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Abstract. We present a PDE model for dilute suspensions of swimming bac-

teria in a three-dimensional Stokesian fluid. This model is used to calculate
the statistically-stationary bulk deviatoric stress and effective viscosity of the
suspension from the microscopic details of the interaction of an elongated body
with the background flow. A bacterium is modeled as an impenetrable prolate
spheroid with self-propulsion provided by a point force, which appears in the
model as an inhomogeneous delta function in the PDE. The bacterium is also
subject to a stochastic torque in order to model tumbling (random reorienta-
tion). Due to a bacterium’s asymmetric shape, interactions with prescribed
generic planar background flows, such as a pure straining or planar shear flow,
cause the bacterium to preferentially align in certain directions. Due to the
stochastic torque, the steady-state distribution of orientations is unique for a
given background flow. Under this distribution of orientations, self-propulsion
produces a reduction in the effective viscosity. For sufficiently weak background
flows, the effect of self-propulsion on the effective viscosity dominates all other
contributions, leading to an effective viscosity of the suspension that is lower
than the viscosity of the ambient fluid. This is in qualitative agreement with
recent experiments on suspensions of Bacillus subtilis.

1. Introduction. In this paper, we study the rheology of dilute suspensions of
self-propelled swimming bacteria. Such suspensions are of particular interest be-
cause experimental observations show that the microscopic effect of bacterial self-
propulsion leads to macroscopic phenomena. For example, experiments on bacteria
suspended in liquid films have demonstrated enhanced diffusion of tracer parti-
cles [38], enhanced mixing [33], and collective flow speeds that exceed the speed of
an individual bacterium by an order of magnitude [32]. Recently, in experiments
reported in [31], activity (i.e., swimming) of B. subtilis was observed to cause a
decrease in the effective viscosity of the suspenson by up to a factor of 7 compared
to a suspension of inactive (dead) bacteria. These experimental results point to
the potential for many technological applications (see [20]), but are not adequately
explained by present theories.

Whereas phenomenological arguments relating the viscosity of suspensions to the
activity of particles [13], simple kinetic models [29] and studies of viscosity in two-
dimensional geometry [11] have been presented, the issue of viscosity in suspensions
of swimmers still lacks conceptual clarity. In [13], a tensor order parameter Q is
used to characterize the local ordering of the system (i.e., the alignment of swim-
ming particles to each other). The governing dynamics for Q is borrowed from the
theory of systems with nematic ordering and is phenomenological. In particular,
the relationship of the evolution of the order paramter to the microscopic alignment
dynamics has not been clarified, and the very possibility of arriving at macroscopic
expressions for the effective viscosity from first-principle arguments has not been
established. In this work we begin to fill this gap by proposing a model that allows
for an analytic explanation of the observed effects.

Suspensions of swimming bacteria (or bacterial suspensions) are a prime ex-
ample of active suspensions—suspensions in which the suspended particles or in-
clusions inject energy and momentum into the surrounding fluid, usually through
self-propulsion. Bacteria come in a variety of shapes and employ many different
forms of self-propulsion. We will only consider bacteria similar to the B. subtilis
used in the experiments in [31, 32]. This is a rod-shaped unicellular microorganism
with an aspect ratio of approximately 5.7 that propels itself through the motion of
several helical flagella distributed over the surface of its body. These flagella are
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driven by reversible molecular motors located inside the bacterial cell, which are
in turn driven by electrochemical gradients across internal membranes (see [24]).
The flagella allow a bacterium to move in two distinct modes: forward movement
(swimming) and tumbling (random reorientation). The bacterium spends most of
its time moving forward by bundling its flagella together so that they rotate as
one strand, providing forward thrust (see Fig. 1). At random times the flagella
unbundle and move separately (see Fig. 1), causing the bacterium to rotate (see
e.g., [35, 30]) until the next bundling event. Depending on external conditions (e.g.,
the concentration of bacteria, the pH of the water, or the amount of nutrients and
dissolved oxigen), the frequency and duration of tumbling events varies: the aver-
age time between events varies from 1 to 60 seconds and the average duration of
tumbling is between 0.1 and 0.5 seconds (see [35]). This effectively results in an
instant random reorientation of the bacterium. It has been observed in [37] and
[36] that the process of tumbling makes bacterial motion in a fluid otherwise at rest
similar to a three-dimensional random walk.

Figure 1. Diagram of a bacterium moving forward by bundling its
flagella and rotating them together as one strand (left); Diagram of
a bacterium tumbling by unbundling its flagella and rotating them
independently (right).

The bulk properties of passive dilute suspensions (suspensions of inert particles,
or inclusions) have been studied extensively for over 100 years. In 1905 Einstein
studied the dilute limit when interparticle distances are much greater than the size
of the particles themselves so that the volume fraction of the inclusions φ is a small
parameter. He assumed that the effect of hydrodynamic interactions between the
inclusions can be ignored in this case. He then calculated the linear correction in φ to
the viscosity of the surrounding fluid due to the presence of neutrally buoyant, inert
spheres (see [7]). In 1922, in [19], Jeffery attempted to do the same for ellipsoids, but
found that the answer depended on the evolution of the distribution of orientations
of inclusions, which he did not study. This work was not picked up again until Hinch
and Leal produced a series of papers in the 1970s, most notably [22, 15], in which
they studied the dynamics of ellipsoids in a shear flow and applied the results of
this study to determining the effective viscosity of a suspension. In that work, the
ellipsoids are subjected to rotational white noise, which drives the distribution of
the orientations of inclusions to a unique steady state P∞ irrespective of the initial
distribution. Using P∞, they then calculate the effective viscosities for various
limiting cases of particle shape and shear strengths. In 1972, Batchelor and Green,
in [2], were the first to consider pairwise particle interactions in order to find the
O(φ2) correction to Einstein’s result.

Up to this point, all works have involved formal asymptotics. In the 1980s,
rigorous homogenization results were first proven for moderate concentrations of
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particles in Stokesian fluids by Levy and Sanchez-Palencia in [23] and Nunan and
Keller in [26]. Results for the densely-packed regime were more recently proven in
2007 in [3], [5], and [4]. A rigorous mathematical justification of Einstein’s original
formula for the effective viscosity of dilute passive suspensions has only recently
been carried out in [10].

