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Abstract. Let Ω be a 2D simply connected domain, ω be a simply connected subdomain of Ω
and set A = Ω\ω. In the annular type domain A, we consider the class J of complex valued maps
having degrees 1 on ∂Ω and on ∂ω. We investigate whether the minimum of the Ginzburg-Landau
energy Eλ is attained in J , as well as the asymptotic behavior of minimizers as the coherency
length λ−1/2 tends to 0. We show that the answer to these questions is determined by the value
of the H1-capacity cap(A) of the domain A. This is due to the degree boundary conditions; by
contrast, when Dirichlet conditions are prescribed, it is known that the behavior of minimizers
does not depend on A. If cap(A) > π (A is a ”thin” or ”subcritical” domain), minimizers exist
for each λ. As λ → ∞, they converge in H1(A) (and even better) to an S1-valued harmonic map
we identify. Furthermore, these minimizers are vortexless for large λ. The same properties hold
when cap(A) = π (”critical” domain), but the proof is more involved. When cap(A) < π (”thick”
or ”supercritical” domain), we prove that either (i) minimizers cease to exist for large λ, or (ii)
that they exist for each λ. For large λ, minimizing sequences (in case (i)) or minimizers (in case
(ii)) develop exactly two vortices, one of degree 1 near ∂Ω, the other one of degree −1 near ∂ω.
We conjecture that case (ii) never occurs.

1 Introduction

Consider the following problem

mλ = Inf

{
Eλ(u) =

1

2

∫
A

|∇u|2 +
λ

4

∫
A

(1 − |u|2)2 ; u ∈ J
}

. (1.1)

Here, Eλ is a Ginzburg-Landau (GL, hereafter) type energy, A is a 2D annular type domain, i.e.,
A = Ω \ ω, ω ⊂ Ω, with Ω, ω, simply connected bounded smooth domains. The class J of
testing maps is

J = {u ∈ H1(A ; R2) ; |u| = 1 a.e. on ∂A, deg(u, ∂Ω) = deg(u, ∂ω) = 1}. (1.2)
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The definition of J is meaningful. Indeed, let Γ be ∂Ω or ∂ω (counterclockwise oriented) and
set X = H1/2(Γ; S1). If u ∈ H1(A ; R2) and |u| = 1 a.e. on ∂A, then g := u|Γ ∈ X (here, the
restiriction is to be understood in the sense of traces). Maps in X have a well-defined topological
degree (winding number), see [?]. This degree is defined as follows: every map g ∈ X is the
strong H1/2 limit of a sequence (gn) ⊂ C∞(Γ; S1). Each gn has a degree (with respect to the
counterclockwise orientation on Γ) given, e.g., by the classical formula

deg g =
1

2π

∫
Γ

g ∧ gτ . (1.3)

Then lim
n

deg gn exists; see [?] for the details. This allows to define deg g = lim
n

deg gn. Formula

(??) is still valid for arbitrary maps in X, provided we interpret the integral as an H1/2 − H−1/2

duality.

We may now address a first natural question concerning the minimization problem (??)-(??)

Question 1. Is mλ attained ?

Before discussing this question, we start by recalling the most intensively studied minimization
problem for the Ginzburg-Landau functional, namely

eλ = Inf{Eλ(u) ; u|∂G = g}, (1.4)

see [?]. Here, G is a smooth bounded domain in R2 and g ∈ H1/2(∂G; S1) is fixed. In this case,
eλ is obviously attained, since the class {u ∈ H1(G) ; u|∂G = g} is closed with respect to weak H1

convergence.

The situation is more delicate when we do not prescribe a Dirichlet boundary condition, but
only degrees, as shown by the following

Example 1. (Inf is not attained) [?] Let

nλ = Inf{Eλ(u) ; u ∈ M}, (1.5)

where
M = {u ∈ H1(D) ; |u| = 1 a.e. on S1 , deg(u, S1) = 1}. (1.6)

Here, D is the unit disc and we consider the counterclockwise orientation on S1.
Then, for each λ > 0, nλ = π and nλ is not attained.

In particular, this example implies that the class M is not closed with respect to weak H1

convergence. Here is an explicit example of a sequence in M weakly converging in H1 to a map
which is not in M:
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Example 2. [?] Let (an) ⊂ (0, 1) be such that an → 1. Set un(z) =
z − an

1 − anz
, z ∈ D. Then

un ⇀ −1 weakly in H1.

Example 2 can be easily extended to J :

Proposition 1. [?] The class J is not closed with respect to weak H1 convergence.

This implies that the existence of minimizers of (??)-(??) does not follow immediately from the
direct method of Calculus of Variations.

Before discussing further Question 1, we mention some useful a priori bounds on mλ. Recall
that in the case of a prescribed Dirichlet data with non zero degree (thoroughly studied in [?])
the GL energy tends to infinity as λ → ∞. However, a straightforward calculation shows that the
energy remains bounded (with a bound independent of A and λ) when we only prescribe degrees
on the boundary:

mλ ≤ 2π, (1.7)

see [?].

There is yet another upper bound, which is obtained by considering all S1-valued maps in J .
Set

K = {u ∈ J ; |u| = 1 a.e. in A}. (1.8)

K is not empty: if a ∈ ω, then (x − a)/|x − a| ∈ K. It is known that, in K, Min Eλ is attained,
see [?]. Define

I0 = Min {Eλ(u) ; u ∈ K} = Min

{
1

2

∫
A

|∇u|2 ; u ∈ K
}

. (1.9)

Proposition 2. We have
mλ < I0. (1.10)

Clearly, (??) and (??) imply that mλ ≤ Min {I0, 2π}. This bound is close to optimal when λ
is large:

Proposition 3. We have
lim

λ→∞
mλ = Min {I0, 2π}. (1.11)

It turns out that I0 has a simple geometrical interpretation via capacity:

Proposition 4. [?] I0 and the H1-capacity cap(A) of the domain A are related by

I0 =
2π2

cap(A)
. (1.12)
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Recall that, if A = {x ; r < |x| < R}, then cap(A) = π ln(R/r). In general, one may think of
the capacity as a measure of ”thickness” of A.

Formula (??), the discussion on capacity, and our results on existence of minimizers suggest
disinguishing three types of domains :
a) ”subcritical” or ”thick”, when cap(A) > π (or, equivalently, I0 < 2π) ;
b) ”critical”, when cap(A) = π (or, equivalently, I0 = 2π) ;
c) ”supercritical” or ”thin”, when cap(A) < π (or, equivalently, I0 > 2π).

We now return to the existence of minimizers. The main tool in proving existence is the
following

Proposition 5. Assume that mλ < 2π. Then mλ is attained.

