
at it is convenient to model the high contrast medium using the Kozlov’s function
exp S(x)/ε ([24]) with a smooth phase function S(x).

By contrast, we consider two phase dispersive composites (particles or fibers in a
matrix) when the properties of each phase are known and the aspect ratio of materials
parameters is taken to be infinite. The corresponding phase function S(x) is just the
non smooth characteristic function of the disks (is equal 1 on the disks and 0 otherwise)
and the asymptotic parameter of our approximation is the geometric interparticle
distance parameter.

As a result of the above mentioned differences, the fluxes in the discrete network
in the Borcea-Kozlov-Papanicoalou model [9], [8] are described by the key parameter√

k+/k−, where k+ and k− are the principal curvatures at the saddle point x of the
function S(x) where as in our model the fluxes in the network are described by the
parameter

√
R
δij

(inverse of the root of the relative interparticle distance), where R

is the radius of the inclusions (disks), δij is the distance between the closely spaced

neighbors (i-th and j-th disks). The parameter of the form
√

R
δ , where δ is determined
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by the volume fraction, appeared in the work [20] (see also [29]) where a periodic array
of almost touching disks have been considered.

Thus we generalize and rigorously justified the Keller’s type asymptotics for ir-
regular (non periodic) high contrast composites. As a byproduct we also provide a
framework for justification of the formal asymtotics which was developed in [20] for
the periodic case.

Note that for the irregular (non periodic) geometry the interparticle distance
parameter has qualitatively new features. Indeed, for a periodic array of inclusions
(e.g. a quadratic lattice) the distance between all inclusions is the same that is δij = δ
and the parameter δ/R is uniquely determined by the volume fraction of the inclusions.
In a non periodic (random) medium with fixed volume fraction of the inclusions the
parameter δij/R can vary. So in an irregular (random) medium it is necessary to
introduce an additional parameter δ/R, δ = maxδij . Here maximum is taken over all
neighboring pairs, where the neighbors are defined using Voronoi tessellation. We call
this parameter the“relative interparticle distance” and it describes the local geometry
of the medium (as oppose to the volume fraction which is a “global” parameter.
Parameters of a similar kind can be measured in an experimental setting and have
been reported by experimentalists (see, for example [43]). In our work this parameter
naturally appears as a result of a rigorous mathematical analysis.

In subsections 2.1-2.5 we construct trial functions for the direct and dual varia-
tional problems. Variational formulation of the problem with ideally conducting in-
clusions (conductivity is equal to infinity) requires introduction of a functional space
different from usual H1. Namely, we employ the space Vp of functions, which take
(unknown) constant values on the inclusions (see section 5.1 for the precise defini-
tion). Similar spaces for an elastic problem with absolutely rigid inclusions were
introduced in [5]. Therefore we must use a construction of trial functions different
from [9]-[8], where the Kozlov’s high contrast field of the form eS(x)/ε was consid-
ered. In [9]-[8] the construction of trial functions was based on the solution of the
ODE (eS(x)/εu′)′ = 0. In our caseε = 0 (infinite contrast), and since we consider
a piecewise constant medium, we construct the trial functions in the neighborhood
of each particle, assuming that they are constants on the particle. We remark here
that the idea of construction of test functions for the direct and the dual variational
problems have been used by several authors. However, there is no general recipe for
constructing the test functions. For example, the test functions from [24] and [9]-[8]
are different from ours and from each other due to different geometries.

Our construction of the trial functions employs the Keller’s solution in a “neck”
or channel between two neighboring disks and an extension in the rest of the domain.
The construction of the extension is based on the partition of the domain due to
Voronoi tessellation which is the key technical tool of this construction. We use the
dual variational problem to obtain the lower bound for the effective conductivity Â.
Main technical points here are to satisfy the div-free conditions and the balance of
fluxes condition (see section 2.4).

In subsection 2.6 we formulate and prove the following asymptotic formula for
the effective coefficient Â, which is the main mathematical result of our work.

Â =
1
4

N∑

i,j=1

gij(ti − tj)2 + F,(0.1)

where ti is a solution vector for the discrete network problem:
∑N

i,j=1 gij(ti − tj) = 0
for the interior sites of the network and ti = ±1 for the sites on the upper and



6 L.Berlyand* and A. Kolpakov

lower boundaries of our rectangular domain (see Section II for precise definitions),
gij = π

√
R
δij

The quantities Â and
∑N

i,j=1 gij(ti − tj)2 are of order
√

R
δ , where δ = maxδij

and F is of the order O(1) +
√

R
δ O(δ/R), O(δ/R) → 0 as δ/R → 0. So the leading

term in the asymptotics in δ is of order
√

R
δ and it is explicitly calculated in terms

of the vector solution of the discrete network problem. The condition δ → 0 means
that we assume that the interparticle distances decay uniformly that is we have a
uniformly dense packing of the particles. We introduce this assumption (which is
quite physical) for the sake of simplicity. It is not too difficult to modify the proof
for the case when the particles distribution consists of several densely packed clusters
which are disconnected or when some isolated particles are present. Such modification
can be done using the same network model. The condition of the uniformly dense
packing is formalized in Section 2.6.

1. Mathematical model of a high contrast two-phase composite. The
network approximation and numerical results. In this section we present a
reduction of the continuum problem to a discrete network problem (approximation)
using physical arguments. In Section II this approximation will be rigorously justified.
Our main focus in this Section will be physical grounds for the network problem for
the two-phase , composites and numerical results, which, in particular, show a very
pronounced effect of polydispersity.

1.1. The Continuum Problem. General Description. In the introduction
we presented several engineering problems which require calculation of the effective
properties of two-phase composites of a matrix filled by a large number of inclusions
(particles or fibers). The ratio between physical properties of the constituents in such
composites (the contrast ratio) varies from several hundreds to several thousands.
Then it is quite natural to ask whether one can assume that the inclusions are ideally
conducting, i.e. having the dielectric constants or thermal conductivity or stiffness in
the above examples formally set to be infinity. The answer to this question depends
on the value of the contrast ratio. In general it is positive for the problems described
in the introduction. For the value of the contrast ration, one can use, for example,
Bruno bounds ([11], page 370). Then we arrive to a simplified model of finding the
effective conductivity of a medium with randomly distributed absolutely conducting
inclusions. From now on we will use the thermal conductivity language for the sake
of definiteness. At the same time we emphasize that our model also applies to the
electrostatic and mechanical problems.

Periodic arrays of high contrast inclusions have been studied in several works ([20],
[5]). If the volume fraction is fixed then the parameter δ/R is uniquely determined.
Here δ is the distance (spacing) between the neighboring inclusions , R is the size
of the inclusion ( e.g. the radius of a spherical inclusion). It was observed that for
such periodic composites the effective conductivity is of order the conductivity of
the matrix (see, for example, [3]),that is the filler has almost no effect The case of
almost touching inclusions, when δ/R is small was considered in ([20], [29]). There
the effective conductivity was found to be of order

√
R/δ.

When the inclusions are randomly distributed, we can not use the techniques,
based on the analysis of the periodic cell, which were used in [20], [29] for periodic
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structures. Moreover for random structures the interparticle distance parameter δ is
not uniquely determined by the volume fraction and should be viewed as an indepen-
dent parameter and percolation effects (connectivity patterns) become very important.
Note that our problems fall into the class of so-called continuum percolation problems
([33].

1.2. Mathematical Formulation of the Continuum Problem. The Dis-
crete Approximation and physical grounds for its validity. We consider a
two-dimensional model of a high contrast composite and assume that all inclusions
are identical disks.

We next present three basic assumptions which were used in formulation of the
discrete model. Note that in Section 1 we do not present rigorous justification of this
model and rather use physical considerations.

• On distribution of the inclusions. All inclusions are modeled by circular disks
Di . The disks are uniformly distributed and do not overlap. The latter
is achieved in the following way: if a randomly thrown in disk overlaps any
other disc, which is already present, it does not count (i.e. it is disregarded).

• On potentials on inclusions(disks). The value of the potential φ on the disk
is a constant, φ = ti on Di. The values ti are unknown and have to be
determined in the course of solving the problem.

• On fluxes. We take into account fluxes between the neighboring inclusions
(i.e. closely spaced) only. All other fluxes (between disks, which are not
closely spaced) and their influences on the nearest neighbors are neglected.

We next comment on these assumptions.
The first assumption is commonly used in modeling of randomly distributed par-

ticles and is known as a sequential addition procedure [33].
The second assumption corresponds to the so-called ”stiff expansion” in the ho-

mogenization problem [3], and have been used for elastic media with rigid inclusions
[5] and for thermal and electrical problems with ”ideally conducting” inclusions.

The third assumption corresponds to the results obtained by J.B.Keller in [20]
for fluxes in the high contrast periodic composite. In Section 2 this assumption will
be rigorously justified for quite generic irregular (non periodic) geometries.

We now present rigorous mathematical model of a medium with a large number
of ”ideally conducting” inclusions (see the second assumption above). It is convenient
to use the following variational formulation of the problem.

Introduce the domain Π = [−L, L] × [−1, 1] occupied by the composite, Fig.1.1.
Denote the disks, which model the inclusions by Di, i=1,...,N. N is the total number
of the disks. Then Qp = Π\∪N

i=1 Di is the matrix (the perforated domain). Introduce
the functional space corresponding to the second assumption.

Vp = {φ ∈ H1(Qp) : φ(x) = ti on Di, φ(x,±1) = ±1}(1.1)

The condition φ(x,±1) = ±1 corresponds to applying the potential ±1 to the
boundaries y = ±1 respectively.

Consider the following problem

I(φ) =
1
2

∫

Qp

|∇φ|2dx → min , φ ∈ Vp(1.2)

The problem (1.1)- (1.2) is equivalent to the following boundary value problem:
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Qp

LL

1

1

x

y

Fig. 1.1. The composite

∆φ = 0 in Qp(1.3)

φ(x) = ti on ∂Di(1.4)

∫

∂Di

∂φ/∂ndx = 0(1.5)

φ(x,±1) = ±1(1.6)

∂φ/∂n(±L, y) = 0(1.7)
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Here and below x = ±L means the vertical (left and right) boundaries of the
domain Qp, y = ±1 means the horizontal boundaries of the domain Qp.