The history of the mathematical study of active suspensions is much shorter.
Bacterial suspensions or suspensions of other swimming microorganisms have been
the main vehicle of study of the macroscopic properties of active suspensions. Pro-
ducing an adequate model for swimming bacteria has proved challenging. Numerical
simulations in [16] using spherical swimmers with imposed body surface velocities
modeling self-propulsion were able to predict a decrease in viscosity only in the
presence of a gravitational field. This is because a bacterium acts as a force dipole
(since the total force on the bacterium is zero: the force of self-propulsion is bal-
anced by the viscous drag force), which will increase the viscosity when aligned in
some directions (measured with respect to a principal axis of the background flow)
and decrease it in others. For a rotationally symmetric particle, the lack of any
preferred orientation will cause the active contributions to the viscosity to cancel
and result in no change in the effective viscosity. Many other models have been
presented, including some that including tumbling [27, 34], though these have not
been used to study the effective viscosity.

In our previous work in [11], we modeled a bacterium as a disk in two dimensions
with a point force directed radially outward from the body. An asymptotic formula,
to first order in φ, was obtained for the effective viscosity of such a suspension given
a prescribed orientation distribution function P . In that work, P was regarded
as instantaneous and imposed. For distributions concentrated along the stable
principal axis of the background flow, the asymptotic formula predicts a reduction
in the effective viscosity relative to the case of passive disks. This can be understood
heuristically: bacteria are force dipoles, and when a force dipole is aligned along
the stable principal axis of a straining flow, it contributes to the bulk rate of strain.
Thus, to maintain a constant rate of strain in the presence of dipoles aligned along
this axis, the rate of work needed to be done on the boundary is decreased, which
is equivalent to having a decreased effective viscosity. Concentration along this axis
only occurs, however, for asymmetric particles.

In this paper, we provide the mathematical details of results presented in [12].
In this work, we significantly generalize and extend the work in [11]. We consider
asymmetric bacteria in a three-dimensional geometry and include the effects of
tumbling (random reorientation). We have derived analytical expressions for all
components of the deviatoric stress tensor and explicit expressions for the effective
viscosity in several relevant cases. The most significant aspect of this work is that
instead of using a phenomenological theory of alignment, we use a microscopic
model of self-propelled asymmetric bacteria in a Stokesian fluid as our departure
point. Within this model we derive quantitative expressions for the statistically
stationary probability distributions of orientations of bacteria, from which the mean
bulk stress and the effective viscosity can be obtained in a straightforward manner.
Our analysis shows a general trend of decreasing effective viscosity with increasing
bacterial concentration and activity (speed of swimming). Furthermore, our results
can be used to derive explicit evolution equations for the order parameter Q used in
[13] and, hence, allow for a comparison with a phenomenological theory of nematic
ordering.
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Figure 2. Diagram of a bacterium (left); A bacterium with ori-

entation (α, β), alternatively described by the unit vector d̂ (right).

We develop a PDE model with white noise that captures the effects of asymmetry,
self-propulsion and tumbling. Following the work of Hinch and Leal in [15], we
analyze the long-term dynamics of the particle distribution density governed by a
Fokker-Plack equation. We emphasize this point, since dynamics has frequently
been omitted from the previous analytical work, even on passive suspensions, due
to the difficulties it presents. The presence of white noise is important because it
ensures that the steady-state distribution of orientations of the bacteria (which the
effective viscosity will depend on) is unique.

2. Formulation. We consider the motion of n neutrally buoyant bactera in a pre-
scribed flow of the surrounding fluid in R

3. In addition to being conveyed by the
flow, the bacteria propel themselves by means of a rigidly attached point force (i.e.,
the location and orientation are fixed relative to the center of the body), which
models the propulsion force caused by rotating helical flagella. In order to model
tumbling, each bacterium exerts a random torque on the fluid. We select this torque
in order to make its orientation in the absense of other effects (i.e., in a fluid at
rest) a white noise process on the unit sphere.

During forward motion, the body of a bacterium rotates about its axis of sym-
metry in a direction opposing the rotation of its flagella in order to conserve angular
momentum. However, since this rotation occurs about its axis of symmetry, its ori-
entation is unaffected. Therefore, the only effect this rotation has on the effective
viscosity is through the additional hydrodynamic stress it produces. Nevertheless,
the Stokes flow due to a dipole decays as 1/r2 in 3D, while the flow due to the rota-
tion of a torque-free rigid particle decays as 1/r3, so this rotation can be neglected.

Since we are primarily motivated by experimental results for B. subtilis, which
are elongated (see illustration in Fig. 1), we model the lth bacterium as a prolate

spheroid Bl with (arbitrary) eccentricity e =
√

b2−a2

b
(see Fig. 2). The orientation

of the bacterium is specified by the angles (αl, βl) or, equivalently, by a unit vector

d̂l = (cosαl sin βl, sin αl sin βl, cosβl). Propulsion is modeled by a point force of

magnitude f l
p directed along d̂l and applied at position ~xf,l behind the bacterium

on the major axis of the ellipsoid at a distance (1 + λ) b from its center ~xc,l (see
Fig. 2). We assume that, based on the size and propulsion force of the bacteria,
the Reynolds number of the flows in the fluid surrounding the bacteria is small, so
that inertial effects can be ignored and the fluid is Stokesian. Moreover, we assume
that a steady-state flow is established on timescales much smaller than the typical
timescale associated with bacterial movement (e.g., the time needed for a bacterium
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to translate a significant fraction of its length or rotate by an appreciable angle).
Therefore, we assume that the fluid surrounding the bacteria is governed by the
steady Stokes equation.

The equations of motion of the bacteria are obtained by enforcing the balance
of forces and torques. The motion of the bacteria themselves is assumed to be
overdamped, ignoring inertial effects, so that the equations of motion contain no
intertial terms. The fluid exerts hydrodynamic drag on the bacteria balancing
the force of propulsion. Since the applied force is directed along the axis of the
ellipsoid, it produces no torque. However, we add additional random torque τ

selected to result in Gaussian white noise of the orientation vector d̂l in the absence
of other effects, in order to model tumbling. This random torque is balanced by
that generated by hydrodynamic drag on the bacterium. We now formulate this in
terms of a PDE problem.

