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Abstract

In this paper, we report our resent results on asymptotic analysis of a PDE model for motility of a eukaryotic cell.
We formally derive the sharp interface limit, which describes the motion of the cell membrane. In the 1D case, we
rigorously justify the limit, and, using numerical simulations, observe some surprising features such as discontinuity
of interface velocities and hysteresis. We show that nontrivial traveling wave solutions appear when the key physical
parameter exceeds a critical value.

Résumé

Nous présentons dans cet article des résultats récents sur 1’analyse asymptotique d’un modele EDP pour la migration
de cellules eucaryotes. Nous dérivons formellement 1’équation limite pour I’interface, qui décrit le mouvement de la
membrane cellulaire. Dans le cas unidimensionnel, nous justifions cette limite de fagn rigoureuse, et nous observons
numériquement quelques propriétés surprenantes, comme par exemple une discontinuité dans les vitesses a I’interface,
et un phénomene d’hystéresis. Nous montrons 1’apparition d’ondes de propagation non triviales quand le parametre
physique clé dépasse un certain seuil.

Version francaise abrégée

Nous considérons un modele EDP pour la migration des cellules eucaryotes, introduit pour la premiere fois
dans [1]. II a été démontré numériquement que ce modele reproduit de fagn adéquate des pénomenes observés
expérimentalement, comme de brutales mises en mouvement de la cellule, et des oscillations de sa forme. Le
modele consiste en une EDP parabolique, pour la fonction scalaire décrivant la phase, couplée avec une EDP vec-
torielle parabolique pour le réseau de filament d’actine (cytosquelette). Tout d’abord, nous montrons que les solutions
n’explosent pas en temps fini, et de plus, si la donnée initiale a une structure de type interface mince, cette structure
d’interface mince est préservée au cours du temps. Ensuite, via une approche a deux échelles, dans 1’esprit de [2],
nous dérivons formellement la limite de I’interface mince (SIL pour Sharp Interface Limit) qui décrit le mouvement
de la membrane cellulaire (interface). Nous montrons que cette interface mince a un mouvement contraint par la
condition de conservation du volume avec un terme non-linéaire supplémentaire di a I’adhérence au substrat et a
la protusion du cytosquelette. Dans un cadre unidimensionnel, nous prouvons que la vitesse a I’interface satisfait
une équation non linéaire simple qui est une version 1D de I’interface mince. Une approche directe serait alors de
réinjecter les développements formels utilisés pour dériver la SIL dans I’EDP originelle et d’estimer le reste par des
bornes sur 1’énergie, mais cette approche ne résiste pas au couplage des équations. La principale astuce technique
est d’introduire une représentation spéciale des solutions constituée d’une partie principale: le lieu de I’interface qui
est inconnu, et d’un reste (nul dans la limite SIL) constitué¢ d’un terme donné explicitement, et d’un terme inconnu.
Cette représentation est accompagnée d’une condition supplémentaire: le terme inconnu dans le reste est orthogonal
a la fonction propre de 1’opérateur d’Allen-Cahn linéarisé autour de son onde stationnaire. Cette condition définit
implicitement le lieu de I’interface et permet d’appliquer une inégalité de type Poincarré pour estimer le reste. En
exploitant cette représentation, nous réduisons I’étude de la vitesse d’interface a une seule équation non-linéaire per-
turbée de fagn singuliere. Nous montrons que si la vitesse a I’interface appartient a un certain domaine stable, alors,
elle continue de satisfaire I’équation SIL jusqu’a ce qu’elle devienne instable. Ce résultat théorique est accompagné
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par des simulations numériques qui montrent que lorsque la vitesse a I’interface devient instable, elle saute a la com-
posante connexe la plus proche du domaine des vitesses. Les simulations numériques mettent également en évidence
I’existence de boucle d’hystérésis dans le systtme. Enfin, nous montrons I’apparition d’ondes de propagation non
triviales quand le parametre physique clé dépasse un certain seuil et que le potentiel dans 1’équation de phase a une
certaine asymétrie. Nous nous ramenons pour cela a un systeme de dimension finie pour la vitesse a I’interface et
le parametre de conservation du volume, et nous appliquons le théoreme de Schauder. Les preuves complétes et
détaillées seront publiées dans [3].