Condition (1.5) is obtained by integration by parts in the Euler-Lagrange equa-
tion, which corresponds to the functional(1.2) and by taking into account condition
(1.4). Condition (1.7) means the absence of the flux through the vertical boundaries
of the domain Π.

Formulas for the effective conductivity.The effective conductivity from the phys-
ical point of view is defined as the total flux through a cross-section of the domain,
for example, through the upper boundary y = ±1. We will need the expression for
this flux in terms of the value of the energy integral I(φ), which is commonly used in
the homogenization theory as a definition of the effective coefficient [4]. For the sake
of completeness we present here this simple derivation.

Multiply equation (1.3) by φ and integrate by parts. Then we obtain

0 = −
∫

Qp

|∇φ|2δx +
∫

y=±1
∂φ/∂nφδx +

N∑

i=1

∫

∂Di

∂φ/∂nφδx(1.8)

Then for the integrals over the boundaries we use (1.4)-(1.5) and obtain

∫

∂Di

∂φ/∂nφdx = ti

∫

∂Di

∂φ/∂ndx.(1.9)

Furthermore,

∫

y=±1
∂φ/∂nφdx =

∫

y=1
∂φ/∂ndx −

∫

y=−1
∂φ/∂ndx(1.10)

due to (1.6).
Multiply the equation (1.3) by 1 and integrate the result by parts. We obtain

0 =
∫

y=±1
∂φ/∂n1dx +

N∑

i=1

∫

∂Di

∂φ/∂n1dx

The last integral is equal to zero due to (1.5) . Then
∫

y=1
∂φ/∂ndx +

∫

y=−1
∂φ/∂ndx = 0

From the last equality and (1.10) we get

∫

y=±1
∂φ/∂nφdx = 2

∫

y=1
∂φ/∂ndx(1.11)

Combining (1.8), (1.9) and (1.11) we obtain

∫

y=1
∂φ/∂ndx =

1
2

∫

Qp

|∇φ|2dx,(1.12)
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where φ is the solution of the problem (1.3)-(1.7) ((1.1)-(1.2)).
Definition 1.1. The total flux through the boundary y = 1 per unit length defined

by

â =
1

2L

∫

y=1
∂φ/∂n dx.

is called the effective conductivity.
We shall also use the corresponding normalized quantity â defined by Â = 2âL =∫

y=1 ∂φ/∂n dx.
Due to (1.12) we have the following formulas for Â

Â =
1
2

∫

Qp

|∇φ|2dx(1.13)

Â =
∫

y=1
∂φ/∂ndx,(1.14)

where φ is solution of the problem (1.3)-(1.7)or due to (1.2),

Â =
1
2
minφ∈Vp

∫

Qp

|∇φ|2dx(1.15)

We remark here that the conductivity of the matrix is taken to be 1 therefore the
flux in the matrix is given by ∇φ.

The discrete problem. We have expressed Â in terms of the flux which al-
lows us to use the third assumption (Sect1.2) in order to calculate the effective
coefficientÂ . According to this assumption, we take into account only the fluxes in
the “necks”(channels) connecting the neighboring disks and neglect all other fluxes.
The we need to know the flux between two disks if the potential on each disk is a
constant. A simple approximate formula for this flux was obtained in [20] (for identi-
cal disks). We employ Keller’s method to derive an approximate formula for the flux
between two disks (the i-th and the j-th) of arbitrary radii Ri and Rj , (see Fig.1.2).
Following [20], we approximate the disks by the tangential parabolas

y = −(δ/2 + ρix
2/2)

and

y = δ/2 + ρjx
2/2,

where

ρi = 1/Ri, ρj = 1/Rj

The distance between the parabolas is equal to

H(x) = δ + (ρi + ρj)x2/2,(1.16)
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x

y

ij

ij

S S

H(x)

R j

R i

Fig. 1.2. Keller’s solution for two disks

We assume that the local flux (the gradient of the potential) between the disks is
of the form

(0,
ti − tj
H(x)

),(1.17)

that is we assume that it is proportional to the difference in temperature or potential
and inversely proportional to the distance between the disks.

Then the total (integral) flux between the disks can be calculated as follows:

Jij = (ti − tj)
∫ S

−S

dx

δ + (ρi + ρj)x2/2
=

1
((ρi + ρj)/2)1/2δ1/2

tan−1[(
(ρi + ρj)/2

δ
)1/2x]|S−S(1.18)

If the sum of the curvatures ρi + ρj is not small, and the distance δ between the
disks is small, then the value of tan−1 in the right-hand side (1.18) is approximately
π. Taking into account that ρi = 1/Ri, ρj = 1/Rj we obtain

Jij = (ti − tj)gij , where gij =
π
√

2RiRj

Ri+Rj√
δ

(1.19)
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Note that gij is the specific flux (i.e. per unit difference of potential).
Formula (1.19) can be derived from the exact solution of the Laplace equation

for two disks as the leading term in asymptotics in δ. This exact solution (capacity
of two cylinders) can be found in [37].

We now estimate the characteristic values of the flux for the different characteristic
distances between the disks. Introduce the following two characteristic distances
between a given inclusion and all other inclusions:

• Distance between the nearest neighbors (closely spaced) inclusions (see also
Fig. 1.2). Denote it by δ∗ (order of magnitude). Then δ∗ << R for very
close packing (see Section 2 for rigorous definitions).

• The distance between a given inclusion and inclusions which are not close to
it (non neighboring). These inclusions form so to speak “second belt” and
the corresponding distances are greater than δ∗. For the sake of definiteness
we choose this second order distance to be of order R.

We comment here on the choice of the cut-off distance δ∗ in numerical simulations.
We used visual control that is many randomly generated pictures were examined. We
considered neighbors the disks, which share common edge in the Voronoi tessellation
(see Section 2.3 for the precise definition). The neighbors in a random array of the
disks are not necessarily closely spaced. The heuristic idea behind our approach is that
we take into account the fluxes between the closely spaced inclusions only. To make
the latter more precise we choose the cut-off distance δ∗ in the interval 0.3R − 0.5R
and obtain a connected graph (network), which consists of the center of closely spaced
disks. The graph is a discrete object. It is controlled by the continuous real variable
δ∗ and it changes by “jumps” as δ∗ changes. The choice of the interval 0.3R − 0.5R
is motivated by the fact that numerical simulations show that even if the disks are
not quite of identical sizes, but the variability in the sizes is not large (factor 2 or
3), then we obtain stable, consistent pictures, that is all closely spaced neighbors are
connected and the disks which are not closely spaced neighbors are not connected.
We have also used another numerical criterion to support this choice of the cut-off
distanceδ∗. Namely, if δ∗ is increased, then the effective conductivity practically does
not change.

The characteristic values of the fluxes corresponding to these distances are given
by

J(distance = δ∗) ∼
√

R

δ∗
, J(distance = R) ∼ 1

The first value is obtained from (1.19). The second value can be obtained from
[37] and it is also consistent with (1.19).

Then, we get

J(distance = δ∗)
J(distance = R)

∼
√

R

δ∗

Thus, by assumption 3 (see the beginning of this subsection), we have to neglect
the fluxes of order 1 and keep the fluxes of order

√
R
δ∗ , where R is the characteristic

radius of the inclusions and δ∗ is the characteristic distance between the inclusions.
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1.3. Numerical implementation of the discrete network approximation
and fluxes in the network. We now define the discrete network, which corresponds
to the original continuum model and formulate the discrete problem.

By assumption 1 (on distribution of the inclusions, see Sect. 1.2) we create
numerically a distribution of disks for a given radius (radii for polydispersed case)
in the rectangle Π = [−L, L] × [−1, 1]. The center x of each disk is generated as a
uniformly distributed in Π random variable. If a disk with the center x and radius
R overlaps with any disk which is already present, then it is rejected, otherwise it is
accepted and added to the list of the disks

L = {(xi, R), i = 1, ..., N}(1.20)

We stop throwing in the disks when the prescribed volume fraction of the disks

V =
N∑

i=1

πR2/(square of Π)

is achieved. Here N is the total number of the disks. We remark here that this
procedure works well for relatively small radii of the disks, when the the fraction of
the boundary disks is not too high.

We compute the distances δij between the i-th and the j-th disks for the obtained
distribution of disks. Then we determine the flux between the neighboring disks and
neglect the fluxes between the non neighboring disks. For this purpose we introduce
the following set of numbers:

gij =
{

gij calculated with formula (1.19) if δ ≤ δ∗

0 if δ ≥ δ∗.
(1.21)

The quantity gij defined by (1.21) describes the flux between the i-th and the j-th
disks. Thus we have defined a discrete network model (graph),

N = {xi, gij ; i, j = 1, ..., N},(1.22)

which consists of points or sites xi (centers of the disks) and edges with assigned
numbers gij . The discrete model (1.22) does not explicitly contain the sizes of the
disks and the distances between them, this information is incorporated via the set
gij . Note that if the concentration is small gij , which gives zero value of the effective
conductivity whereas the conductivity of the matrix is 1. This is not a contradiction.
It means that for high contrasts the value 1 becomes negligible.

The fluxes gij are concentrated in the necks between the disks. Any given pair of
disks is connected by a unique neck. For the disks which are close to the boundaries
y = ±1 this is no longer the case, since a neck between the boundary and a disk which
lies close to this boundary is not well defined. To avoid this difficulty, we introduce
the notion of a “quasidisk”

Definition 1.2. Consider a disk, which lies near the boundary y = +1, that
is if we project this disk on the boundary y = +1 parallel to the OY -axis, then the
projecting rays do not cross any other disk (see Fig.1.3). We call this projection a
“quasidisk”.

In the section II we will provide another (equivalent) definition of quasidisks using
Voronoi tessellation.
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Di

D
j

y=+1

  quasidisk

Fig. 1.3. A quasidisk

Same definition works for the boundary y = −1. In other words a quasidisk is
an “image” of a disk which lies close to the boundary and it represents interaction
between this disk and the boundary. Note that in our further consideration we will
not distinguish the disks and quasidisks, which is a very convenient way to incorporate
the boundary effects. Also when fluxes are computed one can treat any quasidisk as
a disk of infinite radius (R = ∞) (or zero curvature).

