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Summary. We present a two-dimensional (2D) mathematical model of a highly
concentrated suspension or a thin film of the rigid inclusions in an incompressible
Newtonian fluid. Our objectives are two-fold: (i) to obtain all singular terms in
the asymptotics of the effective viscous dissipation rate as the interparticle distance
parameter δ tends to zero, (ii) to obtain a qualitative description of a microflow
between neighboring inclusions in the suspension.

Due to reduced analytical and computational complexity, 2D models are often
used for a description of 3D suspensions. Our analysis provides the limits of validity
of 2D models for 3D problems and highlights novel features of 2D physical problems
(e.g. thin films). It also shows that the Poiseuille type microflow contributes to a
singular behavior of the dissipation rate. We present examples in which this flow
results in anomalous rate of blow up of the dissipation rate in 2D. We show that
this anomalous blow up has no analog in 3D.

While previously developed techniques allowed to derive and justify the leading
singular term only for special symmetric boundary conditions, a fictitious fluid ap-
proach, developed in this paper, captures all singular terms in the asymptotics of
the dissipation rate for generic boundary conditions. This approach seems to be an
appropriate tool for rigorous analysis of 3D models of suspensions as well as various
other models of highly packed composites.

Key words: concentrated suspensions, effective viscous dissipation rate,
Stokes flow, discrete network approximation, variational bounds, Poiseuille
flow.
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1 Introduction

Many classical and novel engineering processes involving multiphase flow re-
quire to capture the effective behavior of suspensions. The problem of the
behavior of suspensions is important in geophysics (mud-flow and debris flow
rheology), pharmacology (drugs design), ceramics processing among others.
Wide range of experimental (see, e.g., [1, 3, 4, 21, 34, 40, 46–48, 54]), and nu-
merical (see, e.g., [17, 38, 42, 51, 56, 58]) results are available.

We consider a 2D mathematical model of a non-colloidal (Browning mo-
tion can be neglected) concentrated suspension of neutrally buoyant rigid
particles (inclusions) in a Newtonian fluid. The suspension occupies a 2D do-
main Ω, and rigid inclusions are modeled by disks of equal radii, which do
not touch. The main objective is to characterize in a rigorous mathematical
framework the dependence of the effective rate of the dissipation of the viscous
energy (effective viscous dissipation rate) of such a suspension on the geome-
try of inclusions array and applied boundary conditions on ∂Ω. We focus on
densely packed suspensions when the concentration of inclusions is close to
maximal, which means that the distance between neighboring inclusions (in-
terparticle distance) is much smaller than their sizes. We consider an irregular
(non-periodic) array of disks and our analysis takes into account the variable
distances between adjacent inclusions.

Our initial interest in study highly concentrated suspensions was motivated
by the problem of sedimentation in suspensions of rigid particles in a viscous
fluid. In this problem a number of phenomena is not well-understood, e.g.
speed-up of sedimentation by the applied shearing as it occurs in dewatering
of the waste water sludge in a centrifuge [30, 55]. Often 2D mathematical
models are used in study of suspensions (e.g. [20, 22, 23, 30, 32, 33, 37, 49, 53,
60]). Then the issue of validity of conclusions obtained by analysis of 2D
models for actual 3D physical problems becomes crucial. The surprising result
of this work is that 2D model possesses features that are not seen in 3D, and
not only is analysis of 2D problem different but also physics is different. A
possible application of the 2D model of suspensions is to describe biological
thin films (so-called “bio-suspensions”), which have been recently produced
by experimentalists (see e.g. [57, 61]), and are extensively studied now due to
their application in pharmaceutical industry.

The main features of the problem under consideration are the high con-
centration of the inclusions and the irregular geometry of their spatial distri-
bution. In this paper we focus on the effective rate of the dissipation of the
viscous energy Ŵ = Ŵ (u), where u is the velocity of the incompressible fluid
(see the precise definition in Section 2). It is a primary quantity of interest in
describing the effective rheological properties of suspensions such as effective
viscosity (see e.g. [6, 7, 13, 24, 39, 52]).

For highly concentrated suspensions of rigid inclusions, the effective vis-
cous dissipation rate Ŵ exhibits a singular behavior (see e.g. [7, 13, 26, 29,
52, 56]) and its understanding is a fundamental issue. A formal asymptotic
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analysis of the singular behavior of Ŵ in a thin gap between a single pair of
two closely spaced spherical inclusions in a Newtonian fluid was performed in
[26]. In this work only translational motions of inclusions but not rotational
were considered and the asymptotics of the form Cδ−1 + O(ln 1/δ), where δ
is the distance between two spheres, was obtained. Based on the analysis of
a single pair of spheres the authors of [26] suggested that the asymptotics of
the effective viscosity of the periodic array of inclusions is of the same form,
that is, the main singular behavior is of O(δ−1). Next, a periodic array of
inclusions in a Newtonian fluid was considered in [52]. Under the assumption
that all inclusions follow the shear motion of the fluid (formula (5) in [52])
it was shown that Ŵ = O(δ−1). This assumption is analogous to the well-
known Cauchy-Born hypothesis in solid state physics, which is known to be
not always true [27]. Indeed, in the case of suspensions it was shown in [13]
that for shear external boundary conditions the inclusions may not follow the
shear motion. Moreover, it was shown in numerical studies of [56] that the
asymptotics O(δ−1) may or may not hold for suspensions of a large number
of inclusions with generic boundary conditions. There it was observed numer-
ically that while in some cases the asymptotics of the effective viscosity is of
order 1/δ, in other cases it is of order ln 1/δ. Also the problem of the exact
analytical form of the singular behavior for generic suspensions was posed in
[56] (p. 140) which motivated subsequent studies of [7, 13] and the present
paper.

In [7] a formal asymptotic analysis of the effective viscosity in 3D for
a disordered array of inclusions was performed. In a view of discrepancies
between predictions of the formal asymptotic analysis [26] and numerics [56]
such formal asymptotics requires a mathematical justification. In [7] for special
(extensional) boundary conditions the leading term of the asymptotics of the
effective viscosity as δ → 0, where δ is the characteristic spacing between
neighboring inclusions, was justified in a 2D model. In subsequent work [13]
this leading term, that exhibits a so-called strong blow up of order δ−3/2,
was analyzed. It turned out that in many important cases, e.g. when shear
boundary conditions are applied, this term degenerates, so the next term of
order δ−1/2, that exhibits a so-called weak blow up, becomes the leading term
of the asymptotics in many physical situations.

However, in [7] are only the strong blow up but not the other singular
terms in the asymptotic expansion of the effective viscosity were captured
and justified. In this paper we introduce a fictitious fluid approach which al-
lows to derive the complete asymptotic description of the singularity of the
effective viscous dissipation and justified it. In particular, we ruled out singular
terms other than presented in Theorem 2.1. Previously [7, 8, 13, 26, 29, 52, 56]
inclusions in a densely packed suspension were characterized by sets of their
translational and rotational velocities, so-called discrete variables. Our analy-
sis shows that in order to obtain the complete asymptotics of singular behavior
it is necessary use an additional set of discrete variables, permeation constants,
which, to the best of our knowledge, have not been used in previous studies of
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concentrated suspensions. We now explain the physical consequences of this
asymptotics.

The key feature of rheology of concentrated suspensions is that the domi-
nant contribution to the effective viscous dissipation rate comes from thin gaps
(lubrication regions) between closely spaced neighboring inclusions [45]. The
mathematical techniques introduced in the above mentioned works [7, 26, 52]
utilized this observation. More specifically, they took into account certain
types of relative movements of inclusions which resulted in the corresponding
microflows in the gaps. The formal asymptotics in [26] was based on analysis
of the squeeze motion, when two inclusions move toward each other along
the line joining their centers (see Fig. 2.7c) but did not provide the detailed
analysis of other motions, which was sufficient for certain type of boundary
conditions (e.g. extensional boundary conditions) but not sufficient for others.
A justification of the formal asymptotics was not considered in [26] (see also
[29] where similar results were obtained).

In [7] four types of relative motions of neighboring inclusions were con-
sidered which result in a singular behavior of dissipation rate: the squeeze
(Fig. 2.7c), the shear (Fig. 2.7b) and two rotations (Fig. 2.8). While it was
sufficient for the analysis of the leading term of the effective viscous dissi-
pation rate (in a suspension of free particles) which was the goal of [7], in
the present paper we observed that this analysis does not provide a complete
picture of microflows. Indeed, the Poiseuille flow in 2D also contributes into
the singular behavior. Examples in the present paper suggest that when an
external field is applied to inclusions in a suspension, this Poiseuille flow may
give rise to an anomalous strong rate of blow up (called a superstrong blow
up, of order δ−5/2) of the viscous dissipation rate, whereas for suspensions of
free inclusions there is at most strong blow up (of order δ−3/2). Furthermore,
the complete asymptotic description of the singular behavior of the viscous
dissipation rate obtained in this paper leads to the complete description of
microflows in the gaps between neighboring inclusions (Fig. 2.7-2.10).

The techniques of [7, 13] and the present paper are based on the discrete
network approximation. Discrete networks have been used as analogies of the
continuum problems in various areas of physics and engineering for a long
time (see, for example, [11] and references therein, and see also the recent re-
view [50] for various applications of networks in social and biological studies).
However, the fundamental issue of relationship between a continuum problem
and the corresponding discrete network was not addressed.

We briefly outline here the development of the discrete network approxi-
mation for high contrast material.

The local formal asymptotic analysis for the effective conductivity of a
periodic array of ideally conducting particles in a matrix of the finite conduc-
tivity was done in [39]. The key observation of [39] was that the dominant
contribution to the asymptotics of the effective conductivity comes from thin
gaps between neighboring inclusions so that flows outside gaps are negligi-
ble of those in gaps. Asymptotic formula for the electric field in such gaps
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obtained in [39] was later used for global analysis of effective properties in
[9, 11, 12, 14, 16] even for non-periodic composites.