Let ~u and p represent the velocity and pressure in the ambient fluid in ΩF :=
R

3 \ ∪lB
l, respectively, and η be the fluid’s dynamic viscosity. The bacteria are

submerged in a linear background flow ~ub = E · ~x + ~Ω × ~x with the rate of strain

tensor E (constant, symmetric, and trace-free matrix) and vorticity ~Ω (constant
vector). It is sufficient to consider only linear background flows since these determine
the effective viscosity uniquely in terms of the orientations of the bacteria. The
dynamics of the fluid in ΩF and the motion of the bacteria are governed by































η∆~u = ∇p +
∑

l f
l
pd̂

lδ(~x − ~xf,l) ~x ∈ ΩF

∇ · ~u = 0 ~x ∈ ΩF

~u = ~vl + ~ωl ×
(

~x − ~xc,l
)

~x ∈ ∂Bl

~u → E · ~x + ~Ω × ~x ~x → ∞
∫

∂Bl σ · ν̂dx + f l
pd̂

l = 0
∫

∂Bl σ · ν̂ ×
(

~x − ~xc,l
)

dx + ~τ l = 0,

(1)

where ν̂ is the unit normal to the surface of integration and σij := −pδij +

η
(

∂ui

∂xj
+

∂uj

∂xi

)

is the hydrodynamic stress tensor. The last two equations repre-

sent the balance of forces and torques and implicitly define the equations of motion
of the bacteria. Namely, the linear and angular velocities ~vl and ~ωl, respectively, of
the bacteria must be such that the balance conditions are satisfied. The choice of
the random torque ~τ l is explained in Section 2.2. Note that all quantities are time-
dependent, including the domain ΩF , since the bacteria will tend to translate and
rotate due to interaction with the background flow, self-propulsion, and rotational
white noise.

Once the flow (~u, p) has been calculated, one can calculate the instantaneous
bulk deviatoric stress, defined by

Σt
ij(~u, p) :=

1

|V |

∫

V

(

σij −
1

3
δijσkk

)

dx, (2)

where δij is the Kronecker delta, V is any volume containing the entire suspension
(the value of the integral is independent of this choice–see, e.g., [1]), and |V | is the
volume of V . An instantaneous effective viscosity η̂t is then defined by choosing E

and ~Ω corresponding to a planar shear or pure straining flow of strength γ taken,
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for concreteness, in the x, y plane:

E =
1

2





0 γ 0
γ 0 0
0 0 0



 (3)

with ~Ω =
(

0, 0, γ
2

)

and ~Ω = (0, 0, 0), respectively, and setting

η̂t(~u, p) :=
Σt

12(~u, p)

γ
. (4)

Here, we use γ in the denominator because this is the appropriate component of
the bulk rate of strain. In principal, the effective viscosity should be a tensor of
rank 4 with the quantity η̂t above corresponding to the component η̂t

1212. Since
we will calculate the bulk stress explicity, all components can easily be obtained
by solving the linear system Σt = Eη̂t. However, since the essential physics are
captured in the component η̂t

1212, we will only consider this component henceforth
and thus write all effective viscosities as scalars. For Newtonian fluids, the effective
viscosity in the shear flow will be equal to the viscosity in the straining flow. For
suspensions of asymmetric particles, they will differ because the effective viscosity
will, in general, depend on the orientations of the particles and the particles follow
different trajectories in these flows. It is sufficient to calculate the effective viscosity
only in these cases because all linear flows can be written as a linear combination
of these two flows.

The flow (~u, p) satisfying (1) is a function of the state of the bacteria – their
positions and orientations – and, hence, so is η̂t:

~u = ~u
(

(xc,1, α1, β1), . . . (x
c,n, αn, βn)

)

, p = p
(

(xc,1, α1, β1), . . . (x
c,1, α1, β1)

)

,
(5)

η̂t = η̂n

(

(xc,1, α1, β1), . . . (x
c,n, αn, βn)

)

. (6)

However, the exact states of the bacteria are not known with certainty (due to white
noise), so the precise flow (~u, p) and η̂t are not known either. Furthermore, as the
bacteria move, η̂t varies with time. Nevertheless, as a material quantity, η̂ should be
time-independent. The distribution of bacteria evolves from an initial distribution
P 0

n to some P t
n at time t, but the presence of white noise ensures that as t → ∞, P t

n

tends to a unique steady state distribution P∞
n , which is independent of P 0

n . We
then define the effective viscosity of the suspension for a given background flow as
the ensemble averages with respect P∞

n :

η̂ =

∫

η̂t
(

(xc,1, α1, β1), . . . , (x
c,n, αn, βn)

)

×

P∞
n

(

(xc,1, α1, β1), . . . , (x
c,n, αn, βn)

)

sin β1 dα1 dβ1 . . . sin βn dαn dβn, (7)

where the integral is over the n-fold product of R
3 × S2, the space of particle

configurations.

2.1. The dilute limit. In general, calculating solutions to the full hydrodynamic
equations (1) and P∞

n is a difficult problem, but both become tractable in the
dilute limit. Therefore, instead of solving (1), we consider only solutions for a

single bacterium in R
3. Specifically, let

(

~ud(~x, ~xc, d̂), pd(~x, ~xc, d̂)
)

denote the flow
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due to a single particle with orientation d̂ placed in the background flow. It satisfies















η∆~ud = ∇pd + fpd̂δ(~x − ~xf ) ~x ∈ R
3 \ B

∇ · ~ud = 0 ~x ∈ R
3 \ B

~ud = ~v + ~ω × (~x − ~xc) ~x ∈ ∂B

~ud → E · ~x + ~Ω × ~x ~x → ∞















(8a)

along with

{ ∫

∂B
σd · νdx + fpd̂ = 0

∫

∂B
σd · ν × (~x − ~xc) dx + ~τ = 0

}

. (8b)

The full flow (that is, the dilute approximation to the solution of equation (1))
(

~uD, pD
)

is then given by

~uD =E · ~x + ~Ω × ~x +
∑

l

(~ud(~x, ~xc,l, d̂l) − E · ~x − ~Ω × ~x) (9a)

and

pD =
∑

l

pd(~x, ~xc,l, d̂l). (9b)

Additionally, the orientations of the inclusions become independent and P∞
n is

completely defined by the single particle steady-state distribution P∞. Thus, here
we have

P∞
n

(

(xc,1, α1, β1), . . . , (x
c,n, αn, βn)

)

=
∏

l

P∞(xc,l, αl, βl). (10)

As in previous work on dilute suspensions, we assume that for suspensions with
identical particle locations and orientations the following approximation property
is true:

η̂t(~uD, pD) − η̂t(~u, p) = O(φ2), (11)

where φ = 4π
3 na2b is the volume fraction and n is the number of bacteria per unit

volume.
The single particle distribution P∞(xc, α, β) is obtained from (8b) as shown

in the next section. Furtheremore, the bulk stress and, therefore, the effective
viscosity, become the sum of bulk stresses and effective viscosities of single particle
configurations respectively.