We now present the motivation for our choice of the cut-off distance δ∗. If one
looks at the pictures obtained as a result of the numerical procedure for placing ran-
dom disks on the plane it is easy to see that with respect to each given disk all other
disks fall into one of the two categories: closely spaced neighbors (or simply “neigh-
bors”) and remote disks(“aliens”). More precisely, a typical disk has 5-6 “ neighbors”,
the distance between the given disk and its neighbors can be small (δij , R), whereas
the distance between the given disks and the “aliens” can not be small(at least of or-
der of R). The “neighbors”, which can be in a close contact with form given disk
form some sort of a belt which separates the given disk from the rest (“aliens”). The
fluxes between non neighbors are negligible and the network approximation ignores
them. We introduce the cut-off distance δ∗ = R based on the analysis of the arrays
obtained numerically in the procedure described above.

In Section 2 we justify the network approximation the δ close packing condition
and present mathematical conditions for its validity the (the δ close packing condi-
tion).

To close up this model we need to obtain equations, which determine the (con-
stant) values ti of the potential on the sites xi of the network (1.22). To this end
we we note that by assumption 3 (see beginning of Sect. 1.2), only fluxes between
nearest neighbors contribute into the integral (1.2). The latter contributions are given
by (1.19). Using (1.21), we see that a discrete version of the Dirichlet energy integral
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(1.2) for our network model has the following form

1
4

N∑

i,j=1

gij(ti − tj)2,

where the factor 1
4 appears due to the fact that we count each neck twice (see also a

more detailed explanation right before 2.36).Thus we obtain a discrete minimization
problem

N∑

i,j=1

gij(ti − tj)2 → min,(1.23)

which corresponds to (1.2). It remains to supply (1.23) with the boundary conditions

ti = ±1 for i ∈ S±(1.24)

Hereafter we use the notation S± for the set of disks, which touch, cross or lye on
(if quasidisks) the boundaries y = ±1 respectively (boundary sites). The rest of the
sites denoted by I = {xi, i = 1, ..., N} \ (S+ ∪ S−) we are called the internal sites of
the network.

Then the minimization problem (1.23) amounts to an algebraic system (of Kirch-
hoff’s type)

N∑

j=1

gij(ti − tj) = 0, i ∈ I(1.25)

Finally we write a discrete formula for the effective conductivity which corre-
sponds to (1.14):

Â =
∑

i∈S+

∑

j∈I

gij(1 − tj) = 0, i ∈ I(1.26)

(ti = 1 when i ∈ S+).
Lemma 1.3 (Discrete maximum principle). Solution of the problem (1.24), (1.25)

satisfies the inequalities −1 ≤ ti ≤ 1 for all i = 1, ..., N .
Proof. From (1.25) we have the following analog of the mean value theorem.

ti
∑

gij =
∑

gijtj , i ∈ I(1.27)

where summation is taken over all adjacent sites (i.e. connected by an edge of our
graph or network to the i-th site). We make use of the fact that the equality (1.27)
holds on the boundary x = ±L. From the formula (1.27) it follows that the maximum
value cannot be achieved in a inner site. We prove this by contradiction. Suppose
that the maximum value M is achieve at some inner site i ∈ I. Then tj = M at all
sites adjacent to the i-th site. Otherwise (1.27) implies M < M . Since our graph is
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connected it follows that tj = M for all sites of the graph. But the graph includes
the sites on the upper and lower boundaries S+ and S−, where tj = 1 and tj = −1
respectively. This leads us to a contradiction, which means that the maximum value
can be achieved only at the boundaries and this maximum value is 1.

The same argument works for the minimum value −1.
The proposition provides an analog of the maximum principle and it provides an

estimate on the solution which does not depend on the coefficients gij . This lemma
will be used in Section II, when constructing the test functions inside the triangles
(see Fig. 2.4). For the sake of completeness we also mention that an alternative proof
can be obtained by the following variational argument. The set {ti} solves the energy
minimization problem(1.23). If tk > 1 for some inner site k, then the energy can be
lowered by choosing tk = 1 and we are still in the admissible class since this procedure
does not change the boundary conditions. The same argument works for tk < −1 in
which case we choose the replacement value to be −1.

1.4. Numerical simulations. We have implemented a numerical method to
• Generate a configuration ω as a system of random disks (according to as-

sumption 1 at the beginning of section. 1.2)
• Compute the coefficients gij for this system of disks.
• Solve the linear system (1.24),(1.25).
• Compute the effective conductivity Â(ω) using formula (1.26) for this config-

uration.
The control parameters are: the diameter of the disks R and the total volume

fraction V of the disks.
In order to collect the statistical information, we run the program repeatedly and

collect the data {Â(ω), ω ∈ Ω}. Then we compute
• The expected value of the effective conductivity Â = EÂ(ω)
• The mean deviation DA = E|Â(ω) − Â|.
• The maximal conductivity over all collected data m = maxω∈ΩÂ(ω).

All the above quantities have been computed for given values of the quantities R
and V which is why Â, DA, m = Â, DA, m(R, V ) are functions of R and V .

Numerical results for monodispersed composites (all disks of the same radius).
The goal here is to test our numerical algorithms which are based on the network
approximation, to make sure that we can consistently recover (in a very efficient way)
known results, in particular, recover the percolation picture.

The simulations have been carried out in the following way. All disks were of
the same radius. The volume fraction V has been increased with a fixed step δV .For
each value of V the effective conductivity Â(ω) have been computed using the above
described procedure.

For each fixed V the quantities Â, DA and m(ω) have been computed repeatedly
for different random configurations (100− 300 configurations for each value of V ).

We have used several sets of identical disks, that is three different disks’ sizes
(15, 20 and 25) have been used to control the stability of our numerics. Indeed,
since the problem is scale invariant the choice of the radius should not change the
effective conductivity. This effect was used for checking the numerical process. We
have observed no difference in qualitative and quantitative dependence of Â on the
volume fraction V when the sizes were changed.

A typical plot of the function Â = Â(ω) is shown at Fig.1.4. The plot consists
of two parts: for V ≤ 0.2; the total flux through the composite layer is zero. More
precisely, it is very small and it is very close to the OX axis at the plot. For V ≥ 0.35
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the total flux is for sure positive (taking into account the mean deviation). In the
range V = 0.2 − 0.35 the total flux is not positive for sure. Thus the plots of the
function Â = Â(V ) reveal dependence which is typical in the percolation processes
[38]. The percolation threshold in all computations can be estimated as V0 ≈ 0.24.
Above the threshold the function Â(V ) behaves as const(V − V0)p with p ≥ 1, which
is consistent with conventional percolation picture which was observed in experiments
and explained by the percolation theory scaling arguments. We have done this plot

Fig. 1.4. The monodispersed composite

for several sizes of identical inclusions to make sure that there is no size effect, which
is in principle can appear as a numerical artifact.

Thus we conclude that our numerical analysis captures basic features of the real
physical phenomenon and provides realistic quantitative predictions.

We have used the graph of the maximal value m(ω) as an additional test for our
code. Indeed, from the physical point of view it should behave (qualitatively) in the
same way as the graph for the average conductivity, which is what one can see at
Fig.1.4.
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The polydispersed composite. We call a composite polydispersed, if it is filled
with inclusions of different sizes. In our model it amounts to consideration of disks
of different radii. The distribution of the sizes can be continuous or discrete. We
consider the discrete case that is we consider the disks of several fixed sizes. For the
sake of simplicity we study the bimodal case. Namely we have analyzed the following
two components mixtures:

MIXTURE 1. The radii of the disks are: R1 = 25, R2 = 15; the relative fractions
are V1 = 33%, V2 = 67% respectively

MIXTURE 2. The radii of the disks are: R1 = 25, R2 = 15; the relative fractions
are: V1 = 67%, V2 = 33% respectively.

MIXTURE 3. The radii of the disks are: R1 = 35, R2 = 15; the relative fractions
are V1 = 34%, V2 = 66%

MIXTURE 4. The radii of the disks are: R1 = 35, R2 = 15; the relative fractions
are V1 = 66%, V2 = 34%

The total volume fraction of the disks varies in the interval [0.4; 0.55]. The total
volume fraction 0.55 is practically the maximal volume fraction which can be achieved
in our procedure (see Assumption 1 on non overlapping). We used the following two
step procedure for generating the polydisprsed (bimodal) random configurations of
the disks. First we used the algorithm described in Assumption 1 at the beginning of
Sect. 1.2) for the disks of larger size until we reach the volume fraction V × V1. Next
we use the same algorithm for the small disks with the volume fraction V ×V2, where
V is the total volume fraction of disks (kept fixed). In the second step we take into
account the large discs generated in the first step that is if a small disk overlaps with
any other disk present (small or large) it is rejected. The cut-off distance for both
steps is 0.3R2 − 0.5R2.

The graphs of the effective constant Â as a function of the total volume fraction
V are presented on Fig.1.5

One can see that the plots, which correspond to MIXTURES 1-3, are very similar.
It means that in these cases we observe no influence of polydispersity on the effective
constant.

At the same time the graph which corresponds to MIXTURE 4 differs from the
others. This leads us to assume that the polydispersity may or may not have an
essential influence on the effective conductivity, depending on the relative volume
fractions of the large and the small inclusions. Note that MIXTURE 4 has a large
relative volume fraction.

By the latter observation we decided to study the influence of polydispersity in
more detail. For this purpose we have studied the following mixture.

Radii of the disks: R1 = 25, R2 = 10; the total volume fraction of the disks V
is equal to 0.55. We vary the relative volume fraction of the inclusions V1 and V2

(V1 + V2 = 1) from0 to 1. In the Plot 3 the effective conductivity is presented as
function of V1, which is the relative volume fraction of the disks of radius R1 = 25.

This graph shows the same values of Â for v1 = 0 and v1 = 1 ( that is no
size effect, which agrees with the theory, since the problem is scale invariant) and it
plunges down sharply in the interval [0.5; 0.9]. The latter agrees with the above result
for MIXTURE 4.

Thus we observe that for this mixture polydispersity can decrease the effective
conductivity by approximately a factor of 2. This sharp drop occurs when the relative
volume fraction v1 of the large particles is quite high. If we compare the minimum
value Â(v1 = 0.9) = 484 with the corresponding value in a monodispersed composite:
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Fig. 1.5. The polydispersed composites

Â(0.9V ≈ 0.5) = 680, then we conclude that the small particles practically do not
contribute into the effective conductivity.