1. Introduction

An initially symmetric cell on a substrate may exhibit spontaneous breaking of symmetry or self-propagation
along the straight line maintaining the same shape over many times of its length [4, 5]. Understanding the initiation
of steady motion of a biological cell as well as the mechanism of symmetry breaking is a fundamental issue in cell
biology.

In [1, 6] a phase-field model was proposed to describe motility of a eukaryotic cell on a substrate. We consider a
simplified version of that model without myosin contraction (y = 0 in [1]), which consists of two coupled PDEs
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in a bounded domain Q ¢ R?, where the unknowns are the phase-field function p, and the vector field P, modeling
average orientation of the actin network. System (1)-(2) is obtained by diffusive scaling of equations from [1] to study
a sharp interface limit (SIL) of that model under special scaling assumptions on the parameters. We introduce the
volume preservation constraint via the Lagrange multiplier

1 r_,
A1) = @ /Q (;W (pe) + P - Vp | dx 3

in place of the volume constraint originally introduced in the potential [1]. The function W’(p) in (1) is the derivative
of a double equal well potential. We assume that

W(-) e C3(R), W(p) > 0 when p ¢ {0, 1}, W(p) = W'(p) = 0 at {0, 1}, W”(0) >0, W”(1) >0, @)

e.g.. W(p) = 1p*(1 - p)*.

The phase-field function p, takes values close to the wells of the potential 1 and O for sufficiently small £ > 0
everywhere in Q except for a thin transition layer. The corresponding subdomains are interpreted as the inside cell
and the outside cell regions, while the transition layer models the cell membrane. In (2), 8 > 0 is a fixed parameter
responsible for the creation of the field P, near the interface. The boundary conditions d,0. = 0 and P, = O are
imposed on the boundary 0Q.

We study system (1)-(2) in the sharp interface limit € — 0. Well known approaches in the study of sharp interface
limits of phase field models such as viscosity solutions techniques and the I'- convergence method, see, e.g., [7, 8, 9,
10, 11, 12, 13], are not readily applied to (1)-(2) because of the coupling through the terms P, - Vp, and Vp, (so-called
active terms due to cytoskeleton competing with curvature driven motion). The comparison principle, necessary for
the viscosity solutions technique, does not apply for (1)-(2) because of the active terms. Also the active terms prevent
this system from having a gradient flow form which makes the I'-convergence techniques developed for gradient
flows [13, 14] inapplicable. Another analytical approach, based on formal asymptotic expansions was developed for
different phase field models in [15, 2, 16]. Some ingredients of this approach are also used in the present study. We
also mention here an alternative approach to cell motility based on numerical study of free boundary value problems
developed in [4, 17, 18, 19, 20], and numerical studies of different phase field models of cell motility [21], see also
[22, 23, 24, 25, 27] for other approaches.

In this work we first show that solutions of (1)-(2) do not blow up on finite time intervals for sufficiently small & by
establishing energy type and pointwise bounds, next we formally derive a law of motion of the interface postulating a

2



two-scale ansatz in the spirit of [2]. Then we prove the existence of nontrivial traveling waves in a one-dimensional
version of (1)-(2) in the case when the potential W has certain asymmetry. This is done by an asymptotic reduction to
a finite dimensional system for V and A4, and applying the Schauder fixed point theorem. Finally in a one-dimensional
dynamical system we rigorously prove that the interface velocity satisfies a simple nonlinear equation and demonstrate
existence of a hysteresis loop in the system by numerical simulations.

2. Existence of Solutions and Sharp Interface Limit in 2D Model

The first result of this work demonstrates that for sufficiently small & > 0 a unique solution p,, P, of (1)-(2) exists
and p, maintains the structure of a sharp interface between two phases 0 and 1, provided that initial data are well
prepared. To formulate this result we introduce the following auxiliary (energy-type) functionals:

Ee(t) = § [ IVpe(x, DPdx + 1 [ W(pe(x, 1))dx,

&)

Fo(t) = [o(IPe(x. D + |Po(x, DI )dx.