The first result of this type was established for the Yamabe problem by Th. Aubin in [?]. Such
results subsequently proved to be extremely useful in minimization problems with possible lack of
compactness of minimizing sequences; see [?], [?], [?], [?] and the more recent papers [?], [?] and
[?].
The proof of Proposition ?? relies on the following

Lemma 1. (Price lemma) Let (un) be a bounded sequence in J such that un ⇀ u in H1(A).
Then :

lim inf
n

1

2

∫
A

|∇un|2 ≥ 1

2

∫
A

|∇u|2 + π(|1 − deg(u, ∂Ω)| + |1 − deg(u, ∂ω0)|). (1.13)

In addition,
1

2

∫
A

|∇u|2 ≥ π|deg(u, ∂Ω) − deg(u, ∂ω)|. (1.14)

The argument we use works for arbitrary fixed degrees instead of 1 and 1, see [?]; the general
form of the estimate (??) shows that the minimal energy needed to jump, on a component of ∂A,
from degree d (for the maps un) to degree δ (for u), is π|d − δ|, see [?].

As an immediate consequence of Proposition ?? and of the upper bound (??), we obtain the
following

Theorem 1. Asssume that A is subcritical or critical. Then mλ is attained for each λ ≥ 0.

In the subcritical and critical case, we further address the following natural

Question 2. What is the behavior of minimizers uλ of (??)-(??) as λ → ∞ ?

The answer is given by

4



Theorem 2. Let cap(A) ≥ π, i.e., A is subcritical or critical. Let uλ be a minimizer of (??)-(??).
Then |uλ| → 1 uniformly in A. In addition, up to some subsequence, uλ → u∞ in H1(A), where
u∞ is a minimizer of (??)-(??).

Theorem 2 combined with the method developed in [?] yield the stronger convergence uλ →
u∞ ∈ C1,α(A), 0 < α < 1; see [?]. We also prove in [?] that, for large λ, minimizers are
unique modulo multiplication with a constant in S1, and, in addition, symmetric, if the domain
is symmetric.

Whenever minimizers uλ exist, they are smooth, see [?]. This requires some proof, since the
boundary conditions satisfied by the uλ’s are of mixed type, Dirichlet for the modulus |uλ|, Neu-
mann for the phase arg uλ.

We now turn to the supercritical case cap(A) < π. Here, unlike in the subcritical/critical case,
we prove that, for large λ, minimizing sequences must have vortices (zeroes of non-zero degree).
Concerning existence of minimizers, we prove that there are exactly two possible behaviors (see
Fig. 1)

Theorem 3. Let cap(A) < π, i.e., A is supercritical. Then either
a) mλ is attained for all λ;
or
b) there exists a critical value λ1 ∈ (0,∞) such that: if λ < λ1, then mλ is attained, while, if
λ > λ1, then mλ is not attained.

Theorem 4. (Rise of vortices) Let A be supercritical.
In case a), let uλ be a minimizer of (??)-(??). Then, for large λ, uλ has exactly two simple zeroes,
ζλ of degree 1 and ξλ of degree −1, such that ζλ → ∂Ω and ξλ → ∂ω as λ → ∞.
In case b), let λ > λ1 and let (uk) be a minimizing sequence for (??)-(??). Then uk = vk + wk,
where wk → 0 in H1(A) as k → ∞ and vk has exactly two simple zeroes, ζk of degree 1, and ξk of
degree −1, such that ζk → ∂Ω and ξk → ∂ω as n → ∞.

We further prove that, in case b), near ζk (ξk respectively), uk essentially behaves like a con-
formal representation of Ω into D vanishing at ζk (anti-conformal representation of C \ ω into
D vanishing at ξk, respectively); see Step 5 in the proof of Theorem 4 in Section 4 for precise
statements. A similar analysis holds in case a).

We believe that case a) never occurs, which led us to the following

Conjecture. In the supercritical case, there exists a finite constant λ1 > 0 such that, if λ > λ1,
then mλ is never attained.

The heuristics in support of this conjecture is the following: assume case a) holds. For large λ, let
(with the notations in Theorem 4) d =dist({ζλ, ξλ}, ∂A). It is easy to check that
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λ/4

∫
A

(1−|uλ|2)2 ≥ C1λd2. On the other hand, examples suggest that 1/2

∫
A

|∇uλ|2 ≥ 2π−C2d
2;

here, C1, C2 do not depend on λ or d. If this inequality holds, then the upper bound (??)
contradicts existence of minimizers for large λ.

Finally, we discuss specific features of the critical case. It is known that, in variational problems
with lack of compactness, the critical case could inherit the properties of either the supercritical
or the subcritical case (see, e.g., [?], [?], [?], [?]). In our problem, the results are the same in
critical and subcritical case, the supercritical case being qualitatively different. However, while
the proof of the existence is the same in the subcritical and critical cases, the argument that leads
to H1-convergence of the minimizers uλ as λ → ∞ does not apply to the critical case; a more
subtle argument is required at criticality.
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Golovaty for a careful reading of the manuscript. The work of L.B. was supported by NSF grant
DMS-0204637. The work of P.M. is part of the RTN Program ”Fronts-Singularities”. This work
was initiated while both authors were visiting the Rutgers University; part of the work was done
while L. B. was visiting Université Paris-Sud and P. M. was visiting the Penn State University.
They thank the Mathematics Departments in these universities for their hospitality.

2 Existence of minimizers

The following simple remark will be repeatedly used in the sequel. Let (un) be a bounded sequence
in H1(A) such that |un| = 1 a.e. on ∂A for each n. If un ⇀ u in H1, then clearly |u| = 1 a.e. on
∂A. Thus deg(u, ∂Ω) and deg(u, ∂ω) are well-defined.

Proof of the Price lemma: Set vn = un − u. We have, as n → ∞,∫
A

|∇un|2 =

∫
A

|∇u|2 +

∫
A

|∇vn|2 + o(1). (2.1)

Let f ∈ C∞(A ; [−1, 1]) to be determined later. Integrating by parts the pointwise inequality
|∇vn|2 ≥ 2f Jac vn, we find∫

A

|∇vn|2 ≥
∫
∂A

fvn ∧ ∂vn

∂τ
+

∫
A

(fx(vn)y ∧ vn − fy(vn)x ∧ vn); (2.2)

here, ∂A is directly oriented. The above equality is clear when vn is smooth; it relies on the
identity

2Jacvn = (vn ∧ (vn)y)x + ((vn)x ∧ (vn))y.
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The case of an arbitrary vn follows by approximation. Since vn ⇀ 0 in H1, (??) and (??) yield∫
A

|∇un|2 ≥
∫
A

|∇u|2 +

∫
∂A

fvn ∧ ∂vn

∂τ
+ o(1). (2.3)

On the other hand, we claim that, if Γ is any connected component of ∂A, then∫
Γ

vn ∧ ∂vn

∂τ
=

∫
Γ

un ∧ ∂un

∂τ
−

∫
Γ

u ∧ ∂u

∂τ
+ o(1). (2.4)

Indeed, if gn ⇀ g in H1/2(Γ) and h ∈ H1/2(Γ), then clearly∫
Γ

gn ∧ ∂h

∂τ
=

∫
Γ

g ∧ ∂h

∂τ
+ o(1) and

∫
Γ

h ∧ ∂gn

∂τ
=

∫
Γ

h ∧ ∂g

∂τ
+ o(1). (2.5)

Equality (??) follows easily from (??) and the fact that un|Γ ⇀ u|Γ in H1/2(Γ).
Pick now f such that f =sgn(1−deg(u, ∂Ω)) on ∂Ω, f = −sgn(1−deg(u, ∂ω)) on ∂ω and −1 ≤
f ≤ 1. By combining (??), (??), (??) and the degree formula (??), we obtain (??).