η̂t
(

~uD, pD
)

= η + η̂1(x
c,1, α1, β1) + · · · + η̂1(x

c,n, αn, βn), (12)

where

η̂1(x
c, α, β) = η̂t

(

~ud(xc, α, β), pd(xc, α, β)
)

. (13)

It can be shown that the single particle effective viscosity η̂1 is independent of the
location of the bacterium xc and so only the orientational distribution P∞(α, β) is
required to carry out ensemble averaging. Using (10), (12) and (13) in (7) we have,
according to (11):

η̂t = η + nη̂1 + O(φ2) = η + n

∫

S2

η̂1(α, β)P∞(α, β) sin β dα dβ + O(φ2).

We show next how the equations of motion of the orientation vector can be obtained
explicitly, which will then lead to the Fokker-Planck equation for P t.
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2.2. Equations of motion and the Fokker-Planck equation. For arbitrary
given ~v and ~ω, equation (8a) can be viewed as a Dirichlet problem, while the actual
values of ~v and ~ω are determined uniquely through the additional constraints in eq.
(8b). The equations of motion follow from solving for ~v and ~ω from these constraints
as follows.

Fix parameters ~τ , ~Ω ∈ R
3, a, b, λ, D, η ∈ R

+ 1, fp ∈ R, and E ∈ R
3×3, such that

E is symmetric and trace-free. Given arbitrary ~xc, ~v, ~ω ∈ R
3 and d̂ ∈ S2 (~xf is

automatically specified by its definition, ~xf := ~xc + b(1+λ)d̂), there exists a unique
solution (~u, p) (up to an additive constant in the pressure p) to (8a). The existence
and uniqueness of this solution is discussed in Appendix B. We write

~u = ~U
(

~xc, d̂, ~v, ~ω
)

, p = P
(

~xc, d̂, ~v, ~ω
)

,

and define functions ~F and ~T (representing the force and torque on the bacterium)
from R

3 × S2 × R
3 × R

3 to R
3 as follows:

~F
(

~xc, d̂, ~v, ~ω
)

:=

∫

∂B

σ
(

~U(~x, d̂, ~v, ~ω), P (~x, d̂, ~v, ~ω)
)

· ν̂ dx + fpd̂, (14a)

~T
(

~xc, d̂, ~v, ~ω
)

:=

∫

∂B

σ
(

~U(~x, d̂, ~v, ~ω), P (~x, d̂, ~v, ~ω)
)

· ν̂(x) × (~x − ~xc) dx + ~τ .

(14b)

For the class of linear background flows ~ub = E · ~x + ~Ω× ~x the functions defined by
(14a) and (14b) can be computed explicitly:

Fi = − 6πηbvj

[

XAdidj + Y A (δij − didj)
]

+ fpdi

= −6πbηvNdi + fpdi (15a)

Ti = − 8πηb3
[

XCdidj + Y C (δij − didj)
]

(Ωj − ωj)

+ 8πηb3Y HǫijmdmdkEjk + τi, (15b)

where v := |~v|, ǫ is the Levi-Civita symbol, XA, Y A, XC , Y C , and Y H are scalar
resistance functions (of the eccentricity e) for the prolate spheroid given in equations
(93b-93f) and N is a scalar function of e and λ, given by

N :=
XA

1 − 3XA

4e3

[

e(1−e2)(1+λ)
(1+λ)2−e2 − (1 + e2)arctanh e

1+λ

] . (16)

Plots of N against e are given for various values of λ in Fig. 3.

As can be immediately seen from (15a) and (15b), ~F and ~T are smooth in

(~xc, d̂, ~v, ~ω) and nondegenerate in the last two variables–that is, det
(

∂(~F , ~T )
∂(~v,~ω)

)

6= 0.

Imposing the balance of forces and torques yields the system of equations

~F (~xc, d̂, ~v, ~ω) = 0, ~T (~xc, d̂, ~v, ~ω) = 0, (17)

which, thanks to the aforementioned nondegeneracy condition, can be solved using

the implicit function theorem to yield (~v, ~ω) as functions of (~xc, d̂). In the present
case (17) is a linear problem in (~v, ~ω) and solving for these velocities amounts to
inverting the resistance matrices H and J defined as

Hij :=
[

XAdidj + Y A (δij − didj)
]

, (18a)

1
R

+ := {x ∈ R : x ≥ 0}.
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from equation (15a), and

Jij :=
[

XCdidj + Y C (δij − didj)
]

, (18b)

from equation (15b).
The equations of motion for a single bacterium interacting with a linear back-

ground flow are now obtained by demanding that ~v, ~ω define the time derivatives

of the position ~xc and the orientation vector d̂ as follows:

d~xc

dt
= ~v

(

~xc, d̂
)

= − fp

6πbηN
d̂ (19a)

dd̂

dt
= ~ω

(

~xc, d̂
)

× d̂ =
˙̂
dD + ~ωR × d̂, (19b)

where
˙̂
dD is the effect of the background flow (henceforth referred to as the drift)

and ~ωR is the rotational velocity due to the additional torque ~τ :

ḋD
i = ǫijkΩjdk + B (Eijdj − diEjkdjdk) , (20a)

~ωR = (8πηb3)−1J−1 · ~τ, (20b)

where B := b2−a2

b2+a2 is the Bretherton constant.
In order to complete the equations of motion for the orientation vector, we must

now specify ~τ explicitly. It is selected to make
˙̂
dR := ~ωR × d̂ a white noise process

on the unit sphere. This corresponds to

~ωR := −
√

2Dd̂ ×





−ξ1 sin α sin β + ξ2 cosα cosβ
ξ1 cosα sin β + ξ2 sin α cosβ

−ξ2 sin β,



 . (21)

where ξi are the derivatives of Wiener processes. ~τ is then defined by (20b).
The existence and uniqueness of solutions to the system of stochastic differential

equations (19) can be established by standard methods. It can be shown that
the trajectories of this system exist for all time for any initial condition and are
continuous for almost any realization of the noise ξi (with respect to the Wiener
measure for the rotational Brownian motion; see, e.g., [25, 17, 18]).