In [41] fundamental ideas of the method of geometric averaging were in-
troduced. In particular, for a high contrast medium described by the periodic
function

eλS(x), λ � 1, (1.1)

with a smooth phase function S(x), it was shown that there is a strong chan-
neling of the flow at the saddle points of S(x). Hence, the effective properties
of high contrast media depend crucially on its geometric characterization.
Namely, for the medium (1.1) they are essentially determined by two factors:
(i) the location of saddle points of the phase function S(x) (geometry) and
(ii) asymptotics as λ → ∞.

The next major step in study of overall properties of high contrast materi-
als was done in [14–16] by introducing novel ideas in the geometrical averaging
method. These studies pioneered the idea of the discrete network approxima-
tion for high contrast continuum media. In particular, in [16] the principal
issue of the relationship between the continuum and discrete models was ad-
dressed using rigorous asymptotic analysis.

In [16] the construction of the network was done for the function (1.1).
The effective resistivity was obtained in terms of the principal curvatures κ+,
κ− of the function S(x) at the saddle points of S(x). The direct and dual
variational principles were used there to rigorously justify the discrete net-
work approximation by constructing matching up to the leading term bounds
for asymtotics of the effective resistivity. These bounds are given by discrete
variational principles that can be interpreted in terms of networks. The key
step in this duality approach is the construction of test functions. There is
no general recipe for construction of such functions. Therefore, implemen-
tation of this approach is a highly nontrivial analysis problem since a test
function which will work for one problem may not work for another. Indeed,
these functions essentially depend on physical and geometrical features of the
problem. In particular, in [16] an original construction of test function for the
Kozlov-type medium (1.1) was developed.

Results of [16] have been applied to the inverse problem of the recovery
of the conductivity from the boundary measurements, when there are regions
of high contrast in the medium such that standard approximation methods
(Born approximation) do not work. It has been shown in [15] that imaging
of the conductivity of such a medium is asymptotically equivalent to the
identification of a resistor network from voltage and current measurements at
the boundary vertices. Techniques of [16] have also been generalized for the
problem of quasi-static transport in high contrast conductive media [14].

Subsequently, the discrete network approximation for a medium with
piecewise constant characteristics, which correspond to particle-filled (particu-
late) composites, was developed for a scalar conductivity problem in [9, 11, 12].
Since the phase-function S(x) is not smooth for such medium the building
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block of this network is the Keller’s solution [39] (for conductivity in a gap
between closely placed inclusions) in place of the Kozlov’s solution [41] (which
is the building block of the network in [14–16]). Also for this class of problems
the high-constrast parameter ε = 0, and asymptotic analysis is performed as
the interparticle distance parameter δ → 0.

In [11] the following fundamental issue has been raised. Is it possible that
the rate of the overall properties (e.g., effective conductivity) differs by an
order of magnitude from the blow-up of local properties (e.g., conductivity in
a single gap)? For the scalar conductivity problem it was shown in [11] that the
answer is negative. However, for an analogous vectorial problem of effective
rate of viscous dissipation rate [7, 13] the answer is positive. This provides
an explanation for a partial disagreement between numerical results [56] for
suspensions; and earlier theoretical predictions based on asymptotics for a
single pair of inclusions [26].

The latter observation led to the conclusion that the leading asymptotic
term may not characterize the effective viscosity of suspensions, due to its
possible degeneracy. Hence evaluation of the effective viscosity requires cal-
culation of all singular terms in its asymptotic expansion. This was the orig-
inal motivation of the present work. The key technical step in obtaining this
asymptotics is a delicate construction of test functions for the direct and dual
variational principles. The fictitious fluid approach, developed in this paper,
allows for such a construction. The asymptotic formula with all singular terms
results in a complete description of microflows in suspensions, as oppose to
the partial description of the microflow in [7, 26, 29, 52].

The techniques in [9, 11, 12] for scalar problems in both 2D and 3D were
based on a direct (one-step) discretization of the original continuum problem.
The straightforward extension of these techniques to a vectorial problem of
effective viscosity is not possible, due to the global divergence free condition.
The first construction of divergence-free vectorial test functions was developed
in [7]. This construction was based on the direct discretization and, in particu-
lar, it captured long-range hydrodynamic interactions and revealed the global
nature of the divergence free condition (all particles are taken into account).
In [7] the leading term of the asymptotics for the extensional viscosity (strong
blow up) was obtained and justified. However, it was not possible to find the
shear viscosity (weak blow up) within the framework of one-step discretiza-
tion. This motivated the introduction of our two-step discretization based on
the fictitious fluid approach.

We briefly describe now the idea behind this approach. As mentioned be-
fore, it consists of two steps. In step 1 we introduce a fictitious fluid domain
which comprises thin gaps between neighboring inclusions. The dissipation
rate restricted to this domain is denoted by ŴΠ . We show that for generic
Dirichlet boundary conditions it describes the singular behavior in the follow-
ing sense:

Ŵ = ŴΠ + h.o.t. as δ → 0.
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In step 2 we perform a discretization of ŴΠ , that is, the continuum prob-
lem for ŴΠ is reduced to an algebraic problem on a graph, called a network
problem. By using the fictitious fluid approach in this step most of the diffi-
culties due to global constraints are eliminated. Namely, it allows to construct
the lower variational bound matching up to all singular terms with the upper
bound. Recall that in [7] the main difficulty came from extending test func-
tions outside the necks, while the fictitious fluid approach gets rid of this issue
completely, hence, making analysis much easier and more successful in sense
of capturing all singular terms of asymptotics of the dissipation rate.

The network problem is a minimization of a quadratic form whose co-
efficients depend on R, µ and boundary data. The quadratic form on the
minimizing set of discrete variables is called the discrete viscous dissipation
rate and denoted by I. Unknowns of this problem are vectors U = {U i}N

i=1,
ω = {ωi}N

i=1, the translational and angular velocities of inclusions, respec-
tively, and a collection of numbers β = {βij} characterizing the Poiseuille
microflow between a pair of inclusions and called permeation constants. The
discrete dissipation rate I is given by:

I = I1(β)δ−5/2 + I2(U, ω, β)δ−3/2 + I3(U, ω, β)δ−1/2, as δ → 0 (1.2)

where Ik, k = 1, 2, 3, are explicitly computable quadratic polynomials of U,
ω, β.

So the reduction of the problem to the problem in necks only reveals
the significance of new set of discrete parameters β describing the Poiseuille
microflow in gaps between neighbors. The contribution of this flow into sin-
gularity of viscous dissipation is large and has to be taken into account for
complete asymptotic description of its singular behavior.

As a result we obtain the following asymptotic formula for the generic
Dirichlet boundary conditions:

|Ŵ − I|
I = O(δ1/2) as δ → 0.

In fact, we prove the following result about the error term:

|Ŵ − I| ≤ µ

∑
i,j

E1(βij) + E2(U i − U j) + E3(ωi)


where E1, E2, E3 are quadratic polynomials of βij , difference U i −U j and ωi,
respectively, whose coefficients are independent of δ.

Finally, we analyze the physical ramification of the obtained asymptotic
formula by presenting several examples. We construct an a example of a sus-
pension in a strong “pinning” external field, where Ŵ is of order δ−5/2 (super-
strong blow up). We also show an example of the superstrong blow up due to
the boundary layer effect. Note that to the best of our knowledge this rate of
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blow up was not observed before and we call it an anomalous rate. For generic
suspensions (free particles or a weak external field) we expect that β = O(δ)
and, therefore, the first and the third terms of (1.2) are of the same order
O(δ−1/2). For a hexagonal array of inclusions we prove that Ŵ exhibits the
strong blow up (of order δ−3/2) and β = 0. Note that a typical close packing
array in 2D is “approximately” hexagonal.

The paper is organized as follows. In Section 2 we give a mathematical
formulation of the problem (Subsection 2.1), describe the fictitious fluid ap-
proach, and present our main results in Theorems 2.1, 2.2 (Subsection 2.2). In
Subsection 2.3 we construct our discrete network and discuss how local flows
in thin gaps between neighbors (microflows) contribute the effective viscous
dissipation rate and state the theorem about a representation of the error
term of the discrete approximation. In Section 3 we discuss main and present
examples. Section 4 is devoted to the the fictitious fluid problem. In Section 5
we present results related to our discrete network. Conclusions are presented
in Section 6. The coefficients of the quadratic form derived in Section 2 are
given in Appendix.
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2 Formulation of the Problem and Main Results

2.1 Mathematical Formulation of the Problem

Consider an irregular or non-periodic array of N identical circular disks Bi, of

the radius R distributed in a rectangular domain Ω. Denote by ΩF = Ω\
N⋃

i=1

Bi

the fluid domain which is occupied by incompressible fluid with viscosity µ
(see Fig. 2.1). Disks Bi represent absolutely rigid inclusions. Inertia of both
fluid and inclusions is neglected. In the fluid domain ΩF consider the following
boundary value problem:
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(a) µ�u = ∇p, x ∈ ΩF

(b) ∇ · u = 0, x ∈ ΩF

(c) u = U i + Rωi(ni
1e2 − ni

2e1), x ∈ ∂Bi, i = 1 . . .N

(d)
∫

∂Bi

σ(u)nids = 0 i = 1 . . .N

(e)
∫

∂Bi

ni × σ(u)nids = 0, i = 1 . . .N

(f) u = f , x ∈ ∂Ω

(2.1)

where u(x) is the velocity field at a point x ∈ ΩF , p(x) is the pres-

Fig. 2.1. Domain ΩF occupied by the fluid of viscosity µ, and disordered array of
closely spaced inclusions Bi

sure, σ(u) = 2µD(u) − pI is the stress tensor, Dij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
,

i, j = 1, 2, is the rate of strain which satisfies the incompressibility condition:
tr D(u) = 0, another form of (2.1b). The vector ni = (ni

1, n
i
2) is the outer

normal to Bi. Constant vectors U i = (U i
1, U

i
2) and scalars ωi, i = 1, . . . , N ,

which are translational and angular velocities of the inclusion Bi, respectively,
are to be found in the course of solving the problem.