Note that the effect of polydispersity have been considered in [40] for the dilute
limit and in [41] for a non dilute case (but far from close touching and for a periodic
structure). What concerns us here is the random close packing case (almost touching).
In [40] polydispersity implies a slight increase in the effective conductivity and in [41]
a heuristic and numerical analysis predict that the effect of polydispersity is very
small. In the almost touching case we observe either very small effect or essential
drop in the effective conductivity.

We remark here on the comparison of the results in the dilute limit (where in
essence only pairwise interactions are taken into account), the fixed concentration case
(which reduces to a cell problem in the periodic case) and almost touching random
packing (our case) suggests that the effect of polydispersity manifests itself differently
for three qualitatively different ranges of the fillers concentration (dilute irregular,
periodic finite concentration and almost touching irregular).
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Fig. 1.6. Sharp decrease in the effective conductivity

Description of the numerical procedure. In our numerical simulations we have
used an integer lattice Π0 = 550 × 400, i.e. we have chosen the rectangle Π0 =
[0, 550] × [0, 400] (that is L = 550/400 for convenience of the visual control on the
screen). The centers of the disks have been generated in the form random(n) +
random(1), where random(n) is a pseudo-random number uniformly generated from
the set {0, 1, .....n} and random(1) is is a pseudo-random number uniformly generated
from the interval [0, 1]. The disks near the boundary were retained if their centers
were inside Π0. The boundary values 1 and 0 were prescribed at the upper and lower
edges of Π0.

In the numerical procedure we have used the disks of radii 35, 25, 20, 15, 10 (in
our coordinates 35/200, 25/200, 20/200, 15/200, 10/200, since [−1, 1] corresponds to
[0, 400] and there were from 5 to 20 layers of disks on the top of each other in the
vertical direction. The statistical data was collected mainly for the disks of radii
25, 20, 15. The average number of disks in the rectangle Π0 was between 50 and 150.

In the numerical experiments for the monodispersed composites the expected
value of Â‘ and the deviation DÂ was calculated over 320 configurations for several
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values of the volume fraction V , which are indicated at the plots as nodal points.
The values of Â at these points are also indicated at the plots. The vertical segments
at the plots corresponds to the intervals 2[EÂ − DÂ]. We observe that the graphs,
which corresponds to different volume fractions are similar both qualitatively and
quantitatively. Also one can see that m(V ) and EÂ(V ) have the same qualitative
behavior. Thus we conclude that our numerical procedure is stable.

We now introduce the interparticle distance parameter, which will be used in the
justification of the asymptotic formula.

To this end we first recall the notion of the two-dimensional Voronoi tessellation.
It illustrated by Fig. 1, where the boundaries of the polygons are formed from the
points which are equidistant from the given set of sites xi. Thus the Voronoi polygon
(more precisely its interior) of the site xi is the set of all points which are closer to
the site xi than to any other site xj , j .= i. This definition works for the set of points
(sites) of an infinite plain.

It also can be adopted for a set of points (sites) inside our rectangular domain
Π. It could be done in a number of ways, for example, by the symmetric reflecting of
the domain Π and set of sites xi about each edge of Π followed by restriction of the
Voronoi cells in the broader domain (“4Π”) to the original domain Π.

In the context of our problem we shall do the following. Given a set of randomly
distributed disks in the domain Π, we take the centers xi as the sites of the Voronoi
tessellation of Π. Then the neighboring Voronoi polygons (cells) determine the neigh-
boring disks (neighboring cells shear a common edge).We connect the neighborings
sites xi and xj by segments xi xj . We then connect the sites near the boundary of
Π (centers of the disks which lie near the boundary) with the boundary by perpen-
diculars from this centers to the corresponding (nearest) edges of Π. Here we have
treated pieces of the boundaries as quasidisks.

2. Approximation of the continuum problem by the discrete problem.
Estimates and proof of convergence.

2.1. Direct problem. In Section 1 we introduced the affine set of functions

Vp = {φ ∈ H1(Qp) : φ(x) = ti on Di, φ(x,±1) = ±1}(2.1)

It consists of the functions which take constant values on the inclusions Di i =
1, ..., N (N is the total number of the inclusions) and satisfy the boundary conditions
on the vertical boundaries y = ±1 of the domain Qp (see Fig.1.1, Section 1).

We have also shown that the problem under consideration can be written in
variational form (minimization of a functional) and as a boundary value problem.
For our purposes we will use the following variational form (see Section 1 (1.2)):

I(φ) =
1
2

∫

Qp

|∇φ|2dx → min , φ ∈ Vp(2.2)

It has been also shown that (see (1.13)) that the integral flux Â through the
boundary y=+1 of the domain Qp is equal to

Â =
1
2

∫

Qp

|∇φ|2dx,(2.3)
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where φ is the solution of the problem (2.2) and therefore

Â =
1
2
minφ∈Vp

∫

Qp

|∇φ|2dx,(2.4)

The quantity Â is a rescaled effective conductivity â so that Â = 2âL. In order
to get rid of the normalization factor L we will deal with Â.

From (2.4) and (2.2) we have an upper bound

Â ≤ 1
2

∫

Qp

|∇φ|2dx for any φ ∈ Vp(2.5)

2.2. The dual problem. The dual problem can be introduced in a standard
way. Some specific features are due to the fact that the trial functions take constant
values on the inclusions.

Let us introduce the following functional space

Wp = {v ∈ L2(Qp) : v(±L, y)n = 0;
∫

∂Di

vndx = 0}(2.6)

Here vn is the dot product, the condition v(±1, y)n=0, where n is the outward
normal to the vertical boundaries of the domain Qp corresponds to insulating bound-
aries (see (1.7)). The second (integral) condition in (2.6) will be explained later.

We next use the Legendre transformation

1
2
x2 = maxv∈R2(vx − 1

2
v2),x ∈ R2(2.7)

Then (2.4) can be written in the form

Â = minφ∈Vp

∫

Qp

1
2
|∇φ|2dx = minφ∈Vpmaxv∈Wp

∫

Qp

(∇φv − 1
2
v2)dx =

maxv∈Wpminφ∈Vp

∫

Qp

(∇φv − 1
2
v2)dx(2.8)

We will use the weak formulation of the divergence-free condition and the weak
formulation of the boundary conditions for the trial fields v.

Since the quadratic functional I(φ) satisfies the conditions of Proposition 5.2,
Chapter III [14], we can interchange max and min in (2.8). Here the div free condition
is understood in the weak sense (see (2.11) below).

Since the term 1
2v

2 in (2.8) does not contain φ, it is possible write (2.8) in the
form

Â = maxv∈Wp{
∫

Qp

−1
2
v2dx + minφ∈Vp

∫

Qp

∇φvdx}

We integrate by parts in the last integral taking into account that the boundary
of the domain Qp consists of the external boundaries of the rectangle x = ±L, y = ±1,
see Fig.1.1, Section 1) and boundaries ∂Di of the inclusions Di (i=1,...,N).
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Then we get

Â = maxv∈Wp{
∫

Qp

−1
2
v2dx + minφ∈Vp [−

∫

Qp

(φdivvdx +

∫

x=±L
φvndx +

∫

y=±1
φvndx +

N∑

i=1

∫

∂Di

φvndx]}(2.9)

The third and the fifth integrals in (2.9) are equal to zero due to the definition
the functional space Wp. Note that φ(x) = const on ∂Di.

On the horizontal boundaries y = ±1 the function φ takes values ±1 respectively.
We will use functions with this property hereafter. To simplify the notations we
introduce the function φ0(y) = ±1 when y = ±1. Then (2.9) takes the form

Â = maxv∈Wp{−
1
2

∫

Qp

v2dx +
∫

y=±1
φ0vndx + minφ∈Vp [−

∫

Qp

φdivvdx]}(2.10)

The third term in (2.10) is linear in φ and it is equal to −∞ if divv .= 0. Thus
maximum in (2.10) is attained on the functions satisfying the condition divv = 0 (see
also [14]). Note that the condition divv .= 0 (divv = 0) is understood in the weak
sense, that is

∫

Qp

φdivvdx = −
∫

Qp

∇φ · vdx, for anyφwith compact support.(2.11)

As a result we obtain

Â = maxv∈Wp , divv=0{−
1
2

∫

Qp

v2dx +
∫

y=±1
φ0vndx}(2.12)

From (2.12) we get a lower bound for the effective constant

Â ≥ J(v) = {−1
2

∫

Qp

v2dx +
∫

y=±1
φ0vndx}

for any v ∈ Wp such that divv = 0(2.13)

The solution φ of the problem (2.1), (2.2) satisfies(see [14]):

J(v) = I(φ),(2.14)

where v = ∇φ.
Equality (2.14) follows from the definition of the functionals I(φ) and J(v) ( (2.2),

(2.13)) and Green’s identity. Using the boundary conditions (1.4)-(1.6) this identity
can be written as follows:

∫

Qp

|∇φ|2dx =
∫

y=±1
∂φ/∂nφ0dx(2.15)
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2.3. Construction of the upper and lower bounds based on the solution
of the discrete model from Section 1. We begin with the construction of dual
bounds, which work for any distribution of the inclusion. To simplify the calcula-
tions, we consider the identical inclusions when the disks are of the same radii (the
monodispersed case). All calculations can be generalized for the polydispersed case.

From (2.5) and (2.13) we have the two-side bounds for the effective constant

1
2

∫

Qp

|∇φ|2dx ≥ Â ≥ −1
2

∫

Qp

v2dx +
∫

y=±1
φ0vndx,(2.16)

which hold for any test functions φ ∈ Vp and v ∈ Wp , divv = 0.
A successful choice of the test functions leads to the tight bounds. There is no

general recipe for choosing the tight bounds since the form of of the test functions
depends on the geometry, the interface conditions and the PDE. The main point of the
analysis in this section is to show that for our specific problem we can construct the
upper and the lower bounds so that they coincide to the leading order asymptotics in
δ (tight bounds). The idea of constructing the tight bounds is not new and have been
used by many authors but each time the main question is the actual construction
of dual test functions. The latter is usually a highly nontrivial task and there is
no generic approach for such a construction since it relies on specific features of the
problem. For example, the test functions for the dual bounds from [9] or [24] are very
different from ours (and from each other) due to different geometries.