U4 < pe(x,0) < 1+ g4, the

Theorem 1. Assume that the system (1)-(2) is supplied with initial data that satisfy —e
double well potential W satisfies (4), and

E.(0) + F.(0) < C;. (6)

Then for any T > 0 there exists a solution p,, P of (1)-(2) on the time interval (0, T) when & > 0 is sufficiently small,
& < eo(T). Moreover, —&''* < py(x,1) < 1 + &' and

T [ Bpe 2
P (=7) dxdt < Cy, Es()+ Fo(t) < Cy V€ (0,T), (7
0o Ja' Ot

where Cy is independent of t and ¢.

This theorem shows that there is no blow up of the solution on the given time interval (0, T), also it proves that if
the initial data have sharp interface structure, this sharp interface structure is preserved by the solution on the whole
time interval (0, T). The claim of Theorem 1 is nontrivial due to the presence of the quadratic term P, - Vp, in (1)
which, in general, could lead to a finite time blow up. The main idea behind the existence proof is to find and utilize
a bound for p. in L*((0, T') x ), which is obtained by combining the maximum principle and energy estimates.

Next we study the SIL & — 0 for the system (1)-(2). We seek solutions in the form of ansatz (locally in a
neighborhood of the interface)

ps =6d/e) +e0i(d/e,S)+ ..., P.=v¥o(d/e,S)+..., ®)

where d = d(x, t) is the (signed) distance to a unknown evolving interface curve I'(¢), S = s(p(x, 1), ) with p(x, t) being
the projection of x on I'(¢) and s(¢, ) being a parametrization of I'(¢), v = v(p(x, 1), f) is the inward pointing normal to
I'(¢) at p(x, 1) € T'(¢). The key choice here is the interface curve I'(f) that allows for appropriate estimates. We substitute
this ansatz in (1) to find, after collecting terms (formally) of the order £72, that 6, satisfies 0y = W (). It is known
that there exists a unique (up to a translation) solution (standing wave) 6y(z) which tends to 0 or 1 when z — —oo or

z — +o0. For the potential W(p) = 10*(p — 1)* the function 6 is explicitly given by 6y(z) = 3 (1 + tanh ﬁfz) Then
substitute (8) in (2) and consider the leading (of the order £™!) term. Denoting by V(x, t) the (inward) normal velocity
of the curve I'(¢) at x € I'(f) we obtain that the scalar function W(z) solves
PYy ¥
- - V—+ ¥ +86)(z) = 0. 9
o~V Yo+ B ©)

Finally, assuming that the leading term of the expansion of A, is of the order 7!, A, = A(t)/e + ..., and collecting
terms of the order ™! in (2) we are led to the following equation
86, 96 9o
——— + W00 = (V- k)— — VYo— + A1),
o (60)61 = (V —«) oz 0z (0
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where « denotes the curvature of I'(f). The solvability condition for this equation (orthogonality to the eigenfunction
g of the linearized Allen-Cahn equation) yields the desired sharp interface equation

V(x, 1) = k(x, 1) + Cld)ﬁ(V(x, n)— A1), xel(), (10)
0
where ¢y = / (9(’])2 dz, and ®g(V) is given by
2
Dy(V) = / ¥, (60 dz. (1)
R

From the volume preservation condition fl"(t) Vds = 0 it follows that A(t) = % fr(t)(C()K + @p(V))ds.

The above formal derivation of the sharp interface limit is rigorously justified in 1D (see Theorem 4 below)
because of significant technical difficulties due to the curvature in 2D. Solvability of (10) was shown in [28] for 3 less
than some critical value, moreover (10) was proved to enjoy a parabolic regularization feature. However for large 3,
the equation (10) might have multiple solutions. To obtain a selection criterion and elucidate the role of the parameter
B in the cell interface motion we consider a 1D model of the cell-motility in the next sections.