Here N is closed to maximal packing number Nmax = Nmax(Ω, R). This
number is finite and |N − Nmax| depends on the small parameter δ called
interpaticle distance.

We consider the linear external boundary conditions of the form:

f = Ax =
(

a b
c −a

)(
x
y

)
, x ∈ ∂Ω, (2.2)

where the components a, b, c of the matrix A are given constants. Note that
the most general form of the linear boundary conditions is f = f0 + Ax
where f0 is a constant vector and x ∈ ∂Ω. Observe that when a = 0 and
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b = −1/c the vector Ax corresponds to a rotation and f0 to a translation
of the boundary, hence, f describes the rigid body motion of ∂Ω. Hereafter,
we exclude this trivial motion from our consideration assuming that a = 0
and b = −1/c does not hold simultaneously in (2.2) and f0 = 0. We use such
boundary conditions for two reasons: a) for technical simplicity, which does
not lead to the loss of generality; b) they include the shear (when a = c = 0,
b = 1) and extensional (a = 1, b = c = 0) boundary conditions (see e.g. [13])
which model two basic types of viscometric measurements (see Fig. 2.2). It
is possible to extend our results to arbitrary Dirichlet boundary conditions

f ∈ H1/2(∂Ω) satisfying
∫

∂Ω

f · nds = 0.

(a) shear (b) extensional

Fig. 2.2. Shear and extensional external boundary conditions

For an arbitrary set A ⊆ ΩF consider the following integral:

WA(v) =
1
2

∫
A

σ(v) : D(v) = µ

∫
A

D(v) : D(v)dx

= µ

∫
A

[(
∂v1

∂x

)2

+
1
2

(
∂v1

∂y
+

∂v2

∂x

)2

+
(

∂v2

∂y

)2
]

dx
(2.3)

where v = (v1, v2). Then the variational formulation of (2.1) is:

Find u ∈ V, such that WΩF (u) = min
v∈V

WΩF (v), (2.4)

where the set V of admissible vector fields is defined by

V =
{
v ∈ H1(ΩF ) : ∇ · v = 0 in ΩF , v = f on ∂Ω,

v = U i + ωi × (x − xi). x ∈ ∂Bi, i = 1, . . . , N
}

.
(2.5)

WΩF (u) is called the (continuum) viscous dissipation rate [44] and it is the
principal quantity of interest in the study of effective properties of suspensions.
We will use the following notation:

Ŵ := WΩF (u). (2.6)
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The key feature of our problem is that we study suspensions where concentra-
tion of inclusions is close to its maximum. Therefore, the domain ΩF depends
on the characteristic interparticle distance parameter δ. Our main objective
is to derive and justify an asymptotics of Ŵ as δ → 0. We will show that
the coefficients of this asymptotic formula are determined by the solution to
a discrete network problem, which determine the discrete viscous dissipation
rate.

2.2 The Fictitious Fluid Approach and Discretization

Note that using the notion of Voronoi tessellation we can decompose the
domain ΩF into necks Π and triangles ∆: ΩF = Π ∪ ∆ as in Fig. 2.4
(see Appendix B.1 of [10]). Necks connect either two disks (Fig. 2.3a) or
a disk and a part of the boundary ∂Ω called a quasidisk (see Fig. 2.3b),
that is, necks connect neighbors. The velocities of quasidisks are given by
the prescribed boundary conditions (2.2). Note that near the boundary when
quasidisks are involved the “triangles” are actually trapezoids. With slight
abuse of terminology, we also call them triangles.

We distinguish boundary disks (quasidisks) and interior disks and intro-
duce two sets of the corresponding indices. For indices of interior disks we use
the notation I = {1, . . . , N}. If the disk Bi centered at xi is a quasidisk then
i belongs to the set B of the indices of quasidisks. Also denote by Ni the set
of indices of all neighbors of Bi.

For a given array of the disks and quasidisks Bi centered at xi, the dis-
crete network is the graph G = (X , E), with set of vertices X = {xi : i ∈
I∪B} and set of edges E = {eij : i ∈ I, j ∈ Ni} with eij connecting neighbors
Bi and Bj .

(a) (b)

Fig. 2.3. (a) neck connecting two disks; (b) neck connecting disk Bi and quasidisk
Bj
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As mentioned in Introduction our main approach in study of the asymp-
totics of Ŵ as δ → 0 consists of two steps. This two-step approach allows to
separate geometric construction of the network and its subsequent asymptotic
analysis.

In the first step, we show that the minimization problem (2.4) in the fluid
domain ΩF can be approximated by a “fictitious fluid” problem in which fluid
is assumed to occupy necks Π =

⋃
i∈I,j∈Ni

Πij between closely spaced neigh-

boring inclusions (the shadowed region in Fig. 2.4). We call Π the fictitious
fluid domain. This reflects a well-known physical fact that for densely packed
suspensions the dominant contribution to the viscous dissipation rate over the
fluid domain comes from those necks. On the boundary of the complemen-
tary part of the domain (triangles in Fig. 2.4) the relaxed incompressibility
conditions: ∫

∂�ijk

v · nds = 0, i ∈ I, j, k ∈ Ni, (2.7)

are imposed.

Fig. 2.4. The decomposition of the original fluid domain ΩF into the fictitious fluid
domain and the set of triangles

Below we show that the functional WΩF (·) given by (2.3) is decomposed
as follows:

WΩF (·) = WΠ(·) + W∆(·) and Ŵ = ŴΠ + Ŵ∆, (2.8)

where ŴΠ is the effective viscous dissipation rate of the fictitious fluid defined
below in (2.10) and Ŵ∆ is the remaining contribution from the domain ∆.
Note that in (2.8) the “hat” quantities indicate the minimal values of the
corresponding functionals.

Consider the problem of minimization of the functional WΠ , defined by
(2.3) over the fictitious fluid domain Π , in the following class of functions:
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VΠ =
{
v ∈ H1(Π) : ∇ · v = 0 in Π,

∫
∂�ijk

v · nds = 0 for all �ijk ∈ ∆,

v = U i + Rωi(ni
1e2 − ni

2e1), x ∈ ∂Bi, i = 1, . . . , N, v = f on ∂Π ∩ ∂Ω
}

,
(2.9)

where U i and ωi, i = 1, . . . , N , are arbitrary constant vectors and arbitrary
constants, respectively. The zero-flux condition through ∂�ijk (2.7) is inher-
ited from the problem in the original fluid domain ΩF due to incompressibility
condition of the fluid in triangles. Such a condition is a necessary (but not
sufficient) for ∇ · v = 0 in the triangle �ijk.

We define the effective dissipation rate of the fictitious fluid by

ŴΠ = min
v∈VΠ

WΠ(v). (2.10)

The first principal result of this paper is that the dissipation rate Ŵ can
be approximated by the rate ŴΠ and Ŵ∆ can be neglected. To show this we
need to introduce a small parameter of the problem, which is a characteristic
interparticle distance δ.

For each pair of neighbors xi, xj define

δij =


|xi − xj | − 2R, when i, j ∈ I,
|xi − xj | − R, when either i or j ∈ B,
|xi − xj |, when i, j ∈ B.

(2.11)

As mentioned above, we study domains with closely spaced neighboring disks.
More precisely, for all pairs of neighbors we assume that following close-
packing condition holds.

Definition 1. Write the minimal distance δij (see Fig. 2.3) between any two
neighboring disks Bi and Bj in the form δij = δdij , 0 < dij < R. If the
characteristic interparticle distance parameter δ is small, δ � 1, then
ΩF is said to satisfy the close-packing condition.

For technical simplicity we exclude the case of touching inclusions.
We remark that this definition describes uniformly dense arrays of disks.

A more general definition which covers a notion of a “hole” corresponding to
the void space in the composite is introduced and discussed e.g. in [9, 12].

Hereafter we call the array of inclusions under consideration a quasi-
hexagonal array (e.g. in [12] it is referred to as “randomized hexagonal”).
Recall, that for such arrays all neighbors are closely spaced and a typical
number of nearest neighbors for a disk is six.

Hence, the mathematical thrust of step one of the fictitious fluid approach
is in showing that the effective rate of the energy dissipation ŴΠ of the
fictitious fluid captures the singular behavior of Ŵ , defined by (2.6), as δ → 0.
More precisely, in Section 5 we prove the following theorem:
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Theorem 2.1 (Approximation by the fictitious fluid). Suppose an ar-
ray of inclusions satisfies the close packing condition. Let Ŵ be the effective
viscous dissipation rate defined by (2.5)-(2.6) and ŴΠ be the viscous dissipa-
tion rate of the fictitious fluid defined by (2.10). Then the following asymptotic
formula holds:

|Ŵ − ŴΠ |
ŴΠ

= O(δ1/2) as δ → 0. (2.12)

In step two, we study asymptotics (blow up) of the effective viscous dis-
sipation rate Ŵ as δ → 0. In view of step one, this is reduced to finding
of asymptotics of ŴΠ . The latter is done by a construction of a discrete
network approximation and introduction of a so-called discrete viscous dissi-
pation rate I. To show closeness of the continuum and the discrete dissipation
rates, ŴΠ and I, respectively, we employ the direct and dual variational tech-
niques [7, 11, 12].

Also note that the conditions (2.1d,e) in the original problem led to sig-
nificant technical difficulties in variational analysis of the effective viscous
dissipation rate of [7], which is why the analysis of [7] is restricted to its
leading singular term. In contrast, analogs of these conditions in the fictitious
fluid problem are satisfied automatically by construction, which results in sub-
stantial simplification of the analysis and thus allows to capture all singular
terms.