As for (??), it relies on the pointwise inequality |∇u|2 ≥ 2|Jac u|, which yields, after integration
by parts and use of (??),∫

A

|∇u|2 ≥ 2

∫
A

|Jac u| ≥ 2

∣∣∣∣
∫
A

Jac u

∣∣∣∣ =

∣∣∣∣
∫
∂A

u ∧ ∂u

∂τ

∣∣∣∣ = 2π|deg(u, ∂Ω) − deg(u, ∂ω)|. (2.6)

Proof of Proposition ??: Let (un) be a minimizing sequence for Eλ in J . Up to some subse-
quence, we may assume that un ⇀ u for some u. Set D =deg(u, ∂Ω), d =deg(u, ∂ω). If d = D = 1,
then u ∈ J and u is a minimizer of (??)-(??). If D 	= 1 and d 	= 1, (??) implies that

2π > mλ = lim inf
n

Eλ(un) ≥ lim inf
n

1

2

∫
A

|∇un|2 ≥ π(|1 − d| + |1 − D|) ≥ 2π, (2.7)

which is a contradiction. Finally, if exactly one among d and D equals 1, then |d − D| ≥ 1 and
|1−d|+|1−D| ≥ 1. By combining (??) and (??) we obtain as above mλ ≥ 2π, which is impossible.

Proof of Proposition ??: Let u be a minimizer of (??)-(??) and set g = u|∂A. If v minimizes Eλ

among all the maps w ∈ H1(A) such that w|∂A = g, then v ∈ J and mλ ≤ Eλ(v) ≤ Eλ(u) = I0.
We claim that the last inequality is strict. Argue by contradiction and assume that Eλ(v) = Eλ(u).
Then u minimizes Eλ with respect to its own boundary condition; in particular, u satisfies the GL

7



equation −∆u = λu(1 − |u|2). Since |u| = 1 a.e., we find that u is harmonic and of modulus 1.
Thus u has to be a constant, which contradicts the fact that u ∈ K.

Proof of Theorem ??: Clearly, λ 
→ mλ is not decreasing and continuous. In view of the upper
bound (??), there is some λ1 ∈ [0,∞] such that mλ < 2π if λ < λ1 and mλ = 2π if λ ≥ λ1. We
first claim that mλ is not attained if λ > λ1. Argue by contradiction and assume that there are
some λ > λ1 and u ∈ J such that Eλ(u) = mλ = 2π. As in the proof of Proposition ??, we cannot

have |u| = 1 a.e. Thus

∫
A

(1 − |u|2)2 > 0 and therefore Eλ′(u) < Eλ(u) if λ′ < λ. For any λ′ such

that λ1 < λ′ < λ, this implies that mλ′ ≤ Eλ′(u) < 2π, which is impossible.

In view of Proposition ??, mλ is attained for λ < λ1. In order to complete the proof of Theorem
??, it remains to rule out the possibility λ1 = 0. This amounts to proving the following

Lemma 2. We have m0 < 2π.

Proof of Lemma ??: We start with the case of a circular annulus, A = {z ∈ R2 ; r < |z| < R}.
Set u(z) =

z

R + r
+

rR

(R + r)z
. It is easy to check that u(z) =

z

|z| on ∂A, so that u ∈ J . On the

other hand, it is straightforward that E0(u) = 2π
R − r

R + r
< 2π; thus m0 < 2π.

Consider now a general A. Recall that there is a conformal representation Φ of A into some
circular annulus C; moreover, Φ extends to a C1-diffeomorphism of A into C and we may choose
Φ in order to preserve the orientation of curves, see [?]. Let F : H1(C) → H1(A), F (u) = u◦Φ. If
J (A) and J (C) stand for the corresponding classes of testing maps, we claim that F is a bijection
of J (C) into J (A). Indeed, let Γ be a connected component of ∂A and let γ = Φ(Γ). Since Φ is
orientation preserving, we have

deg(g, γ) = deg(g, Γ) (2.8)

for g ∈ C∞(γ; S1). Using the density of C∞(γ; S1) into H1/2(γ; S1) and the continuity of the map
g 
→ g ◦ Φ from H1/2(γ; S1) into H1/2(Γ; S1), we find that (??) is still valid for g ∈ H1/2(γ; S1).
Thus F maps J (C) into J (A). Similarly, F−1 maps J (A) into J (C), which completes the proof
of the claim.

Using the conformal invariance of the Dirichlet integral, we find that m0 has the same value
for A and for C. In view of our discussion on circular annuli, the proof of Lemma ?? is complete.
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3 Proof of Theorem ??

Let, for λ ≥ 0, uλ be a minimizer of (??)-(??). We start by noting that (uλ) is bounded in H1(A).
Indeed, the upper bound (??) implies that (∇uλ) is bounded in L2(A). Thus, by a Poincaré type

inequality, (uλ − aλ) is bounded in H1(A), where aλ =
1

|∂Ω|
∫
∂Ω

uλ. Since |uλ| = 1 a.e. on ∂Ω, aλ

is bounded, so that uλ is bounded in H1(A).

Let u∞ ∈ H1(A) be such that, up to some subsequence, uλn ⇀ u∞ in H1(A). In view of (??),
we have

∫
A

(1 − |uλ|2)2 → 0, and thus u∞ ∈ H1(A; S1).

In the subcritical case, we will identify u∞ with the help of the Price lemma and of the following
simple

Lemma 3. Let u ∈ H1(A; S1). Then deg(u, ∂Ω)=deg(u, ∂ω).

Proof of Lemma ??: Differentiating the equality |u|2 = 1 a.e. we find that u · ux = u · uy = 0
a.e., so that Jac u = 0 a.e. On the other hand, an integration by parts used in conjunction with
the degree formula (??) yields

0 =

∫
A

Jac u =
1

2

∫
∂A

u ∧ ∂u

∂τ
= π(deg(u, ∂Ω) − deg(u, ∂ω)). (3.1)

For the convenience of the reader, we split the remaining part of the proof of Theorem ?? into
5 steps.