3. Traveling wave solutions in 1D

In this section we show that solutions of system (1)-(2) exhibit significant qualitative changes when the parameter
B increases and the potential W(p) has certain asymmetry, e.g. W(p) = %pz(p —1)2(1 + p?). Here we look for traveling
wave solutions in 1D model, considering (1)-(2) with Q = R'. In other words we are interested in nontrivial spatially
localized solutions of (1)-(2) of the form p, = p.(x — V¥), P, = P.(x — V). This leads to the stationary equations with
unknown (constant) velocity V and constant A:

W (ps) Pl
0 = Bpet Vape— 8~ pape+ (12)
1
0 = ga§P£+vaxP8—gP8—ﬁaxpg. (13)

We are interested in solutions of (12)-(13) that are essentially localized on the interval (—a, a), for a given a > 0.
We look for such solutions for sufficiently small &£ > 0 with the phase field function p, of the form

Pe = Oo((x + a)/&e)bp((a — x)/&) + & + ug, (14)

where constant ¢, is the smallest solution of W/(eyy) = &1 and u, is the new unknown function vanishing at +oo.
Observe that the first term 8y((x + a)/e)0y((a — x)/e) has ”II” shape and becomes the characteristic function of the
interval (—a, a) in the limit € — 0.

Proposition 1. For any real B > 0 and sufficiently small € there exists a localized standing wave solution (with V = 0)
of (12)-(13) . It is localized in the sense that the representation (14) holds with u, € L*(R) N L®(R) and |lu,||.~ < C.

Proposition 1 justifies expected existence of standing wave solutions (immobilized cells) in the class of functions with
the symmetry p(—x) = p(x) and P(—x) = —P(x), so that the polarization field on the front and back has the same
magnitude but is oriented in opposite directions. This field, loosely speaking, is trying to push front and back in
opposite directions with the same velocities, thus, cell does not move. Indeed, the relation between P, and V can be
obtained from the second equation in (8), (11) and (15).

We show, however, that not all localized solutions of (12)-(13) are necessarily standing waves. Assuming that
there exists a traveling wave solution with a nonzero velocity, e.g. V > 0, and passing to the sharp interface limit
& — 01n (12)-(13) at the back and front transition layers (x = +a in (14)) we formally obtain two relations for the
velocity V and the constant A

coV = Dp(V) =4, and —cpV = Dp(=V) — A. (15)
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Then eliminating A we obtain the equation for the velocity V:
2coV = Op(V) — Op(=V). (16)

This equation always has one root V = 0 which corresponds to the standing wave solution whose existence for system
(12)-(13) is established in Proposition 1. Two more roots, say Vy, and —V|, appear for sufficiently large 8 > 0 in the
case when @g(V) > @p(—V) for V > 0, thanks to the fact that ®g is proportional to § (note that if W(p) = %pz(p -1y
then @g is an even function, so the RHS of (16) vanishes for arbitrary 8 and thus V is necessarily 0). This heuristic
argument can be made rigorous by proving the following:

Theorem 2. Let W(p) and B be such that (16) has a root V = Vy > 0 and (I)[;(Vo) + CDI’;(—VO) # 2co (nondegenerate
root). Then for sufficiently small € > 0 there exists a localized solution of (12)-(13) with V. = V. # 0, moreover
Ve = Vo # 0 as € — 0 (as above localized solution means that representation (14) holds with u, € L*(R) n L®(R)
and |lugl|~ < C).

Remark. In Theorem 2, it is crucial that (16) has a non-zero solution V; which is impossible for the symmetric
potential W(p) = A]—‘pz(p —1)2, but does hold for an asymmetric potential, e.g., W(p) = }Tp2(p —1)*(1 + p?). In the case
of smaller diffusion in equation (13) one can prove that fol W (p)dW3/?(p) > 0 is a sufficient condition for existence
of Vy # 0. We conjecture that this remains true for (12)-(13).

Theorem 2 guarantees existence of non-trivial traveling waves that describe steady motion without external stimuli.
Thus our analysis of (12)-(13) is consistent with experimental observations of motility on keratocyte cells [4].