In principle, via a standard procedure (namely, the application of Itô’s calculus),

equations (19a) and (19b) lead directly to a Fokker-Planck equation for P t( ~xc, d̂),
the probability distribution of the position and the orientation of the bacterium
at time t. However, the translational dynamics defined by (19a) is irrelevant for
our purposes. Indeed, in the dilute limit interparticle interactions are disregarded,
while for the interaction with a linear background flow changing the position of the
bacterium produces no change in the corresponding bulk stress. This is because,
up to translation of the solution, the only difference between solutions of PDE
(8) for different values of ~xc are in the values of ~v (~v1 − ~v2 = E ·

(

~xc,1 − ~xc,2
)

)
and a translating spheroid produces no bulk stress (see, e.g., [21]). Therefore, P t

can be considered as a function of orientation d̂ only. Thus, henceforth we fix the
location of the spheroid at the origin and consider only the equation of motion for

the orientation (19b) with the corresponding deterministic drift
˙̂
dD and noise ~ωR.

Below we will consider various background flows corresponding to different strain

rate matrices E and vorticity vectors ~Ω, which will in each case define
˙̂
dD. The

random part ~ωR, however, is fixed, so we can write the general Fokker-Planck
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equation for P t(d̂) = P (α, β, t), the probability distribution of orientations d̂ at
time t written in terms of the azimuthal and the polar angles on the sphere (α, β):

∂P

∂t
= −∇α,β ·

(

P
˙̂
dD
)

+ D∆α,βP, (22)

where D is a constant specifying the strength of rotational diffusion, ∆α,β is the
spherical laplacian, given by

∆α,β =
1

sin2 β

∂2

∂α2
+

cosβ

sinβ

∂

∂β
+

∂2

∂β2
, (23)

and ∇α,β is the spherical gradient, given by

∇α,β =







− sinα
sin β

∂
∂α

+ cosα cosβ ∂
∂β

cos α
sin β

∂
∂α

+ sin α cosβ ∂
∂β

− sin β ∂
∂β






. (24)

As mentioned at the beginning of this section, we are interested in ensemble

averages with respect to the steady state distribution of d̂, that is, with respect to
the solution P∞ of the time-independent Fokker-Planck equation obtained from 22
by setting ∂P∞

∂t
= 0:

∇α,β ·
(

P∞ ˙̂
dD
)

= D∆α,βP∞. (25)

The convergence of P → P∞ as t → ∞ in L1(S2) is shown in [28].

3. The bulk stress. The bulk deviatoric stress of the system with a single spher-
oid depends only on the instantaneous configuration of the spheroid with respect to
the background flow. Thus, we calculate this bulk deviatoric stress here in general,
for an arbitrary linear background flow characterized by the strain rate matrix E

and the vorticity vector ~Ω. As explained in the previous section, this stress is inde-
pendent of the location of the spheroid ~xc and is only a function of its orientation.
Since a particle’s orientation is unknown, we then average over orientations.

The bulk deviatoric stress due to one inclusion is defined by

Σl
ij :=

1

|V |

∫

S2

∫

V

(

σij(α
l, βl) − 1

3
δijσkk(αl, βl)

)

P∞(αl, βl)dxdS, (26)

where V is any volume containing the entire suspension (the value of the integral
is independent of this choice). Here, we average over orientations because α and β
are random variables. For a dilute suspension, we define the bulk deviatoric stress
of the entire suspension to be

Σij :=
∑

l

Σl
ij . (27)

Since (αl, βl) are independent identically distributed random variables, Σm = Σn

∀m, n, so we can rewrite this as

Σij = nΣl
ij , (28)

for any fixed l.
We summarize our results on the bulk deviatoric stress in
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Proposition 1. The bulk deviatoric stress in a bacterial suspension modeled by
PDE (1) is given by

Σij =2ηEij +
5b2

a2
φη

∫

S2

ΛijklP
∞dSEkl

− 3ηφBY H b2

a2

∫

S2

(ǫikldj + ǫjkldi)dlǫkmndmdnP∞dSEmn

+ 3ηφY H b2

a2
D

∫

S2

(ǫikldj + ǫjkldi)dlǫkmndm(∂nP∞)dS

+
fp

16πa2
φK

∫

S2

(δij − 3didj)P
∞dS + O(φ2),

(29)

where φ is the volume fraction, Λ is a function of shape and orientation given in
equation (34), Y H is a scalar function of eccentricity e given in equation (93f), and
K is a scalar function of e and λ given in (42) and plotted in Fig. 4.
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We calculate Σ by splitting it into passive, tumbling, and active contributions.
We write ~ud = ~up + ~ut + ~ua, where































η∆~up = ∇pp x ∈ R
3 \ B

∇ · ~up = 0 ~x ∈ R
3 \ B

~up = ~ωp × (~x − ~xc) + ~vp ~x ∈ ∂B

~up → E · ~x + ~Ω × ~x ~x → ∞
∫

∂B
σp · ν̂ × (~x − ~xc)dx = 0

∫

∂B
σp · ν̂dx = 0

(30)

describes interaction of a passive spheroid with the background flow,






















η∆~ut = ∇pt x ∈ R
3 \ B

∇ · ~ut = 0 ~x ∈ R
3 \ B

~ut = ~ωt × (~x − ~xc) ~x ∈ ∂B
~ut → 0 ~x → ∞
∫

∂B
σt · ν̂ × (~x − ~xc)dx + ~τ 2 = 0

(31)

describes the effects of tumbling, and






















η∆~ua = ∇pa + fpd̂δ(~x − ~xf ) x ∈ R
3 \ B

∇ · ~ua = 0 ~x ∈ R
3 \ B

~ua = ~va ~x ∈ ∂B
~ua → 0 ~x → ∞
∫

∂B
σa · ν̂dx + fpd̂ = 0

(32)

describes the effects of forward self-propulsion. We then define Σp, Σt and Σa as
the bulk stress in problem (30), (31) and (32), respectively.

Σp is calculated in [21] and is given by

Σp
ij =2ηEij +

5b2

a2
φη

∫

S2

ΛijklP
∞dSEkl

− 3ηφBY H b2

a2

∫

S2

(ǫikldj + ǫjkldi)dlǫkmndmdnP∞dSEmn,

(33)

where φ is the volume fraction of the suspension, Y H is a scalar function of e given
in equation (93f), and

Λijkl = XMd0
ijkl + Y Md1

ijkl + ZMd2
ijkl, (34)

where

d0
ijkl =

3

2

(

didj −
1

3
δij

)(

dkdl −
1

3
δkl

)

d1
ijkl =

1

2
(diδjldk + djδildk + diδjkdl + djδikdl − 4didjdkdl)

d2
ijkl =

1

2
(δikδjl + δjkδil − δijδkl + didjδkl + δijdkdl

−diδjldk − djδildk − diδjkdl − djδikdl + didjdkdl) ,

(35)

and XM , Y M , and ZM are scalar functions of e given in equations (93g), (93h),
and (93i), respectively. The first term on the right hand side of eq. (33) is the

2It is shown in [6] that, when performing the averaging over orientations in eq. (26), ~τ , a white
noise process, can be replaced by ~τ∞ where ~τ∞ = 8πηb3J~ωR,∞, with J defined in eq. (18), and

~ωR,∞ := −Dd̂ ×∇α,β log (P∞).
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standard Newtonian deviatoric stress. The second and third terms represent the
passive contributions due to the presence of spheroids.