In Section 1 we introduced the discrete network {xi, gij ; i, j = 1, ..., N}, where
xi are the sites of the network (graph) and gij are the specific fluxes (the flux from
the i-th to the j-th disk given by formula (1.19)). Our goal is to obtain asymptotic
formulas for the functionals in the two-side bounds (2.16) such that the leading terms
are expressed in terms of the network problem parameters: the specific fluxes gij and
the potentials ti on the sites xi. We shall next formulate the conditions under which
the leading terms are the same and therefore the bounds provide the leading term in
the asymptotic expansion for the effective coefficient Â (compare with the Squeeze
Theorem).

The test functions are constructed in some neighborhoods of the disks and for
a pair of neighboring disks. In order to define the notion of a neighboring disk we
shall employ Voronoi construction. This construction will also allow us to introduce
the interparticle distance parameter, which will be used in the justification of the
asymptotic formula. To this end we first recall the notion of the two-dimensional
Voronoi tessellation. It is illustrated by Fig. 2.1, where the boundaries of the polygons
are formed from the points which are equidistant from the given set of sites xi. Thus
the Voronoi polygon (more precisely its interior) of the site xi is the set of all points
which are closer to the site xi than to any other site xj , j .= i. This definition works
for the set of points (sites) of an infinite plain.

It also can be adopted for a set of points (sites) inside our rectangular domain
Π. It could be done in a number of ways, for example, by the symmetric reflecting of
the domain Π and set of sites xi about each edge of Π followed by restriction of the
Voronoi cells in the broader domain (“4Π”) to the original domain Π.

2.4. The lower bound. Due to (2.16) the effective coefficient can be bounded
from below by
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Fig. 2.1. Voronoi tessellation

Â ≥ J(x) = −1
2

∫

Qp

v2dx +
∫

y=±1
φ0vndx,(2.17)

where the test function v satisfies the following conditions

divv = 0 in Qp(2.18)

∫

∂Di

vndx = 0, i = 1, ..., N(2.19)

From the physical point of view both conditions mean that there are no sources
and sinks. Condition (2.18) holds for the matrix (perforated domain) Qp and it is a
local (differential) condition. The integral condition (2.19) holds for each inclusion Di

and for v ∈ L2 it can be understood in the distributional sense (e.g. for v ∈ L2(D)
and divergence free, one defines v · n as a distribution on the boundary of D by∫
∂D vnφ =

∫
D v gradφ). Also

vn = 0 on the surface x = ∓L(2.20)

since there is no flux through the vertical boundaries y = ∓1 (insulating conditions,
see (2.6)).

Construction of the test function for the dual problem
We now construct the test function for the functional (2.17). It is based on some

properties of the solution of the network problem which were presented in Section 1.
Consider two disks (i-th and j-th) as shown in Fig. 2.2. The choice of the coordinate
system as shown in Fig.2.2 does not lead to a loss of generality because all quantities
in the formulas (2.17)-(2.20) are invariant with respect the rotation of the coordinate
system. We will construct the test function in the neck Πij . The neck is chosen so
that it does not overlap with any other neck attached to the same inclusion (if any
other neck exists) and does not intersect any other disk. More specific conditions on
the will be presented below.

We choose the test function in the form
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Fig. 2.2. The “neck” between two disks

v =
{

(0, ζ(x)) in the neck Πij ,
(0, 0) otherwise(2.21)

Here ζ(x) is a smooth function of a single variable x. We need to make sure that
it is in the class of admissible functions. To this end we note that it satisfies (2.18)
since

divv = 0 + ∂ζ/∂y = 0(2.22)

Note that v is only piecewise smooth but the div operator does not lead to δ-functions
because v1 ≡ 0 and we differentiate v2(x) in y.

Substitute (2.21) into the integral (2.19). For this function we integrate only over
the arc Sij ∈ Di. Then the flux of the vector v through the curve Sij ∈ ∂Di is equal
to

∫

Sij

vndx =
∫ S

−S
vndx =

∫ S

−S
ζdx(2.23)

The first equality in (2.23) follows from the divergence theorem, equality (2.22)
and the fact that vn = 0 on the lateral sides of the neck for functions of the form
(2.21).



Network approximation in the interparticle distance 27

We have discussed here the case of two disks (i-th and j-th). In general the i-th
disk has several neighbors and due to (2.19)

∫

∂Di

vndx =
∑

j

∫

Sij

vndx(2.24)

since the test function is of the form (2.21).
Thus equations (2.19)-(2.24) are some sort of balance equations (the sum of all

integral fluxes into the given disk from all neighbors is equal to zero). The test
function (2.21) is constructed so that all fluxes can flow through the necks (channels)
only. The flux through each neck is given by (2.23) and we need to consider all necks
between neighbors. So we need to choose our test function so that for each inclusion
the balance equation (2.19) holds. In other words we need a set of numbers which
can be chosen as corresponding integral fluxes. Where do we get such set of numbers?
In short, the answer is in the discrete problem, where such set of numbers have been
constructed.

Indeed, let us revisit the network problem (Section 1, (1.25)). Consider the set of
numbers (the current flux)

pij = gij(ti − tj),(2.25)

where {ti} are the solutions of the algebraic system (1.25), the numbers {gij} (integral
values of the specific fluxes between neighbors) are defined in Section 1 (see (1.19) ).
Then the equation (1.25) has the form of the Kirchhoff’s current law

N∑

j=1

pij = 0 , i ∈ I.(2.26)

In order to satisfy the balance equation (2.19) on ∂Di and condition (2.20) it is
sufficient to impose the following condition the test function v (ζ(x)):

∫ S

−S
ζij(x)dx = pij ,(2.27)

Note that (2.27) holds for the ij − th neck and to simplify notations we shall skip the
subscripts ij when construct ζ(x).

Construction of the function function ζ(x), which determines the test
function.

Recall that we are analyzing the lower bound (2.17) and our goal is to make it as
tight as possible, which means that we wish to increase the right-hand side of (2.17).
The latter can be achieved by decreasing the value of the integral

∫
Πij

v2dx, which
for the test function (2.21) writes as follows

∫ S

−S
ζ2(x)H(x)dx,(2.28)

where H(x) is the distance between the disks (see Fig.4.1).
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Minimization of the integral (2.28) is to be carried out under the constraints
(2.27). Therefore we need to use the Lagrange multiplier λ in the corresponding
Euler-Lagrange equation:

2ζ(x)H(x) − λ = 0.(2.29)

From (2.29) we obtain

ζ(x) =
λ

H(x)
(2.30)

where λ is an unknown multiplier to be determined (clearly factor 2 in (2.29) can be
dropped).

The equality (2.30) implies that the desired test function (which determines the
local flux) is inversely proportional to the distance between the disks. The latter
agrees with the physical assumptions about the flux between two closely spaced disks
formulated in [20] and the asymptotic solution of Laplace equation in [27].

Substituting (2.30) into (2.27) we obtain

∫ S

−S
λ

dx

H(x)
= pij = gij(ti − tj),(2.31)

where the numbers pij have been defined in (2.25).
Introduce the following quantities

gs
ij =

∫ S

−S

dx

H(x)
.(2.32)

From (2.31) we obtain

λgs
ij = pij

or

λ =
pij

gs
ij

=
gij(ti − tj)

gs
ij

(2.33)

If we choose λ according to (2.33), then the test function v defined by (2.21),(2.30)
satisfies all conditions (2.18)-(2.20).

Substitute (2.30), (2.33) into the integral
∫

Πij

−1
2
v2dx

over the neck Πij . Since the integrand does not depend on the variable y, we evaluate
the latter integral as follows:

∫ S

−S
ζ2(x)H(x)dx =

∫ S

−S
(

λ

H(x)
)2H(x)dx

= λ2

∫ S

−S

dx

H(x)
= λ2gs

ij =
g2

ij(ti − tj)2

gs
ij

(2.34)
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This calculation is for a pair of disks. Consider now all the disks in the composite.
Recall that this set also includes the quasidisks, therefore the set of all the disks Di can
be decomposed into two disjoint sets: the set of internal disks denoted by I and the set
of the boundary disks, which is the union of all disks which intersect the boundaries
y = ±1 and the “quasidisks”(those two sets are denoted by S+ and S− respectively).
The ”quasidisks” incorporate information about the interaction between the boundary
of the domain Π and the internal disks and they can be treated as disks of radius
R = ∞ (see Fig. 4.2). Thus all calculations for the disks and the ”quasidisks” have
been carried out using the same formulas and from the mathematical point of view
there are no reasons to make differences between the disks and the ”quasidisks”.
But it is important to take into account difference in enumeration of the disks and
the ”quasidisks”. In particular, the ”quasidisks” belong to the sets S± (horizontal
boundaries) only. We also remark that the disks which intersect boundary are treated
as regular disks with the potential ±1.

By previous remarks equation (2.22) should be understood in the weak sense;
however for the chosen test functions one can check directly that the divergence-free
condition as well as the boundary conditions in the classical sense yield the same result.
Indeed, our test function (v1, v2) is vectorial and moreover v1 = 0 everywhere, and v2

is discontinuous. However,v2 depends on x only which is why the differentiation in y
(∂v2/∂y = 0) does not lead to the δ-function, which agrees with the physical picture.

We now evaluate the functional (2.17). It consists of the double and the boundary
integrals.

Calculation of the double integral in (2.17).
The integral

∫

Πij

−1
2
v2dx

over one neck Πij have been evaluated above. Since in our construction different
necks do not overlap, this evaluation amounts to the summation of the integrals over
all necks Πij (for both the disks and the ”quasidisks”). Furthermore, the integral over
one neck is given by (2.34) and therefore we get

∫

Qp

−1
2
v2dx = −1

2

∑

Πij

g2
ij(ti − tj)2

gs
ij

(2.35)

Index Πij in the sum means that we sum up over the necks. When change to the
summation over the indices i, j = 1, ..., N (N is the number of disks) we will count
each neck Πij twice. Therefore a factor 1

4 appears in the sum over i, j instead of 1
2 in

(2.35). Then we write (2.35) in the form

∫

Qp

−1
2
v2dx = −1

4

N∑

i,j=1

g2
ij(ti − tj)2

gs
ij

(2.36)

Alternatively one can sum up over i ≤ j=1, ..., N , then the factor 1
2 still will be in

place. We pay attention to these technical issues because our goal is to make sure
that the leading terms of the direct and dual functionals are actually the same.