Step 1. Identification of u∞ and strong H1(A) convergence in the subcritical case

By combinining the Price Lemma, Proposition ??, Lemma ?? and the upper bound (??), we have,
in the subcritical case I0 < 2π,

2π > I0 ≥ lim inf
n

mλn ≥ lim inf
n

1

2

∫
A

|∇uλn|2 ≥
1

2

∫
A

|∇u∞|2 + 2π|1 − deg(u∞, ∂Ω)|. (3.2)

On the one hand, the above inequality implies that deg(u∞, ∂Ω)=deg(u∞, ∂ω) = 1, that is u∞ ∈ K.

On the other hand, we have I0 ≥ 1

2

∫
A

|∇u∞|2. Recalling the definition of I0, we find that u∞

minimizes (??)-(??). Turning back to (??), we then obtain

I0 ≥ lim inf
n

1

2

∫
A

|∇uλn|2 ≥
1

2

∫
A

|∇u∞|2 = I0, (3.3)
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which implies that uλn → u∞ in H1(A).

Step 2. An improved upper bound for mλ

The following result is a slight improvement of the upper bound (??).

Lemma 4. There are some C > 0, λ0 > 0 such that mλ ≤ I0 − C

λ
for λ > λ0.

Proof of Lemma ??: Let u minimize (??)-(??). Then u ∈ C∞(A), see [?]. Let f ∈ C∞
0 (A; R)

to be determined later. Set vλ = (1 − f/λ)u, which agrees with u on ∂A and thus belongs to J .
It is easy to see that, u being S1-valued, we have |∇vλ|2 = (1 − f/λ)2|∇u|2 + |∇f |2/λ2. Thus

mλ ≤ Eλ(vλ) =
1

2

∫
A

|∇u|2 − 1

λ

∫
A

f(|∇u|2 − f) + O

(
1

λ2

)
. (3.4)

The conclusion of Lemma ?? follows from (??); it suffices to consider f such that 0 ≤ f ≤ |∇u|2
in A and 0 < f < |∇u|2 in some nonempty open subset of A.

Step 3. Candidates for u∞ in the critical case

Lemma 5. Assume A critical. Then either u∞ minimizes (??)-(??), or u∞ is a constant of
modulus 1.

Proof of Lemma ??: We rely on the Price Lemma, Lemma ?? and the upper bound (??). As
in (??), we have

2π = I0 ≥ lim inf
n

mλn ≥ 1

2

∫
A

|∇u∞|2 + 2π|1 − deg(u∞, ∂Ω)|. (3.5)

If deg(u∞, ∂Ω)=deg(u∞, ∂ω) = 1, then, as in Step 1, we find that u∞ minimizes (??)-(??). On
the other hand, if deg(u∞, ∂Ω)=deg(u∞, ∂ω) 	= 1, then (??) implies that u∞ must be a constant.
Since |u∞| = 1 a.e. on ∂A, this constant is of modulus 1.

Step 4. Identification of u∞ and strong H1(A) convergence in the critical case

We rely on the following

Lemma 6. [?] Let (vλ) be a family of solutions of the GL equation −∆vλ = λvλ(1 − |vλ|2) in A.
Assume that |vλ| ≤ 1 and Eλ(vλ) ≤ C. Then (vλ) is bounded in C∞

loc(A). In addition, the following
pointwise estimates hold:

1 − |vλ(z)|2 ≤ D

λd2(z)
, z ∈ A (3.6)

10



and

|Dkvλ(z)| ≤ Dk

dk(z)
, z ∈ A, k ∈ N; (3.7)

here, d(z) =dist(z, ∂A) and the constants D, Dk depend only on C.

In order to identify u∞, we rule out the possibility that u∞ is a constant. We argue by
contradiction. Let Γ be a simple curve in A enclosing ∂ω. Let U be the domain enclosed by ∂Ω
and Γ and set V = A \ U . Integrating, in U , the pointwise inequality |∇uλ|2 ≥ 2Jac uλ, we find,
with the help of the degree formula (??), that

1

2

∫
U

|∇uλ|2 ≥ π − 1

2

∫
Γ

uλ ∧ ∂uλ

∂τ
; (3.8)

here, Γ is counterclockwise oriented. Similarly, the use of the inequality |∇uλ|2 ≥ −2Jac uλ yields

1

2

∫
V

|∇uλ|2 ≥ π − 1

2

∫
Γ

uλ ∧ ∂uλ

∂τ
, (3.9)

and thus

mλ ≥ 1

2

∫
A

|∇uλ|2 ≥ π −
∫
Γ

uλ ∧ ∂uλ

∂τ
. (3.10)

We next note that the uλ’s satisfy the assumption of the Lemma ??. Indeed, any minimizer
of (??)-(??) satisfies the GL equation. Since |uλ| = 1 a.e. on ∂A, we have |uλ| ≤ 1 in A, by the
maximum principle, see [?]. Finally, we have Eλ(uλ) ≤ 2π for each λ.

Since u∞ is a constant, for large λ we have, in view of Lemma ??, 1/2 ≤ |uλ| ≤ 1 on Γ and
deg(uλ, Γ) = 0. We may thus write, for large λ, uλ = ρλe

ıϕλ on Γ, where 1/2 ≤ ρλ ≤ 1 and ϕλ is
single-valued. Therefore, we have∫

Γ

uλ ∧ ∂uλ

∂τ
=

∫
Γ

ρ2
λ

∂ϕλ

∂τ
=

∫
Γ

(ρ2
λ − 1)

∂ϕλ

∂τ
. (3.11)

On the other hand, Lemma ?? and the assumption that u∞ is a constant imply that ∇ϕλ → 0
uniformly on Γ as λ → ∞. Formula (??) and estimate (??) used in conjunction with the fact that
∇ϕλ → 0 uniformly on Γ yield ∫

Γ

uλ ∧ ∂uλ

∂τ
= o

(
1

λ

)
, (3.12)

which in turn implies, with the help of (??), that

mλ ≥ 2π − o

(
1

λ

)
as λ → ∞. (3.13)
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Inequality (??) contradicts, for large λ, the conclusion of Lemma ??. In conclusion, u∞ is not a
constant. In view of Step 3, u∞ minimizes (??)-(??). As in Step 1, this implies the strong H1

convergence uλn → u∞.

Step 5. |uλ| → 1 uniformly in A as λ → ∞
As we have already noted, the family (uλ) is bounded in H1(A). Moreover, if uλn → u∞ weakly
in H1, we know, from Step 1 and Step 4, that uλn → u∞ strongly in H1, and that u∞ minimizes
(??)-(??). It is easy to see that it suffices to prove that, for such a sequence (uλn), we have
|uλn| → 1 uniformly in A as n → ∞.