The approximation of the effective viscous dissipation rate Ŵ by the dis-
crete dissipation rate I is given by the following theorem.

Theorem 2.2 (Approximation of the continuum dissipation rates by
the discrete one). Suppose ΩF satisfies the close packing condition and
I = min

(U,ω,β)∈R
Q(U, ω, β), where the positive definite quadratic form

Q(U, ω, β) = I1(β)δ−5/2 + I2(U, ω, β)δ−3/2 + I3(U, ω, β)δ−1/2

on the class of admissible discrete variables (U, ω, β) ∈ R defined in (2.33)-
(2.37). Then the following approximation to the viscous dissipation rate holds:

|Ŵ − I|
I = O(δ1/2) as δ → 0, (2.13)

Remark 2.1. Ii (i = 1, 2, 3) are explicitly computable quadratic polynomials of
(U, ω, β) ∈ R from equations (2.36)-(2.37) below. These polynomials depend
only on boundary data f , viscosity µ and geometry of ΩF .

The next subsection is devoted to the construction of these quadratic poly-
nomials. We first introduce a set of discrete variables (U, ω, β), define a new
variable βij in each neck Πij and explain how the quadratic form Q is ob-
tained. We will also discuss the underlying structure of the flow in a neck
(microflow) and physical ramifications of the obtained asymptotics (2.13) and
(2.38) below.
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2.3 Construction of the discrete network. Microflows.

(a) We begin with the discretization of the boundary conditions. Denote U =
{U i}i∈I∪B, ω = {ωi}i∈I∪B where on the boundary ∂Ω, that is, for i ∈ B, these
velocities are given by boundary conditions as follows:

U i =



(
ax

cx

)
, xi ∈ ∂Ωlat(

by

−ay

)
, xi ∈ ∂Ω±

and ωi =


c, xi ∈ ∂Ω−

−c, xi ∈ ∂Ω+

b, xi ∈ ∂Ω−
lat

−b, xi ∈ ∂Ω+
lat

(2.14)

where xi is the center of the quasidisk Bi and ∂Ω+ and ∂Ω− are the upper
and lower parts of ∂Ω, respectively, and ∂Ω−

lat and ∂Ω+
lat are the lateral (left

and right, respectively) boundary.
(b) Discretization of the incompressibility condition is implemented as fol-

lows. Decompose the domain ΩF into curvilinear hexagons Aijk as in Fig.
2.5:

ΩF =
⋃

i∈I,j,k∈Ni

Aijk .

Each Aijk consists of the line segments 
ij , 
jk, 
ki (Fig. 2.5a) connecting

(a) (b)

Fig. 2.5. (a) Decomposition of ΩF into curvilinear hexagons Aijk and line �ij

connecting neighbors Bi and Bj , (b) Construction of Aijk at the corner of the
boundary ∂Ω

disks Bi, Bj , Bk and arcs ai, aj , ak of the corresponding disk.4 Then the
weak incompressibility condition (2.7) for the class VΠ (2.9) becomes
4 In the case when the disk Bi has two quasidisk neighbors Bj and Bk, that is,

when Bk is in the corner as in Fig. 2.5b, then the domain Aijk is actually a
curvilinear pentagon. By slight abuse of terminology we still call it a “curvilinear
hexagon”.
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Aijk

v · nds = 0, for any Aijk, i ∈ I, j, k ∈ Ni. (2.15)

In order to continue our analysis at this point we must introduce a new
set of discrete variables. Here we define permeation constants:

β∗
ij =

1
R

∫
�ij

v · nds, i ∈ I, j ∈ Ni,

β∗
ij =

1
R

∫
�ij

f · nds, 
ij ⊂ ∂Ω (i, j ∈ B),
(2.16)

where 
ij is the line segment joining two neighbors Bi and Bj , v ∈ VΠ and
n is an outer normal to Aijk. Then (2.15) can be rewritten as:

β∗
ij + β∗

jk + β∗
ki +

1
R

∫
ai

U i · nids +
1
R

∫
aj

U j · njds +
1
R

∫
ak

Uk · nkds = 0,

for i ∈ I, j, k ∈ Ni (ni is a unit outer normal to ∂Bi), which can be further
simplified as

β∗
ij + β∗

jk + β∗
ki + (U i + U j)pij + (U j + Uk)pjk + (Uk + U i)pki = 0, (2.17)

where vectors qij and pij are the unit vectors of the local system coordinate
of two neighboring disks Bi and Bj as in Fig. 2.6. We call (2.17) the weak
incompressibility condition. This formula explains the scaling 1

R in (2.16). In-

Fig. 2.6. Unit vectors of the local coordinate system

deed, from dimensional analysis
∫

�ij
v ·nds must be divided by a characteristic

lengthscale which is R in the curvilinear hexagonal Aijk .
(c) We finally discretize the Stokes equations in necks. This discretiza-

tion is based on lubrication theory [2, 6, 45]. This theory describes thin film
flows between two solid bodies sliding relative to each other. It is well-known
(see e.g. [45]) that in dense suspensions the dominant hydrodynamic contri-
bution to the viscous dissipation rate occurs in necks between closely spaced
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inclusions, where lubrication equations are relevant. Lubrication theory de-
termines fluid motion in such necks as a result of relative kinematic motion
of the neighboring inclusions. This raises a question of the classification of
microflows, that is, local flows in necks between two closely spaced neighbors.

Recall three classical types of microflows between two parallel plates: the
shear, the squeeze, and the Poiseuille flow. The last one, however, is not re-
lated to motions of two plates relative one to another and therefore it is not
described by lubrication theory. In this work we show that exactly these three
types of microflows fully describe the motion of the fluid between two neigh-
boring disks. Asymptotic analysis of microflows between two parallel plates
technically is much simpler than that for inclusions with curvilinear bound-
aries, which is needed for suspensions.

As shown below, in classical 3D problem the Poiseuille microflow between
two inclusions does not contribute to the singular behavior of the viscous
dissipation rate. However, in analogous 2D problem (e.g. thin films) all three
microflows are present and, moreover, the Poiseuille flow may result in anoma-
lously strong singularity.

Thus, it is necessary to analyze kinematics of a pair of neighboring inclu-
sions when one moves relative to the other. To this end for a pair of neighbors
Bi and Bj , centered at xi and xj , we choose the local coordinate system
where the origin is at (xi + xj)/2 and the y-axis is directed along the vector
connecting xi and xj .

For clarity of presentation we consider two interior disks only (that is,
i ∈ I, j ∈ Ni ∩ I). For an analogous construction in boundary necks (i ∈ I,
j ∈ Ni ∩ B) see Appendix B.2 of [10].

(a) parallel translation (b) shear (c) squeeze

Fig. 2.7. Decomposition of translational velocities U i and U j into three elementary
motions

There are exactly five elementary kinematic motions of inclusions. To see
this we consider boundary conditions on ∂Bi, ∂Bj in (2.9) and first assume
that ωi = ωj = 0. Then the conditions: u = U i on ∂Bi and u = U j on ∂Bj

can be rewritten as follows:
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u|∂Bi =
1
2
(U i + U j) +

1
2
(U i

1 − U j
1 )e1 +

1
2
(U i

2 − U j
2 )e2,

and u|∂Bj =
1
2
(U i + U j) − 1

2
(U i

1 − U j
1 )e1 − 1

2
(U i

2 − U j
2 )e2.

Hence, the translational velocities of disks are decomposed into three motions.
First, when both inclusions and fluid move with the same velocity (see Fig.
2.7a), and therefore this motion does not contribute to the singular behavior
of the viscous dissipation rate. Second, when one inclusion moves relative to
the other producing the shear type motion (Fig. 2.7b) and, finally, the squeeze
type motion (Fig. 2.7c) of the fluid.

(a) rotation in the (b) rotation in the
same direction opposite directions

Fig. 2.8. Decomposition of the angular velocities ωi and ωj into two elementary
motions

Similarly, assuming U i = U j = 0 in conditions on ∂Bi, ∂Bj in (2.9) we
decompose them into two relative elementary motions: rotations of the disks
in the same direction (Fig. 2.8a), and rotations of the disks in the opposite
directions (Fig. 2.8b). Thus,

u|∂Bi =
R

2
(ωi + ωj)(ni

1e2 − ni
2e1) +

R

2
(ωi − ωj)(ni

1e2 − ni
2e1)

and u|∂Bj =
R

2
(ωi + ωj)(ni

1e2 + ni
2e1) +

R

2
(ωi − ωj)(−ni

1e2 − ni
2e1),

where ni = (ni
1, n

i
2) is the outer normal to ∂Bi.