Calculation of the boundary integral in (2.17).
The flux vn through the boundary y = ±1, where the test function defined by

(2.21), (2.30), is given by
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vn =
λ

H(x)
(2.37)

Here we have used the function φ0(y) = ±1 when y = ±1, which have been
introduced earlier.

Using (2.37), (2.33) and the definition of φ0(y) , we compute the integral
∫

y=±1 φ
0vndx:

∑

Πij

∫ S

−S

λdx

H(x)
=

∑

Πij

λ

∫ S

−S

dx

H(x)
=

∑

Πij

gij(ti − tj)gs
ij

gs
ij

=
∑

Πij

gij(ti − tj)

Here we sum only over the necks Πij adjacent to the boundary y=+1. If i ∈ S+

(S+ is the set of the disks and ”quasidisks” adjacent to the boundary y = +1 ) then
we do not count any neck twice as it was the case in the double integral.

Then the integral over the boundary y = +1 in (2.17) is given by

P+ ≡
∑

i∈S+j=1,...,n

gij(ti − tj)(2.38)

Integral over the boundary y = −1 in (2.17) can be evaluated similarly ( φ0(y) =
−1 when y = −1) and it is given by

P− ≡
∑

i∈S−j=1,...,n

gij(ti − tj)(2.39)

The sums (2.38) and (2.39) represent fluxes through the boundaries S+ and S−

respectively (S+ and S− correspond to y = ±1 in the continuum model) in the
discrete network model, which have been introduced in Section 1. Note that due to
the conservation of flux they are equal.

We introduce notations P+ and P− for the fluxes (2.38) and (2.39) by P+ and
P− respectively.

So, we have evaluated both integrals in (2.17) for the test function (2.21) and we
arrived at the following

Proposition 2.1.

Â ≥ J(v) = −1
4

N∑

i,j=1

g2
ij(ti − tj)2

gs
ij

+ (P+ − P−)(2.40)

where gs
ij and gij are defined in (2.32) and in (1.19) respectively; P+ and P− are

given by (2.38) and (2.39) respectively.
To understand the “-” sign in the RHS of (2.40) one should look at (2.15) and

the definition of the function φ0.

2.5. The upper bound. Our goal is to construct a test function, which mim-
ics the behavior of the exact solution and substitute it into the following inequality
(see (2.16))
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Â ≤ J(v) =
1
2

∫

Qp

|∇φ|2dx,(2.41)

where φ ∈ Vp. We shall use the knowledge gained in the developing of the network
model in Section 2. Roughly speaking the test function behaves according to the
Keller’s approximation in a narrow neck between each two closely spaced disks and
outside these neck we make a prolongation. Then the integral in the RHS of (2.41)
will be decomposed into two parts: first part is due to the contribution from the necks,
and the second part is the contribution from the prolongation. It will be shown that
the first part is precisely the network approximation and the second part is much
smaller than the first part, when the disks are closely packed. We will use the notion
of the Voronoi tessellation to formulate the close-packing condition (CPC)

Any test function should be piecewise-differentiable and satisfy the other condi-
tions in the definition of the space Vp (2.1). In particular, it means that the test
function takes constant values on the disks Di and is equal to ±1 on the boundaries
S±. Let us consider two disks (i-th and j-th, see Fig.2.3). The choice of the coordinate
system in the Fig.2.2 is not important because the integral in (2.41) is invariant under
any rotation of the coordinate system.

We first describe a sketch of the construction of the test function. We need to
ensure that the test function takes values ti and tj on the disks Di and Dj . In fact,
it is sufficient for the function to take these values on the boundaries ∂Di and ∂Dj

and to be smooth (H1) outside the disks. Again consider the neck Πij (connecting
the i-th and the j-th disks). In this neck the test function changes linearly from ti
to tj when moving from the disk Di to the disk Dj (Keller’s approximation for two
closely spaced disks). Next we extend the test function into VORONOI CELL. Next
we describe the construction of the test function in each subdomain of Fig. 2.4

Construction in the neck Πij

From the physical point of view the flux (the field) in the narrow channel (the
neck Πij) must be linear in y, see [20]. This motivates us to take the test function φ
linear in y in the neck Πij with the values ti and tj on the disks ∂Di and ∂Dj (or,
which is the same, for y = −H(x)/2 and y = H(x)/2) respectively. These conditions
uniquely determine the function φ of the form

φ(x, y) = ti+
(tj − ti)(y + H(x)/2)

H(x)
= ti+(tj−ti)(

y

H(x)
+

1
2
), y ∈ [−H(x)/2, H(x)/2]

(2.42)
The partial derivatives of the function (2.42) are given by

∂φ/∂x = −(tj − ti)
yH ′(x)
H2(x)

(2.43)

∂φ/∂y =
tj − ti
H(x)

(2.44)

where ′=d/dx.
We need to evaluate

∫
Qp

|∇φ|2dx. For φ given by the equation (2.44) we have

∫

Πij

(∂φ/∂y)2dxdy =
∫ S

−S

(tj − ti)2

H2(x)
H(x)dx = (tj − ti)2gs

ij(2.45)
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Fig. 2.3.

In (2.45) we switch from the double integral to the iterated integral. Since ∂φ /∂y
(2.44) does not depend on y, we arrive to the integral in the variable x where the
integrand is multiplied by H(x). Recall that

Πij = {(x, y) : x ∈ (−S, S), −H(x)/2 ≤ y ≤ H(x)/2}(2.46)

For (2.43) we have
∫

Πij

(∂φ/∂x)2dxdy =
∫

Πij

(tj − ti)2(
yH ′(x)
H2(x)

)2dxdy

Since |y/H(x)| ≤ 1/2 (see, (2.46)), the last integral is bounded by the following
quantity

(tj − ti)
2
∫

Πij

(
y

H(x)
)2

H ′2(x)
H2(x)

dxdy ≤ (tj − ti)2

4

∫

Πij

H ′2(x)
H2(x)

dxdy =(2.47)

(tj − ti)2

4

∫ S

−S

H ′2(x)
H(x)

dx
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Fig. 2.4. Decomposition of Voronoi cell

In the last equality in (2.47) we again reduce the double integral to the integral in
x, using the fact that the integrand in the second integral in (2.47) does not depend
on the variable y, which leads to the multiplication of the integrand by H(x). Since
H(x) = δ + 2R − 2

√
R2 − x2, the integrand in (2.47) is given by

H ′2(x)
H(x)

=
4x2

R2 − x2

1
δ + 2R − 2

√
R2 − x2

≤(2.48)

2
R2 − x2

x2

R −
√

R2 − x2
=

2
R2 − x2

(R +
√

R2 − x2) =
2R

R2 − x2
+

2√
R2 − x2

If we restrict the thickness of neck with the natural condition

S ≤ R/2,(2.49)

then the last expression in (2.48) is bounded .
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The maximum of the last expression in the RHS of (2.48) in the interval (2.49) is
denoted by C. Then the constant C does not depend on δ and the integral (2.47) is
bounded by the quantity

EA =
(ti − tj)2

4
C · 2S,(2.50)

which does not depend on δ. Here we have used the discrete maximum principle (
Lemma 1.3), which implies that ti, tj are uniformly bounded independent on δ.

B. Construction in the triangle ABC
In the triangle ABC (see Fig.2.4 ) we construct a linear function φ which takes

the following values: ti in the point A, (ti + tj)/2 at the point B and 0 at the point
C.

In the coordinate system 0XY oriented so that OX and OY are parallel to the
legs BC and AB respectively centered at the point B we have

φ = αx + βy + γ

It is clear that γ = (ti + tj)/2 and we satisfy the condition at the point B.
Then the above conditions at A and C imply

α|BC| + γ = 0, β|AB| + γ = ti,

Solving this system, we obtain

α = − γ

|BC| , β = − γ

|AB| +
ti

|AB|

Then

φ =
ti + tj

2
(− x

|BC| + 1) − ti − tj
2

y

|AB|(2.51)

For the function (2.51) we have

∇φ = (− ti + tj
2

1
|BC| ,−

ti − tj
2

1
|AB| )

and the integral

∫

ABC

1
2
|∇φ|2dx = (

(ti + tj)2

8
1

|BC|2 +
(ti − tj)2

8
1

|AB|2 )|ABC|,(2.52)

where |ABC| stands for the area of the triangle ABC. Simple geometrical consider-
ations provide independent of δ lower bounds for |AB and |BC|. These bounds are
presented in the Appendix 1.

Then BC ≥ const, where const > 0 does not depend on δ and the quantities in
the RHS of (2.52) do not depend on δ as δ → 0. The quantities ti also do not depend
δ (see Lemma 1.3.

Then from (2.52) we have
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∫

ABC

1
2
|∇φ|2dx ≤ C1|ABC|(2.53)

where C1 does not depend δ .
C. Constructing the test function in the triangle ACD.
The function φ is linear on the sides AC and DC. Moreover it takes the value

ti at A and D (and along the whole arc AD) and the value 0 at C. we extend this
function into the curvilinear triangle ADC by taking φ of the form

φ = αρ + δ(2.54)

and the following conditions hold

αR + δ = ti, α|OC| + δ = 0,

where O is the center of the disk under consideration, R is the radius of the disk and
ρ is the polar coordinate (polar radius), which corresponds to the center O.

Solving this system, we have

α = − ti
(1 − R/|OC|)|OC| , δ =

ti
1 − R/|OC|(2.55)

For the function (2.54),(2.55) we have

∫

ADC

1
2
|∇φ|2dx =

∫

adc

1
2
[(∂φ/∂ρ)2 +

1
ρ
(∂φ/∂Θ)2]ρdρdΘ =(2.56)

∫

adc

1
2
α2ρdρdΘ =

1
2
α2|ADC|

where ρ,Θ are the polar coordinates and the domain abc corresponds to the
triangle ABC in the polar coordinate system.