Fix some a ∈ (0, 1). We have to establish the inequality

|uλn(z)| ≥ a in A for large n. (3.14)

We recall the following

Lemma 7. [?] Let gn, g ∈VMO(∂A; S1) be such that gn → g in VMO. Let g̃n, g̃ be the correspond-
ing harmonic extensions to A. Then, for each ε > 0, there is some δ = δ(ε) > 0 (independent of
n) such that

|g̃n(z)| ≥ 1 − ε if d(z) ≤ δ. (3.15)

Lemma 8. [?] Let v ∈ H1
0 (A) be such that ∆v ∈ L∞. Then, for some C depending only on A,

we have
‖∇v‖L∞ ≤ C‖v‖1/2

L∞‖∆v‖1/2
L∞. (3.16)

Set gn = uλn |∂A, g = u∞|∂A. Since H1/2(∂A) ⊂VMO(∂A) and uλn → u∞ in H1(A), we find

that gn → g in VMO. We split uλn = g̃n + vλn , where vλn ∈ H1
0 (A) is the solution of

−∆vλn = λuλn(1 − |uλn|2). We note that

|vλn | ≤ |g̃n| + |uλn| ≤ 2; (3.17)

here we rely on the inequality |uλn| ≤ 1 and on the fact that, g̃n being the harmonic extension of
a map of modulus 1, has modulus lesser or equal to 1. Using Lemma ?? in conjunction with (??),
we find that

|∇vλn| ≤ C
√

2λn. (3.18)

Since vλn = 0 on ∂A, we obtain that

|vλn(z)| ≤ C1

√
λnd(z) (3.19)

for some C1 independent of n. By combining (??) with Lemma ?? it follows that that, for some
C2 = C2(a) and n0 = n0(a), we have

|uλn(z)| ≥ a if d(z) ≤ C2√
λn

and n ≥ n0. (3.20)
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Returning to the proof of (??), we proceed as in [?]. We argue by contradiction: we assume that,
possibly after passing to a further subsequence, there are points zn ∈ A such that |uλn(zn)| ≤ a.
In view of (??), we have

d(zn) ≥ C2√
λn

for large n. (3.21)

Let C3 ∈ (0, C2) to be determined later. By (??), we have |∇uλn(z)| ≤ C4√
λn

if |z− zn| ≤ C3√
λn

.

Since |uλn(zn)| ≤ a, we thus have

|uλn(z)| ≤ 1 + a

2
if |z − zn| ≤ C3√

λn

and n is large, (3.22)

provided we choose C3 sufficiently small. For such a C3 and for sufficiently large n, we find that

λn

∫
A

(1 − |uλn|2)2 ≥ λn

∫
{z; |z − zn| ≤ C3/

√
λn}

(1 − |uλn|2)2 ≥ C4; (3.23)

here, C4 is independent of n.
On the other hand, the upper bound (??), the strong H1 convergence uλn → u∞ together with

the fact that u∞ minimizes (??)-(??) yield

I0 ≥ lim
n

(
1

2

∫
A

|∇uλn|2 +
λn

4

∫
A

(1 − |uλn|2)2

)
= I0 + lim

n

λn

4

∫
A

(1 − |uλn|2)2. (3.24)

Thus we must have

lim
n

λn

4

∫
A

(1 − |uλn|2)2 = 0. (3.25)

For large n, (??) and (??) contradict each other. Therefore, (??) holds. The proof of Theorem
2 is complete.

4 Rise of vortices

Throughout this section, we consider a supercritical domain A. Assume first that A obeys case a)
in Theorem ??. As noted at the beginning of the proof of Theorem ??, the family (uλ) is bounded
in H1(A), and thus, up to some subsequence, uλn ⇀ u∞; moreover, u∞ ∈ H1(A; S1). Assume
next that A obeys case b). If we consider, for a fixed λ > λ1, a minimizing sequence (uk), then
the argument employed for the family (uλ) shows that (uk) is bounded in H1(A), and thus, up to
some subsequence, ukn ⇀ u∞; here, u∞ ∈ H1(A; C). We start by identifying u∞.
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Lemma 9. In both cases a) and b), u∞ is a constant of modulus 1.

Proof of Lemma ??: Assume first case a). By combining the Price Lemma, the upper bound
(??) and Lemma ??, we find that

2π ≥ lim inf
n

1

2

∫
A

|∇uλn|2 ≥
1

2

∫
A

|∇u∞|2 + 2π|1 − deg(u∞, ∂Ω)|. (4.1)

If deg(u∞, ∂Ω) 	= 1, then u∞ has to be a constant; this constant is of modulus 1, since |u∞| = 1
a.e. on ∂A. If deg(u∞, ∂Ω) = 1, then u∞ ∈ K, and thus (??) yields

2π ≥ 1

2

∫
A

|∇u∞|2 ≥ I0; (4.2)

this is impossible, since we are in the supercritical case. Thus u∞ is a constant of modulus 1.

Assume next case b); the proof of Theorem ?? shows that mλ = 2π for λ > λ1. The Price
Lemma implies that

2π = mλ = lim
n

Eλ(ukn) ≥ Eλ(u∞) + π(|1 − deg(u∞, ∂Ω)| + |1 − deg(u∞, ∂ω)|). (4.3)

If deg(u∞, ∂Ω) = deg(u∞, ∂ω) = 1, then u∞ ∈ J and thus, by (??), u∞ minimizes (??)-(??);
this is impossible, since mλ is not attained for λ > λ1. If deg(u∞, ∂Ω) 	= 1 and deg(u∞, ∂ω) 	= 1,
then u∞ has to be a constant (of modulus 1). Finally, if exactly one among deg(u∞, ∂Ω) and
deg(u∞, ∂ω) equals 1, then (??) combined with (??) yields

2π ≥ 2π +
λ

4

∫
A

(1 − |u∞|2)2; (4.4)

therefore, u∞ is a constant of modulus 1, which is in contradiction with the degrees assumption
on u∞. In conclusion, u∞ is a constant of modulus 1.

As a byproduct of the above lemma, it is easy to establish Proposition ??.

Proof of Proposition ??: Since mλ is not decreasing, for each sequence λn → ∞ we have
lim

λ→∞
mλ = lim

n
mλn .

Assume first A subcritical/critical. Consider a sequence (λn) such that uλn → u∞ strongly in
H1(A), where u∞ minimizes (??)-(??). By combining the upper bound (??) with the definition
of I0, we find that

I0 ≥ lim
λ→∞

mλ = lim
n

Eλn(uλn) ≥ 1

2

∫
A

|∇u∞|2 = I0. (4.5)
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Thus lim
λ→∞

mλ = I0, which is the desired conclusion.

Assume next A supercritical. If A obeys case b), then mλ = 2π for large λ, and (??) follows.
If A obeys case a), consider a sequence (λn) such that uλn ⇀ u∞ weakly in H1(A), where u∞ is a
constant of modulus 1. Using the Price lemma and the upper bound (??), we obtain

2π ≥ lim
λ→∞

mλ = lim
n

Eλn(uλn) ≥ 2π, (4.6)

which yields lim
λ→∞

mλ = 2π, as stated.