Next consider microflows corresponding to the four kinematic motions con-
tributing to the singular behavior of the dissipation rate described above. We
further choose the microflow ulub which minimizes the viscous dissipation rate
in the neck Πij by imposing the natural boundary conditions on the lateral
boundaries ∂Π±

ij (Fig. 2.9). That is, the function ulub minimizes WΠij in the
class:
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Vij =
{
v ∈ H1(Πij) : 
 · v = 0 in Πij , v = gi on ∂Bi, v = gj on ∂Bj

}
(2.18)

with gi = U i + Rωi(ni
1e2 − ni

2e1), gj = U j + Rωj(nj
1e2 − nj

2e1). (2.19)

Fig. 2.9. Boundary of the neck Πij

Due to linearity the minimizer ulub is decomposed into five vector fields
corresponding to the relative motions of inclusions as in Fig. 2.7-2.8 as follows:

ulub =
1
2
(U i + U j) + [(U i − U j) · pij ]u1 + [(U i − U j) · qij ]u2

+ R(ωi + ωj)u3 + R(ωi − ωj)u4,
(2.20)

where functions uk, k = 1, . . . , 4 are minimizers of WΠij in Vij (equation
(2.18)) where boundary conditions (2.19) are replaced, respectively, by:
1) the shear motion of the fluid between two neighboring inclusions:

u1|∂Bi = gi =
1
2
e1, u1|∂Bj = gj = −1

2
e1, (2.21)

2) the squeeze motion of the fluid between neighbors:

u2|∂Bi = gi =
1
2
e2, u2|∂Bj = gj = −1

2
e2, (2.22)

3) the rotation in the same directions :

u3|∂Bi = gi =
1
2
(ni

1e2 − ni
2e1), u3|∂Bj = gj =

1
2
(ni

1e2 + ni
2e1), (2.23)

4) the rotation in the opposite directions :

u4|∂Bi = gi =
1
2
(ni

1e2 − ni
2e1), u4|∂Bj = gj = −1

2
(ni

1e2 + ni
2e1). (2.24)

Let u be the minimizer of (2.4) then

up := u − ulub (2.25)

minimizes WΠij in the class
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Fig. 2.10. The Poiseuille’s microflow between motionless inclusions

Vp =
{
v ∈ H1(Πij) : ∇ · v = 0 in Πij , v = 0 on ∂Bi, v = 0 on ∂Bj ,

1
R

∫
�ij

(v + ulub) · nds = β∗
ij

}
.

(2.26)
The vector field up describes the flow between two motionless inclusions,
hence, it is natural to call it the Poiseuille microflow.

Denote by β∗ = {β∗
ij}i∈I∪B,j∈Ni and introduce the following set of discrete

variables

R∗ =
{
(U, ω, β∗) : U i, ωi satisfying (2.14) for i ∈ B

and (U, β∗) satisfying (2.17)} .
(2.27)

It is straightforward to show that (see Lemma 4.2)

ŴΠ = min
(U,ω,β∗)∈R∗

∑
i∈I,j∈Ni

min
Vij

WΠij (·), (2.28)

where Vij is defined by

Vij =
{
v ∈ H1(Πij) : ∇ · v = 0 in Πij , v =U i+ Rωj(ni

1e2−ni
2e1) on ∂Bi,

v=U j+Rωi(nj
1e2 − nj

2e1) on ∂Bj (j ∈ I) or v = f on ∂Bj (j ∈ B)

1
R

∫
�ij

v · nds = β∗
ij

}
,

(2.29)
with U i, ωi and β∗

ij to be components of some no longer arbitrary but fixed
triple (U, ω, β∗) ∈ R∗. Functions from Vij are defined in a single neck Πij ∈
Π. By direct computations vector fields
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ut =
1
2
(U i + U j),

ush = [(U i − U j) · pij ]u1 + R(ωi + ωj)u3,

usq = [(U i − U j) · qij ]u2,
uper = R(ωi − ωj)u4 + up,

(2.30)

are orthogonal with respect to the scalar product induced by the dissipation
functional WΠij :

WΠij (u) = WΠij (ush) + WΠij (usq) + WΠij (uper), WΠij (ut) = 0,

u = ut + ush + usq + uper .
(2.31)

Physically, the decomposition (2.31) corresponds to three well-known types
of microflows. Namely, (i) the shear type arises when a pair of inclusions either
rotates in the same direction or disks move into opposite directions (Fig. 2.8a,
2.7a), (ii) the squeeze type, when two inclusions in a pair move towards or
away from each other in thin gaps (Fig. 2.7b), (iii) and permeation of the
fluid through the thin gaps between neighbors due to Poiseuille flow between
motionless inclusions or rotation of neighbors in the opposite directions (Fig.
2.10, 2.8b).

We are now ready to introduce a quadratic form which determines the
discrete dissipation rate. To this end from now on instead of β∗

ij as a discrete
variable we will use:

βij = β∗
ij −

δij

2R

[
(U i + U j) · pij

]− (ωi − ωj)
δij

2R

[
1 +

δij

4R

]
. (2.32)

The reason for this replacement is that βij is invariant with respect to Galilean
transformation whereas β∗

ij is not (see remark in the end of Subsection 6.1
of [10]). For example, if a constant vector U0 is added to both U i and U j

then the total flux β∗
ij changes while βij stays the same. Also, β∗

ij is the total
flux through 
ij of the entire flow (including the parallel translation, shear,
squeeze and permeation) whereas βij is the flux due to the Poiseuille microflow
solely. Finally, the use of βij simplifies the discrete dissipation form (equation
(2.36)).

The use of βij instead of β∗
ij leads to the replacement of the class R∗ (2.27)

by R defined as follows:

R=
{
(U, ω, β) : U i, ωi satisfying boundary condition on ∂Ω (2.14) for i ∈ B,

(U, β) satisfying weak incompresibility condition (2.17), (2.32)} .
(2.33)

Introduce the effective discrete dissipation rate:

I := Q(Û, ω̂, β̂) = min
(U,ω,β)∈R

Q(U, ω, β), (2.34)

where
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Q(U, ω, β) =
∑
i∈I

∑
j∈Ni

Qij , (2.35)

Qij(U i, U j , ωi, ωj, βij) =
[
(U i − U j) · pij + Rωi + Rωj

]2 Cij
1 δ−1/2

+
[
(U i − U j) · qij

]2 (Cij
2 δ−3/2 + Cij

3 δ−1/2
)

+ β2
ij

(
Cij

4 δ−5/2 + Cij
5 δ−3/2 + Cij

6 δ−1/2
)

+ R(ωi − ωj)βij

(
Cij

7 δ−3/2 + Cij
8 δ−1/2

)
+ R2(ωi − ωj)2Cij

9 δ−1/2, for j ∈ Ni ∩ I,

(2.36)

Qij(U i, ωi, βij , f) = β2
ij

[
Bij

1 δ−5/2 + Bij
2 δ−3/2 + Bij

3 δ−1/2
]

+
[
(U i − U j) · pij + Rωi

]2 Bij
4 δ−1/2

+ R2(ωi − ωj)2Bij
5 δ−1/2

+
[
(U i − U j) · qij

]2 (Bij
6 δ−3/2 + Bij

7 δ−1/2
)

+ βij

[
(U i − U j) · pij + Rωi

]
(Bij

8 δ−3/2 + Bij
9 δ−1/2)

+ βijR(ωi − ωj)(Bij
10δ

−3/2 + Bij
11δ

−1/2)

+ βijRωiBij
12δ

−1/2

+
[
(U i − U j) · pij + Rωi

]
R(ωi − ωj)Bij

13δ
−1/2

+
[
(U i − U j) · qij

]
RaBij

14δ
−1/2, for j ∈ Ni ∩ B,

(2.37)
called the discrete dissipation rates, with coefficients Cij

k , k = 1, . . . , 9, Bij
m,

m = 1, . . . , 14, which depend on µ, the ratio
R

dij
and explicitly given by (A.1)

in Appendix.
The solution of the discrete problem (2.34) is a set of discrete variables

(Û, ω̂, β̂) ∈ R, where Û represents the set of translational velocities of in-
clusions, ω̂ the set of angular velocities and β̂ characterizes the Poiseuille
microflow in necks between neighboring inclusions.

Remark 2.2. Q(U, ω, β), defined by (2.35), is a positive definite quadratic form
(see Appendix C.1 of [10]).

Remark 2.3. The agreement of the coefficients in (2.36) (explicitly given in
(A.1)) with the previous results of [7] is as follows. Only coefficients Cij

1 , Cij
2

coincide with the corresponding coefficients Cij
sh, Cij

sp in [7]. This is because
the coefficients in [7] are obtained by using the approximation of circular
surfaces of inclusions by parabolas whereas in this paper we use the true
circular surfaces. The main objective of [7] was capturing the strong blow up
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term of order δ−3/2 only, which requires coefficients Cij
sp (Cij

2 ). The parabolic
approximation does not bring any discrepancy in Cij

sp whereas it may bring
a discrepancy in some other coefficients. Also since in [7] only the leading
term was considered under special boundary conditions there was no need to
consider the Poiseuille microflow.

Both Theorems 2.1 and 2.2 are based on the following technical proposi-
tion.

Proposition 2.1. Suppose ΩF satisfies the close packing condition. Let the
triple (Û, ω̂, β̂) ∈ R solve the discrete problem (2.34)-(2.37). Then the follow-
ing estimate holds:

|Ŵ − I| ≤ µ

∑
i∈I

∑
j∈Ni

C1β̂
2
ij + C2|Û i − Û

j |2 + C3

∑
i∈I∪B

R2(ω̂i)2

 . (2.38)

where Ck, k = 1, 2, 3, are dimensionless constants.

The quadratic form Q defined by (2.35)-(2.37) can be written in the fol-
lowing form:

Q = Qin
sh + Qin

sq + Qin
per + Qb

per + Qb
sq, (2.39)

where

Qin
sh =

∑
i∈I

∑
j∈Ni∩I

[
(U i − U j) · pij + Rωi + Rωj

]2 Cij
1 δ−1/2,

Qin
sq =

∑
i∈I

∑
j∈Ni∩I

[
(U i − U j) · qij

]2 (Cij
2 δ−3/2 + Cij

3 δ−1/2
)

,

Qin
per =

∑
i∈I

∑
j∈Ni∩I

{
β2

ij

(
Cij

4 δ−5/2 + Cij
5 δ−3/2 + Cij

6 δ−1/2
)

+R(ωi − ωj)βij

(
Cij

7 δ−3/2 + Cij
8 δ−1/2

)
+ R2(ωi − ωj)2Cij

9 δ−1/2
}

Qb
per =

∑
i∈I

∑
j∈Ni∩B

{
β2

ij

[
Bij

1 δ−5/2 + Bij
2 δ−3/2 + Bij

3 δ−1/2
]

+Bij
8 βij

[
(U i − U j) · pij + Rωi

]
δ−3/2 + Bij

10βijR(ωi − ωj)δ−3/2

+Bij
9 βij

[
(U i − U j) · pij + Rωi

]
δ−1/2 + Bij

11βijR(ωi − ωj)δ−1/2

+Bij
12βijRωiδ−1/2 + Bij

4

[
(U i − U j) · pij + Rωi

]2
δ−1/2

+Bij
13

[
(U i − U j) · pij + Rωi

]
R(ωi − ωj)δ−1/2

+Bij
5 R2(ωi − ωj)2δ−1/2

}
,
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Qb
sq =

∑
i∈I

∑
j∈Ni∩B

{[
(U i − U j) · qij

]2 (Bij
6 δ−3/2 + Bij

7 δ−1/2
)

+Bij
14

[
(U i − U j) · qij

]
Raδ−1/2

}
.