Σt is calculated in [15] 3 and is given by

Σt
ij = 3ηφY H b2

a2
D

∫

S2

(ǫikldj + ǫjkldi)dlǫkmndm(∂nP∞)dS. (36)

It remains to calculate Σa. We do this by further decomposing ~ua by writing
~ua = ~ua,1 + ~ua,2 + ~ua,3, where







η∆~ua,1 = ∇pa,1 + fpd̂δ(~x − ~xf ) ~x ∈ R
3

∇ · ~ua,1 = 0 ~x ∈ R
3

~ua,1 → 0 ~x → ∞,

(37)















η∆~ua,2 = ∇pa,2 ~x ∈ R
3 \ B

∇ · ~ua,2 = 0 x ∈ R
3 \ B

~ua,2 = −~ua,1 x ∈ ∂B
~ua,2 → 0 ~x → ∞

(38)

and






















η∆~ua,3 = ∇pa,3 ~x ∈ R
3 \ B

∇ · ~ua,3 = 0 ~x ∈ R
3 \ B

~ua,3 = ~va ~x ∈ ∂B
~ua,3 → 0 ~x → ∞
∫

∂B

(

σa,1 + σa,2 + σa,3
)

· ν̂dx + fpd̂ = 0.

(39)

~ua,3 is the flow due to a translating spheroid and ~ua,1 is a force monopole, both
of which produce no bulk stress. The bulk stress due to ~ua,2 can be calculated
without actually solving the problem by applying Faxén’s law for prolate spheroids
(see [21]):

Σa,2
ij (d̂) = − 5

2e3
πηΛijkl

×
∫ be

−be

(

(be)2 − υ2
)

[

1 + ((be)2 − υ2)
1 − e2

8e2
∆

]

(

∂ua,1
k

∂xl

+
∂ua,1

l

∂xk

)∣

∣

∣

∣

∣

d̂υ

dυ.

(40)

Performing the integration in equation (40) and averaging over orientations, we get

Σa
ij = Σa,2

ij =
fp

16πa2
φK

∫

S2

(δij − 3didj)P
∞dS, (41)

where

K = 15XM

[

3(1 + λ)2 − e2(3 + λ(2 + λ))

e4(e2 − (1 + λ)2)

− 1

e5

(

3 − e2
)

(1 + λ) arctanh
e

(1 + λ)

] (42)

and XM is given in equation (93g). A plot of K against e is given for various values
of λ in Fig. 4.

Combining equations (33), (36), and (41), we get equation (29).

3 The stress due to tumbling in our model is equivalent to the diffusive stress due to the
Brownian motion of fluid particles calculated in [15]. This is because both effects produce bulk
hydrodynamic stress through the random rotation of the particle ~ωR, which is equal in both cases.
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4. The effective viscosity. In order to calculate the effective viscosity, it remains
to select a background flow and calculate the corresponding solution P∞ to eq. (25).
Choosing a planar background flow allows one to define an effective viscosity through
the ratio of one component of the bulk deviatoric stress Σ to the rate of strain γ
(e.g., for flows in the x, y plane, we can define η̂ := Σ12

γ
). Without loss of generality,

we study two general flows (for a discussion of why these are sufficient, see section
2): a planar shear flow in the x, y plane, described by

E =
1

2





0 γ 0
γ 0 0
0 0 0



 (43a)

with

~Ω =
(

0, 0,
γ

2

)

(43b)

and a planar straining flow in the x, y plane, described by

E =
1

2





0 γ 0
γ 0 0
0 0 0



 (44a)

with

~Ω = (0, 0, 0) . (44b)

For dilute suspensions of rotationally symmetric particles, there is no difference to
the viscosity in these cases. This is because the addition of vorticity in the case
of the planar shear flow simply causes the particle to rotate rigidly with the back-

ground flow with a rotational velocity ~ωD equal to the vorticity ~Ω. The rotational

contribution to the bulk stress is proportional to ~Ω − ~ωD (see, e.g., [21]), but this
is zero. Additionally, rotational asymmetry means that P∞ will be different for
the two flows, whereas for rotationally symmetric particles P∞ = 1

4π
for all flows

because there can be no preferred orientation.
Neither of the above background flows produces a Fokker-Planck equation that

can be solved analytically. Therefore, we solve them asymptotically in various
parameters and numerically in the general case.

For the flow without vorticity (eqs. (44a), (44b)), our results are summarized in

Proposition 2. The effective viscosity in a bacterial suspension modeled by PDE
(1) in a planar straining flow (e.g., eq. (44a)) is given asymptotically by

η̂ = η + ηφ
[

S − fp

16πa2γη
K + O

(

1
µ

)]

+ O(φ2), fp = 6πbηvN (45)

when µ := γB
D

≫ 1 (i.e., the background flow dominates rotational diffusion due to
tumbling and the bacteria are non-spherical) and by

η̂ = η + ηφ
[

M0 − fpK

160πa2γη
µ + M2µ

2 + O
(

µ3
)

]

+ O(φ2), fp = 6πbηvN (46)

when µ ≪ 1 (i.e., the bacteria have a weak tendency to align either because of
being nearly spherical or because the background flow is dominated by diffusion). In
the above equations, K and N are scalar functions of e and λ, given in equations
(42) and (16), respectively, and S, M0, and M2 are scalar functions of e given in
equations (53), (74a), and (74b), respectively. S, M0, and M2 are plotted in Fig.
7, K is plotted in Fig. 4, and and N and NK are plotted in Fig. 3.
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Formulas (45) and (46), as well as corresponding numerics, are plotted in Fig.
5, using values established in the literature for B. Subtilis. It is assumed that the
bacteria have dimensions b = 4µm, b

a
= 5.7 (see [32]), and λ = 0.5. We assume

a bacterial swimming speed v = 50µm s−1 (observed when swimming collectively;
this determines fp via eq. (15a)) and a rotational diffusion constant D = 0.017s−1