The proof of Theorem 2 is carried out in two steps. In the first step we use (14) to rewrite (12)-(13) as a single
equation of the form Agu, + eB.(V, ) + £2C.(us, V, 1) = 0, where A u := £20%u — W (0o((x + a)/&)bp((a — x)/&))u
is the Allen-Cahn operator linearized around the first term in (14). We rewrite this equation as a fixed point problem
Uy = —A; (Bs(V, A) + C,(ug, V, 1)). The operator A, has zero eigenvalue of multiplicity two (up to a proper o(s?)
perturbation). This leads to solvability conditions which to the leading term coincide with (15). In the second step we
apply the Schauder fixed point theorem to establish existence of solutions of (12)-(13).

4. Sharp interface limit in a 1D model problem and hysteresis

This section is devoted to the asymptotic analysis as € — 0 of the following 1D problem

0p. W (o, F(t

L = aipé‘ - (p ) - Paaxpa + Q’ (17)
ot &2

OP, 1

—% = £0°P, — —P; — 0,pe. (18)
ot &

x € R', t > 0, for a given function F : (0, +c0) — R!. This is a model problem to develop rigorous mathematical
tools for (1)-(2), and it describes a normal cross-section of the transition layer (interface) between 0 and 1 phases. The
variable x € R corresponds to the re-scaled signed distance d (see Section 2). The function F(#) models forces due to
the curvature of the interface and the mass preservation constraint 4., and for technical simplicity F(¢) is chosen to be
independent of x.

Similar to Section 3, we seek the solution of (17)-(18) in the form

PeCe D) = 00) + e, ) + e,y = 22D, (19)

where 6y and ¥, are known functions, and u, is a new unknown function. Location of the interface x.(¢) is defined
implicitly via the additional condition that u,(y, ) is orthogonal to 6 (y) in L*(R):

/ G(Vus(y, tydy = 0. (20)
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This orthogonality condition allows us to use a Poincaré type inequality to derive a priori bounds for u.. Function
Ye(y,1) is defined by

W ({(1=+1)/2 * F
Uaru 1) = U0 + BN —Uo(0), where dy(eut) = — L= DT FO gy g

)
& E

Existence of x.(¢) together with estimates on u, uniform in & and ¢ are established in the following

Theorem 3. Let p., P, be a solution of Problem (17)-(18) with initial data for p. and P, satisfying "well-prepared”
initial conditions:

Pe(x,0) = 6y (x/€) + eve (x/€), 2D
where ||vell2ry < C, [Velleew) < C/e, and Pe(x,0) = pg(ﬁ) such that
Ipallizwy + 110y pelli2@r) < C. (22)

Then there exists x.(t) such that expansion (19) holds with |luc(-, )2y < C fort € [0,T] and fR ubydy = 0.
Moreover, assuming that fR velydy = 0, the interface velocity Ve = X.(t) is determined by the following system:

(co + 80,(t) V(D) = / (0, Wedy — F(1) + £0,(D), (23)
oV, PV, o, ,
o =g T vgmg -, - By, 24)

where Oy(t) and O,(t) are bounded in L(0, T).

The reduced system (23)-(24) can be further simplified by taking the limit ¢ — 0. Formal passing to the limit in
(24) leads to equation (9) whose unique solution depends on the parameter V. Substituting this solution into (23) in
place of ¥, we obtain the equation

coVo(t) = @p(Vo(1) — F(1) (25)

for the limiting velocity Vy = lim,_,o V.. However, in general, equation (25) is not uniquely solvable. The plot of the
function ¢oV — ®g(V) for sufficiently large 5 is depicted on the Figure 1, where one sees that (25) has two or three
solutions when F € [Fiyin, Fmax]- In order to justify (25) and select a correct solution we reduce system (23)-(24) to a
single nonlinear equation substituting expression for V, from (23) into (24). Then rescaling time and neglecting terms
of the order & we arrive at the equation d,U = ;U + Cl—o( [@)*Udy — F)d,U — U — B, whose long time behavior has
to be analyzed in order to obtain the limit of (23)-(24) as € — 0. This is done by spectral analysis of the linearized
operator Ay U = (93U +Vo,U-U - %ﬁy‘l’o f (b?f)(z))2 U(z)dz about steady states ¥y of the above nonlinear equation,
where ¥ are obtained by finding roots V of the ordinary equation ¢V = ®g(V) — F and then solving the PDE (9).