Proof of Theorem ?? in case b): We consider, for λ > λ1, a minimizing sequence (uk), whose
behavior we will describe below. For the convenience of the reader, we divide the proof into 6
steps.

Step 1. Splitting uk

Let vk minimize the GL energy Eλ among all the maps v ∈ H1(A) such that v = uk on ∂A. Clearly,
(i) vk satisfies the GL equation −∆vk = λvk(1 − |vk|2), (ii) |vk| ≤ 1 (by the maximum principle),
(iii) vk ∈ J , and (iv) the sequence (vk) is still a minimizing sequence (since Eλ(vk) ≤ Eλ(uk)).
Set wk = uk − vk ∈ H1

0 (A).

Lemma 10. We have wk → 0 in H1(A) as k → ∞.

Proof of Lemma ??: In view of Lemma ??, we may assume that, up to some subsequence,
ukn ⇀ u and vkn ⇀ v weakly in H1(A), where u, v are constants of modulus 1. Since uk = vk

on ∂A, we find that u = v; in particular, wkn ⇀ 0. It is easy to see that, in fact, the stronger
property wk ⇀ 0 holds. Inserting the equality uk = vk + wk into the formula of Eλ(uk) and using
the fact that wk ⇀ 0, we find that

Eλ(uk) = Eλ(vk) +
1

2

∫
A

|∇wk|2 +

∫
A

∇vk · ∇wk + o(1). (4.7)

Since both (uk) and (vk) are minimizing sequences, we obtain

1

2

∫
A

|∇wk|2 +

∫
A

∇vk · ∇wk → 0 as k → ∞. (4.8)

On the other hand, if we multiply by wk the GL equation satisfied by vk and integrate, we find
that ∣∣∣∣

∫
A

∇vk · ∇wk

∣∣∣∣ =

∣∣∣∣
∫
A

λvk · wk(1 − |vk|2)
∣∣∣∣ ≤ λ

∫
A

|wk| → 0 as k → ∞. (4.9)
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(??) used in conjunction with (??) yields lim
k

∫
A

|∇wk|2 = 0; since wk = 0 on ∂A, we find that

wk → 0 in H1(A), as stated.

In conclusion, modulo a small reminder in H1(A), we may replace a minimizing sequence (uk)
by another one, (vk), having the additional properties (i) and (ii). In the remaining part of the
proof, we will examine the behavior of the sequence (vk).

Step 2. Concentration of the energy near ∂A

We fix two simple curves in A, γ and Γ, such that γ encloses ∂ω and Γ encloses γ. Let U be the
domain enclosed by ∂Ω and Γ, V be the domain enclosed by γ and ∂ω and set W = A \ (U ∪ V ).

Lemma 11. We have, as k → ∞, ∫
A

(1 − |vk|2)2 → 0, (4.10)

‖∇vk‖L∞(W ) → 0, (4.11)

‖∂zvk‖L2(U) → 0 and ‖∂zvk‖L2(V ) → 0 (4.12)

1

2

∫
U

|∇vk|2 → π and

∫
U

Jac vk → π, (4.13)

1

2

∫
V

|∇vk|2 → π and

∫
V

Jac vk → −π. (4.14)

Proof of Lemma ??: We integrate over U (V , respectively) the identity
1

2
|∇vk|2 =Jac vk + 2|∂zvk|2 (

1

2
|∇vk|2 = −Jac vk + 2|∂zvk|2, respectively). We find that

Eλ(vk) =

∫
U

Jac vk −
∫
V

Jac vk + 2

∫
U

|∂zvk|2 +2

∫
V

|∂zvk|2 +
1

2

∫
W

|∇vk|2 +
λ

4

∫
A

(1− |vk|2)2. (4.15)

An integration by parts combined with the degree formula (??) yields, for the counterclockwise
orientation on γ and Γ,∫

U

Jac vk = π − 1

2

∫
Γ

vk ∧ ∂vk

∂τ
and −

∫
U

Jac vk = π − 1

2

∫
γ

vk ∧ ∂vk

∂τ
. (4.16)
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We claim that, as k → ∞,
∇vk → 0 in C0

loc(A); (4.17)

clearly, the conclusions of Lemma ?? follow by combining (??)-(??) with the inequality |vk| ≤ 1
and the fact that lim

k
Eλ(vk) = 2π.

It remains to establish (??). Since |vk| ≤ 1, we find that |∆vk| ≤ λ. The sequence (vk) being
bounded in H1, it follows, from standard elliptic estimates [?], that (vk) is bounded in W 2,p

loc (A),
1 < p < ∞, and thus relatively compact in C1

loc(A), via the Sobolev embeddings. In view of
Lemma ??, each subsequence of (vk) contains a further subsequence converging weakly in H1 to
a constant of modulus 1; it is easy to see that this property, combined with the fact that (vk)
is relatively compact in C1

loc(A), implies (??). For further use, we note that the same argument
implies that |vk| → 1 in C1

loc(A).

Step 3. Existence of zeroes

Lemma 12. There is some k0 such that, for k ≥ k0, vk has at least a zero ζk in U , at least a zero
ξk in V and no zeroes in W . In addition, for any zero ζk

′ in U (ξk
′ in V , respectively) we have

dist(ζk
′, ∂Ω) → 0 as k → ∞ (dist(ξ′k, ∂ω) → 0 as k → ∞, respectively).

Proof of Lemma ??: Non-existence of zeroes in W for large λ and the last assertion follow
from the fact that |vk| → 1 in C1

loc(A). It remains to establish existence of zeroes in U and in V
for large λ. We argue by contradiction and assume, e.g., that, possibly up to some subsequence,
vk 	= 0 in U . We claim that, for a fixed k, there is some C = Ck > 0 such that C ≤ |vk| ≤ 1
in U . Indeed, Lemma ?? applied to g = vk |∂A, gn ≡ g, implies that there is some δ1 > 0 such
that g̃(z) ≥ 3/4 if d(z) < δ1. On the other hand, if we set wk = vk − g̃(z) ∈ H1

0 (A), then
∆wk ∈ L∞(A) and thus wk ∈ C1

0 (A). Therefore, there is some δ2 > 0 such that |wk(z)| ≤ 1/4 if
d(z) < δ2. We find that |vk(z)| ≥ 1/2 if d(z) <Min(δ1, δ2); vk being smooth in A as a solution of
GL and non vanishing in U according to our hypothesis, this implies the existence of C, as claimed.

Set yk = vk/|vk|; this map belongs to H1(U ; S1), since C ≤ |vk| ≤ 1 in U . Lemma ?? yields
deg(yk, Γ) =deg(yk, ∂Ω) = 1; the last inequality follows from the fact that yk = vk on ∂Ω. Thus
deg(vk, Γ) =deg(yk, Γ) = 1. This is impossible since, up to a subsequence, vk → v in C1(Γ), where
v is a constant of modulus 1. The proof of Lemma ?? is complete.