(see [31]).
Both formulas (45) and (46) predict a decrease in viscosity due to self-propulsion,

which is represented by the third term in both equations. While equation (45) is not
valid for B = 0 (spheres), equation (46) demonstrates the importance of asymmetry
due to the fact that the active term vanishes when B → 0. Note that η shows up in
the denominator in the active terms because fp is proportional to η (see eq. (15a)).
The passive terms in both formulas agree with those derived in [15]. A striking
feature of formula (46) is the fact that the active contributions do not disappear in
the limit γ → 0 (note that eq. (45) is not valid in this limit). This is counterintuitive
because as γ → 0, P∞ → 1

4π
and hence the active contribution to the bulk deviatoric

stress Σa averages to zero. However, for small γ, P∞ = 1
4π

+ Cγ + O
(

(γ)
2
)

and

Σa acquires a contribution proportional to γ. When calculating Σa from P∞, the
constant term (in γ) averages to zero, but the linear term remains. Hence, the

active contribution to the effective viscosity η̂a := Σa

γ
contains a non-vanishing

term. However, in reality, the time it takes for a suspension to reach the steady
state P∞ increases as γ → 0. Thus, for small enough γ, rotatinal diffusion due to
tumbling will dominate advection and the actual P∞ will be closer to 1

4π
, which

produces η̂a = 0.
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Figure 5.

(

η̂
η
− 1
)

φ−1 vs. γ for the case of no vorticity (~Ω =

(0, 0, 0)) evaluated numerically along with small µ asymptotics (eq.
(46)) and large γ

D
asymptotics (eq. (45)).

For the flow with vorticity (eqs. (43a), (43b)), our results are summarized in

Proposition 3. The effective viscosity in a bacterial suspension modeled by PDE
(1) in a planar shear flow (e.g., eq. (43a)) is given asymptotically by

η̂ = η + ηφ
[

5
2 − 9fpD(5λ2+10λ+2)

20a2πη(36D2+γ2)(1+λ)4 ǫ + O(ǫ2)
]

+ O(φ2), fp = 6πbηvN (47)
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when ǫ := b
a
− 1 ≪ 1 (i.e., the bacteria are nearly spherical) and by

η̂ = η + ηφ
[

M0 − K
9BfpD

40πa2η(36D2+(ω0)2) + O
(

γ
D

)

]

+ O(φ2), fp = 6πbηvN (48)

when the shear flow oscillates with frequency ω0 and γ
D

≪ 1 (i.e., the background
flow is very weak compared to rotational diffusion due to tumbling).

Formulas (47) and (48), as well as numerics, are plotted in Fig. 6, using values
established in the literature for B. Subtilis.

Once again, formulas (47) and (48) demonstrate a decrease in the effective vis-
cosity due to self-propulsion, the effect of which is captured in the third term of
both formulas. While equation (48) is valid only for γ

D
≪ 1, equation (47) demon-

strates a curious result: the active contribution to the effective viscosity vanishes
as D

γ
→ 0. Apparently, tumbling is necessary in order to achieve a reduction in

the effective viscosity in shear flows in the absense of interactions between bacteria.
This can be explained by the probability density function P∞ used (see section 4.2
below) in order to derive equation (47) (taken from [15]):

P∞ =
1

4π









1 + B
3 sin2 β sin

(

2α − arctan γ
6D

)

2

√

1 +
(

6D
γ

)2









+ O(B2). (49)

When D
γ

= 0, this distribution is symmetric in α about α = π
2 . When plugged into

the active term of the bulk stress (eq. (41)), which has the angular dependence
− sin 2α sin2 β, the term vanishes due to integration in α. When D

γ
→ ∞, however,

the distribution is symmetric in α about α = π
4 , producing a negative active con-

tribution. As before, the passive terms in both formulas agree with those in [15].
For a discussion of the limit γ → 0, see the paragraphs following Proposition 2.
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φ−1 vs. γ for the case with vorticity evaluated

numerically along with small γ
D

asymptotics (eq. (48)). The inset

contains
(
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)

φ−1 vs. γ for the case with small ǫ evaluated

numerically along with small ǫ asymptotics (eq. (47)).
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The derivation and discussion of these formulas along with an explanation of
the numerics are in the following section. In section 4.1, we study bacteria in a
purely straining flow in the case when µ := γB

D
→ ∞ (i.e., when bacteria have a

strong tendency to align with the dynamically stable principal axis of the flow) and
obtain eq. (45). This facilitates comparison with our previous results in [11], where
tumbling was not included in the model. In section 4.2, we calculate the effective
viscosity for a pure shear flow, which is the flow that has been used for much previous
analysis (in, e.g., [15]), to produce eq. (47). In section 4.3, we calculate the effective
viscosity for a flow without vorticity, as this flow has a steady state axis along which
bacteria will align, to produce eq. (45). Since bacteria tend to align when observed
in nature, it is expected that this flow would best represent bacteria in nature. In
section 4.4 we calculate the effective viscosity for an oscillatory shear flow, since this
is the type of flow typically used to measure viscosity in experiments, to produce eq.
(48). Finally, in section 4.5, we present numerics done for flows with and without
vorticity in order to establish regions of validity for the asymptotic results and
to determine the behavior of the effective viscosity between these regions. The
numerics are plotted along with the relevant asymptotic formulae in Figures 5 and
6 above.