The quantity |OC| ≥ L, where L is the length of the leg of the right triangle
which encircles the disk. Then R/|OC| ≤ R/L < 1 and R/L does not depend on δ.

Due to (2.55),(2.57) and Lemma 1.3 we have

∫

ABC

1
2
|∇φ|2dx ≤ C2|ABC|(2.57)

where C2 does not depend δ .
D. The boundary disks. After we have introduced Voronoi tessellation, we can

define the quasidisks as the segments obtained by partitioning the boundary y = ±1
by Voronoi cells. Then the quasidisks again can be considered as disks with an infinite
radius for the purpose of calculating the flux according to the Keller’s formula ((1.19)).
The length of the quasidisk is not essential and therefore this definition is equivalent
to the definition of a quasidisk introduced in Section 1.

For a boundary disk (or equivalently for a pair disk-quasidisk) the boundary of
the domain Π is also the boundary of the Voronoi cell. Therefore we can not require
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Fig. 2.5. Boundary disk

φ = 0 at c′ (see Fig.2.5). However, the above construction works if we introduce a
site (node) c at the distance

√
R2 − S2/2 from the boundary (see Fig.2.5) and require

φ = 0 at c. Then in the triangle bc′c we construct a liner function with values 1 on
bc′ and 0 at c. It is given by

φ = 1 − y

|cc′|

For this function we have

∫

bc′c

1
2
|∇φ|2dx =

∫

bc′c

1
2|cc′|2 =

1
R2 − S2

|bc′c|

The quantity S > 0 does not depend δ and therefore we have

∫

bc′c

1
2
|∇φ|2dx ≤ C3|bc′c|(2.58)

where C3 does not depend δ .
E. Evaluation of the Dirichlet integral outside the necks.
The domain outside the disks can be decomposed into the set of necks and the set

of triangles (see Fig.2.4), which have been considered in the steps A −D. We denote
by U the domain outside the disks and necks.
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From (2.53), (2.57) and (2.58) we have
∫

U

1
2
|∇φ|2dx ≤ max(C1, C2, C3)|U |(2.59)

where |U | stands for the area of the domain U . It is clear that |U | is less than the
area of the domain Qp

Using (2.59), we can write

∫

U

1
2
|∇φ|2dx ≤ C|Π|(2.60)

where the constant C does not depend on δ, |Π| is the area of the domain Π.
Summing up over all necks and triangles, we obtain

∫

Qp

1
2
|∇φ|2dx =

1
4

N∑

i,j=1

gs
ij(ti − tj)2 +(2.61)

∑

Πij

∫

Πij

1
2
|∂φ/∂x|2dx +

∫

U

1
2
|∇φ|2dx

The factor 1
4 in (2.61) appears by the same reason as in (2.36): it is the double

counting of the necks when summing up in i, j = 1, ..., N . In order to keep the usual
factor 1

2 in (2.61) one can sum up over i < j. As a result from (2.60) and (2.61) we
obtain

Proposition 2.2.

Â ≤ 1
4

N∑

i,j=1

gs
ij(ti − tj)2 + M(2.62)

where gs
ij are defined in (2.32), and the constant M = max(C1, C2, C3)|U |+NEA is

uniformly bounded in δ. Here N is the number of disks, and EA is defined in (2.50)

2.6. Justification of the approximation of the continuum model by the
discrete network for closely packed disks. In this subsection we prove that when
the relative interparticle distance δ/R goes to 0, the upper and the lower bounds
obtained above coincide to the leading order. Thus we obtain an asymptotic formula
for the effective constant Â in terms of the characteristics of the discrete network,
which were introduced in Section 1 based on physical considerations.

We now introduce the interparticle distance parameter, which will be used in
the justification of the asymptotic formula. It is based on the notion of Voronoi
tessellation, which was presented above (see also Fig. 2.1).

In the context of our problem we shall do the following. Given a set of randomly
distributed disks in the domain Π, we take the centers xi as the sites of the Voronoi
tessellation of Π. Then the neighboring Voronoi polygons (cells) determine the neigh-
boring disks (neighboring cells share a common edge). We connect the neighborings
sites xi and xj by segments xi xj . We then connect the sites near the boundary of Π
(centers of the disks which lie near the boundary) with the boundary by perpendicu-
lars from this centers to the corresponding (nearest) edges of Π. Here we have treated



38 L.Berlyand* and A. Kolpakov

pieces of the boundaries as quasidisks Thus we have constructed a graph, denote it
by G(Π). Note that this graph is connected.

We next denote by δij the length of the piece of the segment xi xj , which is located
outside the neighboring disks Di and Dj (Fig. ) and introduce the maximal packing
distance δ = max δij , where the maximum is taken over all neighbors (including the
quasidisks). Consider a sequence of graphs Gn(Π) and the corresponding sequence of
the maximal packing distances δn.

Definition 2.3. We say that the sequence of graphs Gn(Π) satisfies the δ close
packing condition if δn → 0 as n → ∞.

We shall use this definition in the main theorem of this Section.
Note that this definition does not cover all possible closely packed configurations

and it could be generalized by considering more complicated tessellation. In partic-
ular, this definition works well when the vertices of the Voronoi polygons are triple
junctions as in the hexagonal tessellation. Since the hexagonal tessellation is the
densest on the plane, it is of particular importance from the practical point of view.
Also in the case when the δ-CPC condition in actual composite with closely packed
particles does not apply to the entire composite, it can be used for large pieces of
the composites (clusters in the percolation theory terminology). Then the homoge-
nization based on the network approximation should be done for each densely packed
piece (cluster).

We now show that if the close packing condition holds, then the upper and lower
bounds coincide to the leading term as δ → 0.

From the bounds (2.40) and (2.62) we get

Â ≥ −1
4

N∑

i,j=1

g2
ij(ti − tj)2

gs
ij

+ (P+ − P−)(2.63)

Â ≤ 1
4

N∑

i,j=1

gs
ij(ti − tj)2 + M(2.64)

where M is uniformly bounded in δ,

gs
ij =

∫ S

−S

dx

H(x)
,

and H(x) is the (local) distance between the neighboring disks as a function of x (see
Fig. 1.2 with Ri = Rj = R )

H(x) = δij + 2R − R
√

R2 − x2

(for the i-th and the j-th disks)

gij = π

√
R

δij

′

(2.65)

δij is the minimal distance between the i-th and the j-th disks, see Fig.2.3, S is the
half-width of the necks Πij .

So far we have not defined the width S of the necks uniquely . In order to do this
we first summarize all restrictions on S which were introduced above:
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• S > 0 and does not depend on δ;
• 2) S < R/2 , see (2.49) and the necks, which corresponds to different neigh-

bors do not overlap
Thus one can say that S is a positive number, which does not depend on δ , chosen

in such a way that the necks do not overlap at least for sufficiently small δ/R. We
next specify what ”at least for sufficiently small δ/R” means. We choose δ ≤ R. This
choice is not unique and is motivated by the fact that the width of the neck grows
when the disks become closer. Consider two disks for which δ = R, Fig. 2.6. Choose
the thickness S as shown on Fig. 2.6. The choice of the tangential rays on this figure
is due to the fact that the third disk can not squeeze into the wedge between the two
tangential rays, in other words there is no way for a third disk to overlap with the
neck on Fig. 2.6.

R

j
S

S
R

i

x

R

Fig. 2.6. The width S of a neck

Then for any smaller value of δ (the disks are coming together) the quantity S
satisfies all the above conditions. So we can choose S according Fig. 2.6 that is
S = R arctg(1/3) ≈ 0.3R (see also Appendix 1).

We shall need several auxiliary facts. First we establish a relation between the
quantities gs

ij (2.64) and gij (2.65). The first quantities came from the rigorous bounds
for Â, the others appeared when we constructed the network in Section 1.

Lemma 2.4. Let δij/R be the relative interparticle distance between the i-th and
the j-th disks. Then as δij → 0

gs
ij = gij + O(1) +

√
R

δij
O(δij/R),(2.66)

where gij = π
√

R
δij

→ ∞ as δij → 0 .
Proof. For the circular disks (i-th and j-th) of radius R we have H(x) = δij +

2R −
√

R2 − x2. Then

gs
ij =

∫ S

−S

dx

δij + 2R −
√

R2 − x2
=

∫ S∗

−S∗

Rcosαdα

δij + 2R − Rcosα
,
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where we make the change of variables x = Rcosα, S∗ = arcsin(S/R) > 0. Note that
S∗ does not depend on δij The last integral is equal to [Gradstein and Rizik, Integarl
Tables,2.554.1, 2.555.3]

−1
2

+
2(δij + 2R)√

(δij + 2R)2 − 4R2
arctg(

√
(δij + 2R)2 − 4R2 tgα

δij
)|S

∗

−S∗

Consider this integral for small δij . Keep the terms of order δij and neglect δij/R,
we obtain

−1
2

+

√
R

δij
arctg(

√

2
R

δij
tgα)|S

∗

−S∗ + O(
δij

R
),

where O(δij/R) → 0 as δij/R → 0.
Since S∗ does not depend on δij

arctg(2

√
R

δij
tgS∗) =

π

2
+ O(

δij

R
)

and we obtain

gs
ij = −1

2
+ π

√
R

δij
(1 + O(

δij

R
)) + O(

δij

R
)

The term π
√

R
δij

= gij , see formula (1.19), Section I with Ri = Rj = R, i.e. gij

is the leading term is asymptotic expansion of gS
ij as δij → 0. The lemma is proved.

Introduce the following quantity called the energy of the discrete network

E =
1
4

N∑

i,j=1

gij(ti − tj)2,(2.67)

where {tij} is the solution of the problem (1.24),(1.25), Section I (the factor 1
4 have

been discussed above). We need to show that the energy E grows as O(
√

R
δ ). Note

that although each coefficient gij is of order O(
√

R
δ ) the differences (ti − tj)2 may

become small. Next lemma shows that this is not the case.
Lemma 2.5. The energy E of the discrete network is of order of

√
R
δ , where

δ = maxijδij . Here maximum is taken over all neighboring pairs (defined by Voronoi
Tessellation).