(2.40)

Remark 2.4. Both Qin
per and Qb

per are quadratic forms (see Appendix I of [10]).

Remark 2.5. The discrete dissipation rate I makes physics transparent. We
can see how microflows enter this dissipation rate. Indeed, the discrete dissi-
pation form Q is presented as a sum of three motions corresponding to the
decomposition (2.31). The decomposition (2.39) reflects the physics of the
problem. Namely, for the interior necks the first term Qin

sh corresponds to the
dissipation rate WΠij (ush) in (2.31) and describes the shear flow between in-
clusions. This type of flow is produced by two motions: rotation in the same
direction (Fig. 2.8a) and relative shear (Fig. 2.7a). The second term Qin

sq cor-
responds to the dissipation rate WΠij (usq) in (2.31) and describes the local
flow due to the squeeze motion (Fig. 2.7b). The third term Qin

per corresponds to
the dissipation rate WΠij (uper) in (2.31) and describes the “permeation” type
flow due to the Poiseuille microflow between motionless inclusions (Fig. 2.10)
and the rotation into the opposite directions (Fig. 2.8b). Finally, the last term
Qb describes the local flow in the thin gap between a disk and the external
boundary. Here the decomposition into the parts corresponding to permeation
Qb

per and squeeze Qb
sq in boundary necks is similar to one in interior necks.

Remark 2.6. The asymptotics (2.38) is given in terms of the discrete dissipa-
tion rates Qij . These dissipation rates are quadratic forms of the key physical
parameters U, ω, β. In particular, the effective discrete dissipation rate re-
veals the functional dependence of the effective properties of suspensions on
the microflows (the shear, squeeze and permeation between neighbors).

3 Anomalous Rate of Blow up of the Dissipation Rate,
Qualitative Conclusions, Discussions and Open Problems

In this section we show that in 3D the Poiseuille microflow does not occur
(the fluid simply flows around the neck). In contrast, in 2D incompressible
fluid may need to permeate through necks. Necks separate fluid domain into
disconnected regions, triangles, which may have different pressures p1, p2 (Fig.
3.1). In this sense, the 2D problem becomes more complicated than an anal-
ogous 3D problem. Moreover, this type of flow in experimental 2D settings
may lead to an observable physical effect.

In the previous study [7] of 2D flow only the strong blow up term of or-
der O(δ−3/2) of the asymptotics of the effective viscosity was captured. The
subsequent study of [13] reveals the significance of the weak blow up of order
O(δ−1/2) in 2D. It was shown that it becomes the leading term in the asymp-
totics of the shear effective viscosity. The objectives of [13] was to study the
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Fig. 3.1. Local flux due to pressure drop

degeneracy of the strong blow up term and evaluate the order of the mag-
nitude of the next term which was shown to exhibit the weak blow up. The
qualitative conclusion of the analysis of [13] was that the shear viscosity ex-
hibits the weak blow up in both 2D and 3D. While this study highlighted the
significance of the weak blow up term, it was not calculated there. As shown
in Theorem 2.1 above the fictitious fluid approach suggested in this paper
allows to calculate any singular term, and, in particular, the weak blow up.
While a generalization of techniques of [7] for 3D suspensions leads to increas-
ing technical difficulties, the fictitious fluid approach provides an appropriate
tool to attack this problem. We anticipate that this approach would also be
useful in a variety of similar physical problems (e.g. rigid inclusions in an
elastic medium in both 2D and 3D). Moreover, the analysis by this approach
reveals the significance of the Poiseuille microflows. In this section we present
an example which illustrates the following. For the suspensions of free inclu-
sions the Poiseuille microflows contribute to the weak blow up. However, if an
external field, which “clamps” inclusions, is imposed on inclusions then the
Poiseuille microflow may result in a new type singular behavior of viscous dis-
sipation rate (superstrong blow up). We also present an example of one disk
in the fluid that can be clamped by the fluid flow with no external field. How-
ever, it is not clear whether this example can be generalized to an ensemble of
inclusions. Our example may suggest that on a suspension of free inclusions
the superstrong blow up may occur only due to boundary layer effects and
therefore for the large number of inclusions becomes negligible.

3.1 Suspensions in a Pinning Field

Example 3.1. The techniques described above can be applied to the problems
of suspensions of non-neutrally buoyant rigid inclusions defined by
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(a) µ�u = ∇p, x ∈ ΩF

(b) ∇ · u = 0, x ∈ ΩF

(c) u = U i + Rωi(ni
1e2 − ni

2e1), x ∈ ∂Bi, i = 1 . . .N

(d)
∫

∂Bi

σ(u)nids = mg, i = 1 . . .N

(e)
∫

∂Bi

ni × σ(u)nids = 0, i = 1 . . .N

(f) u = f , x ∈ ∂Ω

(3.1)

where the domain ΩF is depicted in Fig. 3.2, where m, g are given constant,
constant vector field, respectively. This problem corresponds to minimization

of WΩF (u) +
N∑

i=1

mg · U i. The additional term does not change the analysis.

Fig. 3.2. Example of a domain occupied by a suspension in a presence of a pinning
field (gravity)

Here we suppose that the density of the solid inclusions is ρs and the
fluid density is ρf . Then the force on the inclusion in the left hand side of
(3.1d) counteracts the external gravitational field −mg, where g = (0, g) is
acceleration due to the gravity and m = πR2(ρs − ρf ) is the excess mass.
We choose the external boundary condition f and the force exerted by the
heavy disks on the fluid so that the inclusions do not move and fluid is forced
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to permeate through the thin gaps between motionless inclusions. The force
exerted by the disks is equal to their weight πR2(ρs − ρf )g, where we choose
inclusions to be superheavy:

ρs = Cδ−5/2, for some C = C(µ, R) > 0, (3.2)

and the applied boundary data f is chosen so that

f =
(

0
f2(x, y)

)
∈ H1/2(∂Ω), (3.3)

where f2 is some periodic function of (x, y) ∈ ∂Ω. Such a boundary data f and
the asymptotics of ρs are selected so that inclusions do not move (the gravity
balances the viscous force). This balance can be found by solving an auxiliary
problem similar to the one considered in [35] (for details see Appendix A.4 of
[10]).

Then the following proposition holds.

Proposition 3.2 (Superstrong Blow Up due to a Pinning Field). Let
Ŵ be the effective viscous dissipation rate of the problem (3.1). There exist
ρs and f of the form (3.2) and (3.3), respectively, such that the following
asymptotic representation holds:

Ŵ = N
(
C1δ

−5/2 + C2δ
−3/2 + C3δ

−1/2
)

+ O(1), as δ → 0,

where C1 =
9
4
πµR5/2, C2 =

99
160

πµR3/2, C2 =
29241
17920

πµR1/2,

and N is the total number of inclusions.

The proof of this proposition can be found in Appendix A.4 of [10].

3.2 No Singularity of the Dissipation Rate due to the Poiseuille
Microflow in 3D

Example 3.2. In order to explain why the the Poiseuille microflow does not
contribute to the singular behavior of the dissipation rate in 3D let us consider
what happens with the fluid between two neighboring inclusions. Let K =
[−L, L]3 be a cube. The parts of two neighboring inclusions are modeled by
the hemispheres attached to the top and bottom faces of the cube as shown in
Fig. 3.3. Consider a 3D analog of the problem (2.1) with boundary condition f
to be a given constant vector V on two opposite sides of the lateral boundary
and zero vector on the rest of the boundary (Fig. 3.3). Since the effective
viscous dissipation rate Ŵ is bounded from above by the dissipation rate
W (w) for any test function w it suffices to find w such that W (w) = O(1).

Consider a “hourglass domain” Ψ inside of the box containing two hemi-
spheres as in Fig. 3.3. We choose the trial function w to be:
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Fig. 3.3. Poiseuille microflow in 3D

w =

{
0, when x ∈ Ψ

W , when x ∈ K \ Ψ
(3.4)

where W solves the Stokes problem with Dirichlet boundary conditions: W =
0 on the boundary of Ψ and W = f on ∂K (such a solution exists and is
unique).

Evaluating the dissipation rate on such a trial function we obtain:

W (w) ≤ ‖w‖2
H1(K) ≤ C‖V ‖2

H1/2(∂K) = O(1).

3.3 Boundary Layer Effects Leading to Superstrong Blow Up

Example 3.3. Consider the domain Ω = (−1, 1)2 which contains only one in-

clusion B. Decompose the domain outside B into necks
4⋃

i=1

Πi and squares

4⋃
i=1

�i as in Fig. 3.4(a). Choose

f =



(
−1
1

)
ζ1, ∂�1 ∩ ∂Ω =: Γ1(

−1
−1

)
ζ2, ∂�2 ∩ ∂Ω =: Γ2(

1
−1

)
ζ3, ∂�3 ∩ ∂Ω =: Γ3(

1
1

)
ζ4, ∂�4 ∩ ∂Ω =: Γ4

0, elsewhere
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where ζi, i = 1, . . . , 4 are smooth function having a compact support outside
of Γi such that ζi = 1 in Γi. Moreover, they satisfy the following symmetry
condition:

ζ1(x, y) = ζ2(−x, y) = ζ3(−x,−y) = ζ4(x,−y) and ζ1(x, y) = ζ1(y, x).