Definition 1. Define the set of stable velocities S by S = {V € R; o(Ay) C {1 € C;ReAd < 0}}, where a(Ay) denotes
the spectrum of the operator Ay (note that S is an open set).

Theorem 4. Let F(t) be a continuous function and assume that Vo € S solves coVy = ®g(Vy) — F(0). Assume also
that ||ps — Wollzz < 6, where Wy is the solution of (9) with V = Vy and 6 > 0 is some small number depending on V,
but independent of €. Then V(t) = x.(t) defined in Theorem 3 converges to the continuous solution of the equation
co V(1) = Op(V(1)) — F(t) with V(0) =V, on every finite time interval [0, T| where such a solution exists and V(t) € S
VYt e [0,T].

We conjecture that stability of velocities is related to monotonicity intervals of the function ¢V — ®g(V). This
conjecture is supported by the following result.

Proposition 2. [fcy < (I)/;(V), then V is not a stable velocity.

In general ©;,(0) is nonzero if the potential W(p) is asymmetric. In particular, for W(p) = 1071 = p)*(1 + p*) we
have ¢y < (Dé(O) when 8 > Beriricar > 0, therefore zero velocity is not stable in this case. For 2D problem this would
imply instability of initial circular shape leading to a spontaneous breaking of symmetry observed in experiments.
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Sharp Interface Limit, 5 = 150 PDE with ¢ = 0.01, 3 = 150

Fras o

Foin |- :
: | v 0 L 0
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26 -24 22 -2 -8 -16 -14 12 A 24 22 -2 -18  -16 14 12 -1

Figure 1: Hysteresis loop in the problem of cell motility. (Left) The sketch of the plot for ¢oV — ®g(V); (Center,Right) Simulations of V = V(F),
(Center): solution of (10) (Right): solution of PDE system (17)-(18). On both figures (Center) and (Right) arrows show in what direction the
system (V(#), F(t)) evolves as time ¢ grows; blue curve is for F(¢), red curve is for F; (7).

Légende: Boucle d’hysteresis apparaissant dans le probleme de migration cellulaire. (Gauche) Tracé de la courbe coV — ®g(V); (Centre,Droite)
Simulations de V = V(F), (Centre): solution of (10) (Droite): solution du systeme EDP (17)-(18). Sur les deux graphiques (Centre) et (Droite), les
flechent montrent dans quel sens (V(z), F()) évolue avec le temps #; la courbe bleue représente F(7), la courbe rouge F (7).

Remark 1. In the particular case W(p) = ipz(p — 1)? we prove that (—co, V2) N {V; co > (I)"6,(V)} c S. We also
establish S = {V; co > (Dé(V)} via verifying numerically a technical inequality.

While Theorem 4 describes local in time continuous evolution of the interface velocity according to the law
coV = Dp(V) — F(¢) until V leaves the set of stable velocities S, we conjecture that this law remains valid even after
the time when the solution V reaches an endpoint of a connected component of S. Consider a particular example
of B = 150, the corresponding plot of the function ¢oV — ®s(V) is depicted on Fig. 1. Choose F(f) given by
F(t) = F(t) := =225 + 1.25t for t € [0,1] and F(¢) = F(¢) := F;(2 — 1) for ¢t € (1,2]. Starting with well prepared
initial data we expect that the interface velocity V increases with F () until it reaches Vi« then it jumps to another
branch and continues to vary in (Vp,, +00) till the moment when it decreases to Vi, and experiences one more jump,
then it varies in (—oo, Vi) to return to the initial velocity at ¢ = 2 see Fig. 1, left. Thus we conjecture that system has
a hysteresis loop, this conjecture is verified by numerical simulations for the sharp interface limit (25) as well as the
original system (17)-(18) for small &. The results of the latter simulations with £ = 0.01 are depicted on Fig. 1, right.

Complete proofs of all reported results will be publushed in [3].
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