Proof. We shall employ the comparison method introduced in [21]. Define an-
other network with the coefficients

g1
ij = π

√
R

δ
if gij > 0, g1

ij = 0 if gij = 0

Since δ = maxδij we have gij ≥ g1
ij and therefore

N∑

i,j=1

gijxixi ≥
N∑

i,j=1

g1
ijxixi
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Let {t̃i} be the solutions of the problem (1.24),(1.25), Section 1 and {t̃i} be the
solutions of the problem (1.24),(1.25), Section 1, with the coefficients g̃ij . The latter
problem can be written as

π

√
R

δ

∑
(t̃i − t̃j) = 0 for i ∈ I , ti = ±1 for i ∈ S±(2.68)

Here we sum over i, j such that g1
ij > 0 (i.e. over neighboring disks); I is the set of

internal sites of the network, S± are boundary sites, the coefficients g1
ij = 1 if gij > 0

and g1
ij = 0 if gij = 0. The energy of the network {xi, gij} is greater than the energy

of the network {x̃i, g̃ij}. Indeed, the energy in these networks is the minimum value
of the following functionals

N∑

i,j=1

gij(ti − tj)2 and
N∑

i,j=1

g1
ij(ti − tj)2

respectively.
Due to the above relation between the quadratic forms we have

N∑

i,j=1

gij(ti − tj)2 ≥
N∑

i,j=1

g1
ij(ti − tj)2 ≥ π

√
R

δ

∑
(t̃i − t̃j)2(2.69)

the last sum is taken over i, j such that g1
ij > 0.

Solution of the problem (2.68) does not depend on π
√

R
δ (we can cancel out

π
√

R
δ in the equation (2.68)). The LHS of (2.69) is 4E and its RHS is of the form

π
√

R
δ const, where the const does not depend δ and positive. Due to the uniform

δ-close packing there exists a path (ik, ik+1), k = 1, ..., K such that g1
ik,ik=1

= 1 and
the disk Di1 ∈ S+ and a disk DiK+1 ∈ S−. It is impossible that all t̄i − t̄j = 0 along
this path. Thus the sum

∑N
i,j=1(t̃i − t̃j)2 is positive. The lemma is proved.

We briefly sketch here an alternative proof. First we show that the graph ob-
tained by applying Voronoi construction (see above) is connected. Therefore there
is a connected path from the top side of Π to its bottom side, which consists of M
edges, and M is a finite number. Since the values of the potential on these sides are
1 and −1 respectively, the Kirchoff’s law implies that

∑M
1 (ti − tj) = 2. Then at least

one term in this sum is greater than 2/M , therefore it is not small and since the all
coefficients are of order O(

√
R
δ ) lemma follows.

Using Lemma 2.4 , we can replace gs
ij by gij as δ → 0 in (2.64). Then (2.63)-(2.64)

provide the following bounds

Â ≥ −1
4

N∑

i,j=1

gij(ti − tj)2 + (P+ + P−) +
√

R

δ
O(δ/R)(2.70)

Â ≤ 1
4

N∑

i,j=1

gij(t−i − t−j )2 + M +
√

R

δ
O(δ/R),(2.71)
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M is uniformly bounded in δ as δ → 0.
The first two terms in (2.70) and the first term in (2.71) are the discrete analogs of

the dual variational principles for the continuum medium. We have explained above
how to replace 1

4 by the usual 1
2 . It is known [14] that the values of the direct and

the dual energy functionals for the continuum problem are the same when the exact
minimizers are substituted into the functionals. Next Lemma is the discrete analog
of this statement.

Lemma 2.6. The following equality holds

1
2

N∑

i,j=1

gij(ti − tj)2 = P+ − P−(2.72)

where {ti} means solution of the problem (1.24),(1.25), Section 1.
Formula (2.72) differs from the usual Green’s formula (for PDE) by the factor 1

2 .
It appears due to the same the reason for as 1

4 appears in the discrete formulas for
energy presented above.

Proof. Following [8], we write (taking into account that gij = gji)

1
2

N∑

i,j=1

gij(ti − tj)2 =
1
2

N∑

i,j=1

gij(ti − tj)(ti − tj) =

1
2

N∑

i=1

gijti[
N∑

j=1

gij(ti − tj)] +
1
2

N∑

j=1

gijtj [
N∑

i=1

gji(tj − ti)](2.73)

The two sums in the square brackets are equal to zero due to (1.25), Section I
(for i ∈ I in the first sum and for j ∈ I it the second sum). Then (2.73) becomes
(only terms, which correspond to S∓ remain).

∑

i∈S±

ti

N∑

j=1

gij(ti − tj)(2.74)

Note that ti = ±1 for i ∈ S± in (2.74). Hence (2.74) is exactly equal to P+ +P−

and Lemma is proved.
The following Theorem shows that the continuum problem for the effective con-

ductivity is asymptotically equivalent to the discrete network.
Theorem 2.7. Let the δ-close packing condition (see definition 2.3) hold.
Then the effective coefficient (2.3)

Â =
1
2

∫

Qp

|∇φ|2dx

is given by the following asymptotic formula (as δ → 0):

Â =
1
4

N∑

i,j=1

gij(ti − tj)2 +
√

R

δ
O(δ/R) + O(1),(2.75)
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where

gij = π

√
R

δij

and {ti, i = 1, ..., N} is solution of the discrete network problem (1.24),(1.25).
The leading term 1

4

∑N
i,j=1 gij(ti − tj)2 is of order

√
R/δ and is expressed through

the solution of the discrete network problem (1.24), (1.25), Section 1.
Proof. Using (2.70),(2.71) and (2.72) we obtain

1
4

N∑

i,j=1

gij(ti − tj)2 +
√

R

δ
O(δ/R) ≤ Â

≤ 1
4

N∑

i,j=1

gij(ti − tj)2 + M +
√

R

δ
O(δ/R)(2.76)

By Lemma 2.5 the term 1
4

∑N
i,j=1 gij(ti − tj)2 in (2.76) is of the order

√
R
δ and,

consequently, it is the leading term in asymptotic expansion.
Remark 2.8. Our proof can be modified so that the remainder in the asymptotic

formula (2.75) can be evaluated in explicit terms. The latter allows to obtain the
error estimate of our networks approximation. These results will be presented in the
forthcoming work [7]

Conclusions. In this work we start with a class of physically interesting prob-
lems, formulate them carefully, establish a mathematically rigorous approximation,
use it for numerical computations and then draw physical conclusions.

At present, there are two rigorous mathematical network approximations for mod-
eling continuum high contrast media.

The Borcea-Kozlov-Papanicolaou model ([9] and references therein) was devel-
oped for the high contrast continuum problems arising in imaging, when the materials
properties are not known and it is convenient to model the high contrast in a simple
geometric manner by using the Kozlov’s function εS(X)/ε. The two key parameters
in this model are

√
k+/k− (determine the conductivity of the edges in the network),

where k+ and k− are the principal curvatures in the saddle points of S(x) and the
high contrast parameter ε.

Our model has been developed for the analysis of the two phase composites,
when the materials properties of each phase and the geometry (e.g. the shapes of
particles) are known. The contrast ratio is taken to be infinite, and it does not
contain the saddle points and the curvatures. The key mathematical parameter in
our model is the relative interparticle distance. Similar parameters have been used
in physics and mechanics of composites, and they can be observed and measured in
actual experiments (see, for example, [43]).

For periodic (e.g.square) arrays this parameter amounts to the critical concentra-
tion in “almost touching” regime and is uniquely determined by the critical volume
fraction [20]. We have shown that this parameter can be introduced for non periodic
arrays, when it is not uniquely determined by the volume fraction. Also, while in the
periodic arrays “almost touching” conductivity appears in the volume fractions which
are close to the maximal, the irregular (random) arrays may have conducting chains
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with very small relative interparticle distance even when the volume fraction of the
particles is not very close to the maximal.

We further note that various mathematical techniques have been used for the
study of the “almost touching case” for various periodic arrays ([29], [30], [6]). The
case of the full touching has been investigated in [31]. Our approach utilizes the ideas
developed in [20] and can be used for mathematical justification of the asymptotic
formulas obtained in [20]. In a loose sense our work presents a “randomization” of
the Keller’s model.

Finally, we mention that in the present work we implemented numerically the
network approximation. For the monodispersed composites we recovered classical
percolation picture and showed that this approximation is an efficient computational
tool. For a polydispersed composite we found a pronounced effect in the behavior
of the effective conductivity. This suggests that the high contrast, densely packed
composites are very attractive for the design of new materials.
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Appendix 1: Lower bounds for |BC| and |AB|.

The lower bound on |BC| follows from simple geometrical considerations. On
figure 2.7 for a fixed neck-length 2S between the disks centered at O and O′ the
length |BC| is the smallest if the third disk centered at Q touches the other two.
Consider the right triangle ∆OPQ. By the Pyhagorean theorem

|PQ| = S + |BC| + |CQ| =
√

(2R)2 − (R + δ/2)2, S = |PB|
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Fig. 2.7.

also

|OK|
|CQ| =

R

|CQ| =
√

(2R)2 − (R + δ/2)2

2R
= |PQ|/|OQ| = cos(& OQP )

therefore

|BC| =
R2 − Rδ − δ2/4√
3R2 − Rδ − δ2/4

− S.(2.77)

An independent of δ upper bound on S follows if we consider the same three disks
when all of them touch each other and they are connected by identical in width necks
(see figure 2.8). In this case we have

S + |BC| = |PC|,

Then considering the right triangle ∆ABC, we have |BC| = 1/2|AC| and |PC| =
1/3|PQ| from the equilateral triangle OQO. Thus

S +
1
2
|AC| =

1
3
|PQ|,

S +
1
2
(|OC| − R) =

1
3
√

3R,

S +
1
2
(
2
3
|PQ| − R) =

1
3
√

3R,
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Fig. 2.8.

Since |PQ| =
√

3R

S =
R

2
.(2.78)

Combining (2.77) and (2.78) for sufficiently small δ we have

|BC| ≥ R2 − Rδ − δ2/4√
3R2 − Rδ − δ2/4

− R

2
>

3
40

R.(2.79)

The lower bound on |AB| is found when the disks centered at O and O′ touch
each other (δ = 0). We have

|AB| = |OP | − |OA| cos(& POA) = R −
√

R2 − S2.(2.80)

Combining (2.80) with the upper bound on S given by (2.78) we arrive at a lower
bound on |AB| which does not depend on δ