(a) (b) (c)

Fig. 3.4. One inclusion example: Boundary layer lead to superstrong blow up of
viscous dissipation rate

The fluxes through the parts of the boundary Γ1 and Γ3 which are equal
and we denote them by

β0 =
2
R

(−1 + d), d = δ + R(1 − 1√
2
).

Then the fluxes through Γ2 and Γ4 are −β0.
Due to symmetry of the problem the inclusion does not rotate, that is,

ω = 0 and β1 = β3 = −β2 = −β4 (see Fig. 3.4(b)). Then

I = min
U ,βi

4∑
i=1

Aδ−3/2[U · qi]2 + Bδ−1/2[U · pi]2 + CR2δ−5/2β2
i

−p1(β0 + β1 − β4 + U1 − U2) − p2(−β0 + β2 − β1 − U1 − U2)

−p3(β0 + β3 − β2 − U1 + U2) − p4(−β0 + β4 − β3 + U1 + U2)

= min
U ,βi

{2Aδ−3/2[U2
1 + U2

2 ] + 2Bδ−1/2[U2
1 + U2

2 ] + 4CR2δ−5/2β2
1

−p1(2β0 + 4β1) − p2(−2β0 − 4β1)},
where pi, i = 1, . . . , 4 are the Lagrange multipliers corresponding to the weak
incompressibility condition (2.17) and p1 = p3, p2 = p4.

Solving the Euler-Lagrange equations for this minimization problem we
obtain

U1 = U2 = 0, β1 = −β0

2
=

1
R

(1 − d),

which provides the following asymptotics:
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I = C(1 − d)2δ−5/2.

Thus, we see that the superstrong blow up can occur due to the boundary
layer where Poiseuille flow is significant.

3.4 Free Suspensions (no external field)

In the above example 3.1 we demonstrated that the Poiseuille microflow dom-
inates the asymptotics of the effective viscous dissipation rate and may cause
the superstrong blow up of order O(δ−5/2). The key ingredient of this example
is the presence of a strong external pinning field which “clamps” inclusions or
alternatively the presence of the boundary layer as in Example 3.3. In typi-
cal suspensions, with no external field, the inclusions are free to move. Then
we expect that β is asymptotically small, as δ → 0, so that the Poiseuille
microflow does not contribute to the superstrong blow up by Theorem 2.1.
This observation is also supported by the analysis of the periodicity cell prob-
lem with five inclusions in [8]. Below we present an example of a suspension
with a hexagonal periodic array of inclusions and prove that for the exten-
sional external boundary conditions the viscous dissipation rate exhibits the
strong blow up O(δ−3/2) since all βij = 0. Such a hexagonal array in 2D is a
representative of a densely packed array of disks.

Fig. 3.5. Periodic domain occupied by a suspension under the extensional boundary
conditions that exhibits the strong blow up

Example 3.4. Consider a square domain Ω = (−M, M)2, M > 0 with hexag-
onal array of disks Bi centered at (xi, yi) ∈ Ω (Fig. 3.5). The boundary value
problem (2.1) is supplemented with boundary conditions

f =
(

x
−y

)
on ∂Ω. (3.5)
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We first prove that the effective dissipation rate Ŵhex = O(δ−3/2) by con-
structing a trial vector field v such that WΩF (v) = O(δ−3/2). We thus obtain
an upper bound for Ŵhex.

The construction is as follows. For each inclusion Bi, centered at xi =
(xi, yi) we prescribe the translational velocity to be exactly

U i =
(

xi

−yi

)
, (3.6)

and the rotational velocity ωi = 0. For such velocities the zero flux constraint
(2.17) for every fluid region Aijk (see the right part of Fig. 3.5) takes the form

βij + βjk + βki = 0, (3.7)

because elementary computations show that for every i, j, k

(U i + U j)pij + (U j + Uk)pjk + (Uk + U i)pki = 0.

Hence, we can choose all βij to be identically zero. Then Theorem 2.1 implies
that there exists a trial vector field v such that

WΩF (v) = O(δ−3/2),

and, therefore, Ŵhex = O(δ−3/2).
To show that for this array of inclusions Ŵhex > Cδ−3/2 we consider a

chain of disks that connects upper and lower boundaries of the domain Ω:
∂Ω+ = {(x, y) : y = M} and ∂Ω−{(x, y) : y = −M}, respectively (see Fig.
3.6). We choose this chain so that the y-axis of the coordinate system passes

Fig. 3.6. Chain of disks connecting the upper and lower boundaries of Ω

through the centers of disks in this chain. Then

Ŵ = min
R

Q(U, ω, β) ≥ (C2δ
−3/2 + C3δ

−1/2)min
U

∑
chain

(U i
2 − U j

2 )2.
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where the last minimum is taken over the disks in the chain (shadowed disks
in Fig. 3.6). Then

min
U

∑
chain

(U i
2 − U j

2 )2 = A > 0,

where A is some constant. Therefore Ŵhex > Cδ−3/2. This leads to a conclu-
sion that the effective viscous dissipation rate Ŵper exhibits the strong blow
up of order δ−3/2.

It is known that for local movements of pairs of inclusions the squeeze
type motion (Fig. 2.7b) provides the strongest singularity (of order δ−3/2)
whereas all other types of motions: rotations and shear provide a weaker
singularity (of order δ−1/2). Thus, it is natural to expect that in a suspension
where inclusions are free to move with the extensional boundary conditions the
viscous dissipation exhibits the singularity of order δ−3/2. The above example
shows that this is indeed the case, that is, the superstrong blow up does not
occur and the anomalous rate of O(δ−5/2) can be achieved if an external field
is applied.

There is also one more case where the superstrong blow up can be ob-
tained. Namely, Example 3.3 shows that it occurs in the boundary layers.
Hence the above O(δ−3/2) conclusion applies to bulk effective properties of
free suspensions of large number of inclusions, when the boundary effects are
negligible.

4 The Fictitious Fluid Problem

The use of the fictitious fluid approach immediately gives a lower estimate on
the viscous dissipation rate Ŵ as follows.

Lemma 4.1. For ŴΠ defined by (2.10) and Ŵ defined by (2.3) the following
inequality holds:

ŴΠ ≤ Ŵ . (4.1)

See Section 4 of [10] for the proof of this lemma.
Another significant advantage of the fictitious fluid problem is that the

global minimization problem (2.10) can be split into two consecutive problems:
one of them is on a single neck Πij , and the other one is a minimization
problem on discrete variables (U, ω, β∗) ∈ R∗.

Lemma 4.2. (Iterative minimization lemma). Suppose ŴΠ is defined by
(2.10). Then

ŴΠ = min
(U,ω,β∗)∈R∗

∑
i∈I,j∈Ni

min
Vij

WΠij (·), (4.2)

where the class R∗ is defined by (2.33). Moreover, the minimizer of WΠij over
Vij satisfies the following Euler-Lagrange equations:
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(a) µ�u = ∇p, x ∈ Πij ,
(b) ∇ · u = 0, x ∈ Πij ,

(c′) u = U i + Rωi(ni
1e2 − ni

2e1), x ∈ ∂Bi,

(c′′) u = U j + Rωj(nj
1e2 − nj

2e1), x ∈ ∂Bj ,

(d)
1
R

∫
�ij

u · nds = β∗
ij ,

(e) σ(u)n = −p±ijn, x ∈ ∂Π±
ij ,

(f) u = f , x ∈ ∂Πij ∩ ∂Ω,

(4.3)

where p±ij are the Lagrange multipliers for the weak incompressibility condition
(2.17).

Proof. Minimizing WΠ(u) over VΠ leads to the Euler-Lagrange equations

(a) µ�u = ∇p, x ∈ Π

(b) ∇ · u = 0, x ∈ Π

(c) u = U i + Rωi(ni
1e2 − ni

2e1), x ∈ ∂Bi, i = 1 . . .N

(d)
∫

∂Bi

σ(u)nids = 0 i = 1 . . .N

(e)
∫

∂Bi

ni × σ(u)nids = 0, i = 1 . . .N

(f)
∫

∂�ijk

u · nds = 0, i ∈ I, j, k ∈ Ni

(g) σ(u)n = pijkn, x ∈ ∂�ijk

(h) u = f , x ∈ ∂Ω,

(4.4)

where the “pressure constants” pijk arise from weak incompressibility condi-
tion (2.7). Given the boundary data f in (4.4) we uniquely determine (see
Appendix C.3 of [10]) unknowns

u, p, U i, ωi, pijk, i ∈ I, j, k ∈ Ni. (4.5)

Fix a neck Πij and consider the problem (4.3) on it. For this pair of indices
i, j take

f , U i, ωi, U j , ωj , β∗
ij =

1
R

∫
�ij

u · nds (4.6)

found from (4.5). Using (4.6) as a given data, boundary value problem (4.3)
can be solved uniquely (see Appendix C.4 of [10]). Due to the unique solv-
ability of both (4.4) and (4.3) the pair (u, p) in (4.5) must solve (4.3) and
5

p+
ij = pijk, p−ij = pijm,

5 For notational convenience we identify p+
ij = p+

jk = p+
ki = pijk, and p+

ij = p−
ji.
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where triangles �ijk and �ijm are adjacent to the neck Πij (see Fig.4.1).
Hence (4.4) reduces to (4.3).

At this point the completion of the proof would have been trivial if we did
not have β∗

ij . Indeed, in the entire domain ΩF a result analogous to (4.2) is
simply

min
(U,ω,u)

WΩF (u) = min
(U,ω)

(
min

u, when (U,ω) fixed
WΩF (u)

)
.