Step 4. Rescaling vk

We recall that ∇vk → 0 and |vk| → 1 in C1(Γ); therefore, we may extend vk |U to Ω such that the

extension v1
k satisfies ‖∇v1

k‖L∞(Ω\U) → 0 and 1/2 ≤ |v1
k| ≤ 1 in Ω \ U for large k. Similarly, vk|V

has an extension v2
k to C \ω satisfying ‖∇v2

k‖L∞(C\V ) → 0 and 1/2 ≤ |v2
k| ≤ 1 in C \ V for large k.
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Let Φ be a fixed conformal representation of Ω into D. It is well-known that all the con-
formal representations Φk of Ω into D satisfying the property Φk(ζk) = 0 are given by Φk(z) =

α
Φ(z) − Φ(ζk)

1 − Φ(ζk)Φ(z)
, where α ∈ S1. Set yk = v1

k◦Φ−1
k . By construction, yk maps D into D and vanishes

at the origin; moreover, the trace of yk on S1 has modulus 1 and degree 1 (since Φk preserves the
orientation of curves). It is easy to see that, for an appropriate choice of α, we may assume that
∂zyk(0) ≥ 0. Similarly, we may construct a conformal representation Ψk of C \ω onto D vanishing

at ξk and such that zk = v2
k ◦ Ψ−1

k has the same properties as yk.

In the remaining part of the proof, we study the asymptotic properties of yk and zk and relate
these properties to the asymptotic behavior of vk. The reason we prefer to deal with yk, zk instead
of vk is strong H1 convergence: as we have already seen, up to a subsequence, gkn ⇀ v, where
v is some constant of modulus 1; in particular, (gkn) is not strongly convergent in H1, since the
degree constraints are lost in the limit. However, we will establish below that yk and zk do strongly
converge in H1. We focus ourselves on the behavior of yk; the analysis is the same for zk.

To start with, we collect some elementary properties of the Φk’s.

Lemma 13. [?] For each r ∈ (0, 1), there are constants Cj = Cj(r) independent of k such that:
i) Φ−1

k (Dr) ⊂ {z ∈ Ω ; |z − ζk| ≤ C1d(ζk, ∂Ω) and d(z, ∂Ω) ≥ C2d(ζk, ∂Ω)};
ii) |∇Φ−1

k | ≤ C3d(ζk, ∂Ω) in Dr.
For each R1, R2 > 0, there is some r ∈ (0, 1) independent of k such that
iii) Φk({z ∈ Ω ; |z − ζk| ≤ R1d(ζk, ∂Ω) and d(z, ∂Ω) ≥ R2d(ζk, ∂Ω)}) ⊂ Dr.

Lemma 14. We have yk →id and zk →id strongly in H1(D) and in C1
loc(D).

Proof of Lemma ??: Since the Dirichlet integral is conformally invariant, we have∫
D

|∇yk|2 =

∫
Ω

|∇v1
k|2 =

∫
U

|∇vk|2 +

∫
Ω\U

|∇v1
k|2 = 2π + o(1) as k → ∞; (4.18)

here, we use Lemma ??. Similarly, we have∫
D

(|∇yk|2 − 2Jac yk) = o(1) as k → ∞. (4.19)

The fact that |yk| ≤ 1 combined with (??) implies that (yk) is bounded in H1(D). Let y ∈ H1(D)
be such that, up to some subsequence, ykn ⇀ y; thus |y| = 1 a.e. on S1.
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The map H1(D) � u 
→
∫
D

(|∇u|2 − 2Jac u) being convex and continuous (and thus weakly

l.s.c.), (??) and the fact that ykn ⇀ y imply∫
D

(|∇y|2 − 2Jac y) = 4

∫
D

|∂zy|2 ≤ 0. (4.20)

Thus ∂zy = 0 a.e. in D, i.e., y is holomorphic in D. Set g = y|S1 ∈ H1/2(S1; S1), whose Fourier

expansion is of the form g =
∞∑
l=0

ale
ılθ. Then deg g =

∞∑
l=0

l|al|2 (when g is smooth, this equality is

equivalent to the degree formula (??); equality still holds for a general g ∈ H1/2(S1; S1), see [?]).
On the other hand, y, being holomorphic, is the harmonic extension g, and thus∫

D

|∇y|2 = 2π

∞∑
l=0

l|al|2 = 2π deg g ≤ 2π; (4.21)

the last inequality follows from (??). In conclusion, either deg g = 0, in which case y is a constant
of modulus 1, or deg g = 1.

We first rule out the possibility that y is a constant. For large k, the set

Mk = {z ; |z − ζk| ≤ C1d(ζk, ∂Ω) and d(z, ∂Ω) ≥ C2d(ζk, ∂Ω)}
is contained in U , and thus |∆v1

k| = λ|vk(1− |vk|2)| ≤ λ in Mk. Using Lemma ?? ii), we find that

|∆yk| =
1

2
|∇Φ−1

k |2|(∆v1
k) ◦ Φ−1

k | → 0 uniformly in Dr as k → ∞. (4.22)

Since yk is bounded in H1, it follows, from standard elliptic estimates, that yk is relatively com-
pact in C1

loc(D). In particular, ykn → y uniformly in D1/2. Recalling that yk(0) = 0, we find that
y(0) = 0, that is, y can not be a constant of modulus 1.

We next identify y. Lemma ?? applied to gn ≡ g implies that |y(z)| → 1 uniformly as |z| → 1.
We recall that a holomorphic map y in D satisfying |y(z)| → 1 uniformly as |z| → 1 is a Blaschke

product, i.e., y(z) = α
d∏

j=1

z − aj

1 − ajz
for some α ∈ S1 and a1, . . . , ad ∈ D; see [?]. Here, d is the

degree of y|S1. In our case, d = 1 and y(0) = 0; thus y = α id with α ∈ S1. Since ∂zyk(0) ≥ 0, we
have α = ∂zy(0) ≥ 0, and thus α = 1; therefore, y =id.
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The uniqueness of the weak limit implies that yk ⇀id in H1. (??) combined with the fact that∫
D

|∇ id|2 = 2π yields yk →id in H1; the sequence (yk) being relatively compact in in C1
loc(D), it

follows that yk →id in C1
loc(D).

Step 5. Holomorphic/anti-holomorphic behavior of vk near ∂Ω/∂ω

As an immediate consequence of Lemma ??, we obtain the following

Lemma 15. We have vk − Φk → 0 in L2
loc(A \ ∂ω) and vk − Ψk → 0 in L2

loc(A \ ∂Ω).