Hence it only remains to show that for any given (U, ω) we can find at least one
set β∗ satisfying the weak incompressibility condition (2.17). To this end we fix
(U, ω) and let u be the solution of the Stokes equation µ�u = ∇p and ∇·u =
0 in the domain ΩF with the Dirichlet data u|∂Bi = U i + Rωi(ni

1e2 − ni
2e1),

u|∂Ω = f . Set β∗
ij =

1
R

∫
�ij

u · nds. Hence, we obtain β∗ = {β∗
ij} such that

(U, ω, β∗) ∈ R∗. This completes the proof of lemma 4.2.

Remark 4.7. For a given (U, ω) permeation constants β∗ may not be unique.
In fact, the choice of β∗

ij has N degrees of freedom where N is the number
of inclusions. Indeed, β∗ is found from solving a linear system Aβ∗ = b
where the number of unknowns equals the number P of interior necks and the
number of equations equals the number of triangles, but there are only P −N
linearly independent ones. Hence, the number of free parameters is equal to
the number of inclusions.

(a) (b)

Fig. 4.1. (a) Pressures on the boundary of the triangle �ijk; (b) Two triangles
adjacent to the neck Πij

Remark 4.8. The unknowns of the problem (4.4) are the velocity field u(x),
the pressure p(x), the constant translational U i and angular ωi velocities of
the disk Bi, i = 1, . . . , N and constants pijk. Formally these constants appear
as the Lagrange multipliers for the constraints (2.7). Similar to how the pres-
sure p(x) appears as the Lagrange multiplier in the variational formulation
corresponding to the Stokes equation, the weak incompressibility condition
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for the fictitious fluid, inherited from the original fluid, gives rise to the con-
stant Lagrange multipliers, that one can regard as a constant pressure on
the boundary of the fictitious fluid domain. This also motivates the notations
pijk. Thus, the fictitious fluid may be also interpreted as follows: an incom-
pressible fluid occupies necks while triangular pockets are filled with “gas” of
the constant pressure pijk. Naturally, the unknowns of the problem (4.3) are
the functions u(x), p(x) and constants p±ij , representing the velocity field, the
pressure in the neck Πij and the constant pressures on the lateral boundary
∂Π±

ij , respectively.

Remark 4.9. A major difficulty in applying previous “one-step” discretiza-
tion techniques [7, 11, 12] to vectorial problems is the presence of integral
constraints in the dual variational formulation. In the described “two-step”
discretization approach, due to the Iterative Minimization Lemma, the inner
minimization problem has Dirichlet boundary conditions on inclusions and
therefore neither this problem, nor its dual have any integral conditions. On
the other hand, due to (4.2) second minimization implies that these integral
conditions are automatically satisfied.

Lemma 4.3. Suppose ΩF satisfies the close packing condition. Then for ŴΠ

defined by (2.10) and Ŵ defined by (2.3) the following inequality holds:

Ŵ ≤ ŴΠ + µ

∑
i∈I

∑
j∈Ni

C1R
2β̂2

ij + C2|Û
i − Û

j |2 + C3

∑
i∈I∪B

R2(ω̂i)2

 ,

(4.7)
where (Û, ω̂, β̂∗) minimizes (4.2).

The proof of this lemma relies on the technical construction that appears in
the proof of Lemma 5.4 of the next section. For simplicity of the presentation
here we omit both proofs which can be found in Chapter 6 of [10].

Remark 4.10. Lemma 4.3 is the only place where the close packing condition
is necessary to obtain the desired estimate (4.7) because we needed uniform
Lipschitz regularity of triangles �ijk.

As a corollary of Lemmas 4.1 and 4.3 we have the main result of this
section: the accuracy of approximation of the effective viscous dissipation rate
by the dissipation rate of the fictitious fluid given in the following proposition.

Proposition 4.3. Suppose ΩF satisfies the close packing condition. Then

|Ŵ − ŴΠ | ≤ µ

∑
i∈I

∑
j∈Ni

C1R
2β̂2

ij + C2|Û
i − Û

j |2 + C3

∑
i∈I∪B

R2(ω̂i)2

 ,

(4.8)
where (Û, ω̂, β̂∗) minimizes (4.2).
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5 Discrete Network

In the previous chapter we described the discrete network that arises from the
fictitious fluid approach. Indeed, the equation (4.2) in view of (4.3) is

ŴΠ = min
(U,ω,β∗)∈R∗

∑
i∈I,j∈Ni

WΠij (u) =: min
(U,ω,β∗)∈R∗

W(U, ω, β∗), (5.1)

where u is the solution of (4.3) and W is a positive definite quadratic form
of (U, ω, β∗).

Our next objective is to find coefficients of W asymptotically as charac-
teristic distance δ → 0. We have the following result.

Lemma 5.4. Suppose ŴΠ is defined by (2.10), I is defined by (2.34), W is
defined by (5.1), and Q is defined by (2.33)-(2.37). Then

|W(U, ω, β∗)−Q(U, ω, β)| ≤ µ

∑
i∈I

∑
j∈Ni

C1R
2β2

ij + C2|U i − U j |2 + C3

∑
i∈I∪B

R2(ωi)2


(5.2)

for any (U, ω, β∗) ∈ R∗ and βij related to β∗
ij through (2.32). In particular,

|ŴΠ − I| ≤ µ

∑
i∈I

∑
j∈Ni

C1R
2β̂2

ij + C2|Û
i − Û

j |2 + C3

∑
i∈I∪B

R2(ω̂i)2

 .

(5.3)
where (Û, ω̂, β̂) is the minimizer of Q.

This Lemma shows that coefficients of W(U, ω, β∗) tend to infinity as
δ → 0 because the corresponding coefficients of Q(U, ω, β) are asymptotically
large and given in (2.36)-(2.37). As mentioned above, the proof of this lemma
can be found Chapter 6 of [10].

Combining Proposition 4.3 and Lemma 5.4 we obtain the claim of Propo-
sition 2.1.

In order to prove Theorems 2.1 and 2.2 it remains to show that the error
term of the right hand side of (5.3) becomes relatively small compared to the
effective discrete dissipation rate I. In order to show that we prove in the next
lemma that I → ∞ as δ → 0. More specifically we have the following result.

Lemma 5.5. Suppose ΩF satisfies the close packing condition. Then there
exists a constant C > 0 such that for every {U i}:

I ≥ µ
∑
i∈I

∑
j∈Ni

C1δ
−3/2|U i − U j |2 + C2δ

−1/2R2(ωi + ωj)2

+C3δ
−1/2R2(ωi − ωj)2 + C4δ

−5/2β2
ij , as δ → 0.

(5.4)

For the proof of this lemma see Chapter 5 of [10].
From Lemma 5.5 and Proposition 2.1 we have Theorem 2.2, and Theorem

2.1 follows from Theorem 2.2 and Proposition 4.3.
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6 Conclusions

In this paper the asymptotic formula for the effective viscous dissipation rate
is obtained, where all singular terms are derived and justified. This is done
by developing a new technical tool - the two-step fictitious fluid approach.
Such approach is expected to be helpful in evaluation of effective properties
of various highly packed particulate composites. In contrast to partial analysis
of microflows, done in the previous studies of concentrated suspensions, the
obtained asymptotics provides for a complete picture of microflows. A new
term due to the Poiseuille microflow is obtained. It is shown that this Poiseuille
microflow does not contribute to singular behavior of viscous dissipation rate
in 3D. While in 2D it may result in an anomalous rate of blow-up (of order
δ−5/2). Indeed, such a rate of blow-up is obtained in the presence of external
field (e.g. gravity) or due to the boundary layer effects. Also our analysis
suggests that in absence of an external field the anomalous blow-up does not
occur.

The obtained asymptotics expresses the continuum dissipation rate in
terms of a discrete dissipation rate, and the latter reveals dependence on
the key physical parameters.

Our study leads to a somewhat surprising observation that suspensions
are actually harder to analyze in 2D than in 3D. As we mentioned above, the
Poiseuille type microflow is significant in 2D and it is negligible in 3D. The key
reason here is topological: in 2D thin gaps between closely spaced inclusions
partition the fluid domain into disconnected regions, which is not the case in
3D. Hence, in 2D permeation of fluid between two inclusions contributes into
the singular behavior of the effective viscous dissipation rate.

Finally, we note that 2D mathematical models were often used to analyze
qualitative behavior of 3D problems in order to reduce the analytical and
computational complexity of the problem. Our work clearly shows limits of
validity of such modeling.

A Appendix

Coefficients of the quadratic form Q
Define rij = R/dij . Then the coefficients Cij

k , k = 1, . . . , 9, and Bij
m, m =

1, . . . , 14 in (2.36) and (2.37), respectively, are given by
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Cij
1 =

1
2
πµr

1/2
ij , Cij

2 =
3
4
πµr

3/2
ij , Cij

3 =
207
320

πµr
1/2
ij ,

Cij
4 =

9
4
πµr

5/2
ij , Cij

5 =
99
160

πµr
3/2
ij , Cij

6 =
29241
17920

πµr
1/2
ij ,

Cij
7 = −3πµr

3/2
ij , Cij

8 =
9
40

πµr
1/2
ij , Cij

9 =
3
2
πµr

1/2
ij ,

Bij
1 = 18πµr

5/2
ij , Bij

2 =
51
20

πµr
3/2
ij , Bij

3 =
20889
2240

πµr
1/2
ij ,

Bij
4 = 4πµr

1/2
ij , Bij

5 =
9
2
πµr

1/2
ij , Bij

6 = 6πµr
3/2
ij ,

Bij
7 =

63
20

πµr
1/2
ij , Bij

8 = 6πµr
3/2
ij , Bij

9 =
19
20

πµr
1/2
ij ,

Bij
10 = −3πµr

3/2
ij , Bij

11 = −3
8
πµr

1/2
ij , Bij

12 = −3πµr
1/2
ij ,

Bij
13 = −3πµr

1/2
ij , Bij

14 = 6πµr
1/2
ij .

(A.1)
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