Proof of Lemma ??: We prove, e.g., the first assertion. Fix a compact K ⊂ A \ ∂ω. The curves
γ, Γ introduced in Step 2 being arbitrary, we have, thanks to Lemma ??,∫

K\U

|∇vk|2 → 0 as k → ∞. (4.23)

On the other hand, Lemma ?? i) and the fact that d(ζk, ∂Ω) → 0 imply that Φk(K \U) ⊂ D \Drk

for some sequence rk → 1. The conformal invariance of the Dirichlet integral yields∫
K\U

|∇Φk|2 =

∫
Φk(K\U)

|∇ id|2 ≤
∫

D\Drk

|∇ id|2 → 0 as k → ∞. (4.24)

Finally, ∫
K∩U

|∇Φk −∇vk|2 ≤
∫
U

|∇Φk −∇vk|2 =

∫
Φk(U)

|∇ id −∇yk|2 as k → ∞, (4.25)

by Lemma ?? and conformal invariance. The conclusion of Lemma ?? follows by combining
(??)-(??).

Step 6. Uniqueness of ζk, ξk for large k

We argue by contradiction and assume that, possibly up to some subsequence, vk has two distinct

zeroes in U , ζk and ζ̃k. Without loss of generality, we may further assume that d(ζk, ∂Ω) ≥
d(ζ̃k, ∂Ω). Let Φk and Φ̃k be the corresponding conformal representations. We claim that, for each

r ∈ (0, 1), we have Φ−1
k (Dr) ∩ Φ̃k

−1
(Dr) = ∅ for large k. Indeed, if z ∈ Φ−1

k (Dr) ∩ Φ̃k

−1
(Dr), then,

with C1 as in Lemma ??, we have

|z − ζk| ≤ C1d(ζk, ∂Ω), |z − ζ̃k| ≤ C1d(ζ̃k, ∂Ω), (4.26)
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by Lemma ?? i), and therefore

d(ζk, ∂Ω) ≥ d(ζ̃k, ∂Ω), |ζ̃k − ζk| ≤ 2C1d(ζk, ∂Ω). (4.27)

Lemma ?? iii) combined with (??) implies the existence of some fixed ρ ∈ (0, 1) such that Φk(ζ̃k) ∈
Dρ for each k. This is impossible for large k, since on the one hand yk = vk ◦ Φ−1

k →id in C1(Dρ)

(and thus, for large k, yk|Dr
is into), on the other hand yk(Φk(ζk)) = yk(Φk(ζ̃k)) = 0 for each k.

The claim is proved.

Fix now r ∈ (1/
√

2, 1), so that

∫
Dr

|∇ id|2 = 2πr2 > π. With ỹk = vk ◦ Φ̃−1
k , we have, as k → ∞,

1

2

∫
U

|∇vk|2 ≥ 1

2

∫
Φ−1

k (Dr)∪fΦk
−1

(Dr)

|∇vk|2 =
1

2

∫
Dr

|∇yk|2 +
1

2

∫
Dr

|∇ỹk|2 → 2πr2, (4.28)

by Lemma ??. With our choice of r, (??) contradicts (??). This contradiction proves the unique-
ness of ζk.

Proof of Theorem ?? in case a): Our purpose is to describe the behavior, as λ → ∞, of a
family (uλ) of minimizers of (??)-(??). The proof follows essentially the same lines as the one in
case a). We point out the changes to be made. Step 1 is not needed here, since the minimizers
already satisfy the GL equation and the property |uλ| ≤ 1. The analogs of (??)-(??) in Step 2 are

λ

∫
A

(1 − |uλ|2)2 → 0, (4.29)

‖∇uλ‖L∞(W ) → 0, (4.30)

‖∂zuλ‖L2(U) → 0 and ‖∂zuλ‖L2(V ) → 0 (4.31)

1

2

∫
U

|∇uλ|2 → π and

∫
U

Jac uλ → π, (4.32)

1

2

∫
V

|∇uλ|2 → π and

∫
V

Jac uλ → −π. (4.33)

However, while (??)-(??) were obtained via (??), one has to use in this case the estimate (??)
(note that, although we established (??) in the critical case, it is still valid in our context, since
it relies only on the assumption that the only possible weak H1 limits of sequences (uλn) are
constants).

With the same proof as in Step 3, case b), we find that, for large λ, uλ has a zero, ζλ, in U ,
respectively a zero, ξλ, in V . An additional information needed is given by the following
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Lemma 16. We have λ1/2d(ζλ, ∂Ω) → 0 and λ1/2d(ξλ, ∂ω) → 0 as λ → ∞.

Proof of Lemma ??: We establish the first assertion. By (??), we have, with some constant C
independent of large λ,

|∇uλ(z)| ≤ C

d(ζλ, ∂Ω)
if |z − ζλ| ≤ 1

2
d(ζλ, ∂Ω), (4.34)

and thus, with cλ = 1/2Min{1, 1/C}d(ζλ, ∂Ω), we have Dcλ
(ζλ) ⊂ A and |uλ| ≤ 1/2 in Dcλ

(ζλ).
Therefore,

λ

∫
A

(1 − |uλ|2)2 ≥ λ

∫
Dcλ

(ζλ)

(1 − |uλ|2)2 ≥ 9πc2
λ

16
. (4.35)

The conclusion of Lemma ?? follows by combining (??) with (??).

We next consider the rescaled maps yλ = uλ◦Φ−1
λ , respectively zλ = uλ◦Ψ−1

λ , where Φλ, Ψλ are
suitable conformal representations vanishing at ζλ, respectively ξλ. Step 4 works with the same
proof except when establishing the analog of (??), which is

|∆yλ| → 0 in C0
loc(D). (4.36)

The argument that leads to (??) is the following: let r ∈ (0, 1). By combining Lemma ?? i), ii)
with Lemma ??, we have, for large λ,

‖∆yλ‖L∞(Dr) =
1

2
‖|∇Φ−1

λ |2|(∆uλ) ◦ Φ−1
k ‖L∞(Φ−1

λ (Dr)) ≤ C3λd(ζλ, ∂Ω) → 0 as λ → ∞. (4.37)

Finally, Steps 5 and 6 are the same, and no changes are needed in the proof.
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[7] F. Bethuel, H. Brezis, F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau
functional, Calc. Var., 1 (1993), 123-148.

[8] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, 1997.

[9] A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice, A boundary value problem related
to the Ginzburg-Landau model, Comm. Math. Phys., 142 (1991), 1-23.

[10] H. Brezis,Metastable harmonic maps, in Metastability and Incompletely Posed Problems, , S.
S. Antman, J. L. Ericksen, D. Kinderlehrer, I. Mller, (eds.) 33-42, Springer-Verlag, 1987.

[11] Brezis, H. : Degree theory : old and new in Topological Nonlinear Analysis, II (Frascati,
1995), Prog. Nonlinear Differential Equations Appl., vol. 27. Birkhäuser, Boston, MA, 1997,
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