4.1. In full alignment with the background flow (γB
D

→ ∞). We consider
the purely straining background flow described by

E =
1

2





0 γ 0
γ 0 0
0 0 0



 (50)

~Ω = (0, 0, 0) . (51)

In the limit µ := γB
D

→ ∞, all bacteria will tend to align in the orientations

(α, β) =
(

π
4 , π

2

)

or (α, β) =
(

5π
4 , π

2

)

. Therefore, we have

P∞ =

[

Cδ
(

α − π

4

)

+ (1 − C)δ

(

α − 5π

4

)]

δ
(

β − π

2

)

+ O
(

1

µ

)

,

with 0 ≤ C ≤ 1, yielding an effective viscosity of

η̂ :=
Σ12

γ
= η +

[

Sη − fp

16πa2γ
K + O

(

1

µ

)]

φ + O(φ2) (52)

where K is a scalar function of e and λ, given in equation (42) and plotted in Fig.
4, and S is a scalar function of e, given by

S =
5b2

8a2

(

3XM + ZM
)

, (53)

where XM and ZM are scalar resistance functions given in equations (93g) and
(93h), respectively. A plot of S against e is given in Fig. 7. The second term in
equation (52) represents the passive contribution and the third the active contri-
bution. Since K > 0, there is, as before, a decrease in effective viscosity due to
self-propulsion. Note that this formula is not valid for B = 0 (spherical bacteria),

since this is incompatible with the assumption that γB
D

→ ∞. Using equation (15a),
one can write equation (52) in terms of v (for fp > 0).
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The normal stress differences are given by

Σ11 − Σ22

γ2
= 0 (54)

Σ22 − Σ33

γ2
=

[

η
15b2(XM − ZM )

8a2γ
− 3fpK

32a2πγ2
+ O

(

1

µ

)]

φ + O(φ2). (55)

The results here contrast with those in [29] in that the first normal stress difference
is zero. Nevertheless, as in [29], the active contribution to the second normal stress
difference is negative for “pushers” (fp > 0, the case for most bacteria) and positive
for “pullers” (fp < 0, the case for some motile unicellular algae).
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Figure 7. M0, M2, and S vs. e

4.2. Nearly spherical bacteria in a background flow with vorticity. We
next consider the case of effective viscosity for near-spheres because the Fokker-
Planck equation can be solved asymptotically in this regime.

In the case of

E =
1

2





0 γ 0
γ 0 0
0 0 0



 (56)

~Ω =
(

0, 0,
γ

2

)

, (57)

the deterministic part of the spheroids’ orbits, obtained from equation (20a), is
described by

{

α̇D = γ
2 (1 + B cos 2α)

β̇D = Bγ
4 sin 2α sin 2β.

(58)

Plugging this into equation (25) yields the Fokker-Planck equation

0 =
Bγ

2
sin 2α sinβ

(

3P∞ sin β − ∂P∞

∂β
cosβ

)

− γ

2
(1 + B cos 2α)

∂P∞

∂α
+ D∆α,βP∞,

(59)
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Figure 8. Plot of P∞ for B ≪ 1, given by equation (60) for
(a) γ

6D
= 0.1 and (b) γ

6D
= 100. Darker regions indicate the

peaks and troughs. On the left (a), the peaks (red) are located at
approximately α = π

4 , 5π
4 with β = π

2 . On the right (b), the peaks

(red) are located at approximately α = π
2 , 3π

2 with β = π
2 .

where ∆α,β is the spherical laplacian, given in equation (23). We can then take

P∞, asymptotic in B := (1+ǫ)2−1
(1+ǫ)2+1 , where ǫ := b

a
− 1, from [15]–

P∞ =
1

4π









1 + B
3 sin2 β sin

(

2α − arctan γ
6D

)

2

√

1 +
(

6D
γ

)2









+ O(B2). (60)

A plot of P∞ is given for two different values of γ
D

in Figure 8.
Using equation (29), we get the asymptotic effective viscosity

η̂ =
Σ12

γ
=η + φ

[

5

2
η

− 9fpD(5λ2 + 10λ + 2)

20a2π(36D2 + γ2)(1 + λ)4
ǫ + O(ǫ2)

]

+ O(φ2).

(61)

Here, the first term is the viscosity of the ambient fluid, the second term is the
passive contribution due to a suspension of spheres, and the third term is the con-
tribution due to self-propulsion. As in [15], the passive effect differs from that of a
sphere at O(ǫ2). Assuming fp > 0, one can use equation (15a) to rewrite equation
(61) in terms of v.

The normal stress differences are given by

Σ11 − Σ22

γ2
=

[

3fp(5λ2 + 10λ + 2)

20πa2(36D2 + γ2)(1 + λ)4
ǫ + O(ǫ2)

]

φ + O(φ2) (62)

Σ22 − Σ33

γ2
=

[

− 3fp(5λ2 + 10λ + 2)

40πa2(36D2 + γ2)(1 + λ)4
ǫ + O(ǫ2)

]

φ + O(φ2). (63)

Once again, the active contribution is O(ǫ) while the passive contribution is O(ǫ2).
The signs of the active contribution also match the results in [29]–namely, active
contribution to the first stress difference is positive for “pushers” (fp > 0) and
negative for “pullers” (fp < 0), and vice versa for the second stress difference.

4.3. Background flow without vorticity, γB
D

≪ 1. We now consider the case of

µ := γB
D

≪ 1 (i.e., bacteria have a weak tendency to align with the background flow
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due to being nearly-spherical or weak advection), once more because the Fokker-
Planck equation can be solved asymptotically in this regime.

In the case of

E =
1

2





0 γ 0
γ 0 0
0 0 0



 (64)

~Ω = (0, 0, 0) , (65)

the deterministic part of the particle trajectories is described by

{

α̇D = Bγ
2 cos 2α

β̇D = Bγ
4 sin 2α sin 2β.

(66)

Constructing
˙̂
dD from this and plugging these into equation (25) leads to the steady

state Fokker-Planck equation

0 =
µ

2
sin 2α sin β

(

3P∞ sin β − ∂P∞

∂β
cosβ

)

− µ

2
cos 2α

∂P∞

∂α
+ ∆α,βP∞,

(67)

where ∆α,β is the spherical laplacian, given in equation (23). Writing P∞(α, β) =
∑∞

n=0 P∞
n (α, β)µn, we get











∆α,βP∞
0 = 0

∆α,βP∞
n+1 = − cosα sin α sin β

(

3 sinβP∞
n − cosβ

∂P∞n
∂β

)

+ 1
2 cos 2α

∂P∞n
∂α

n ≥ 0.

(68)

The term P∞
0 corresponds to B = 0 or γ = 0, both of which lead to no alignment,

so P∞
0 = 1

4π
and hence ∆α,βP∞

1 = − 3
8π

sin 2α sin2 β, which has the two dimensional
family of solutions

P∞
1 =

1

64π

sin 2α

sin2 β

[

(C1 + 6 cos 2β)
(

1 + cos2 β
)

+2 (C2 − 15 cosβ + cos 3β) cosβ]

(69)

Since we are solving (68) on the sphere, we must ensure that P∞ is not multiply-
defined at the poles by enforcing that P∞

1 (α, 0) and P∞
2 (α, π) must be independent

of α and equal to each other (since the PDE is the same when rotated by an angle
of π in β and has a unique solution). This can only be done by setting C1 = 10 and
C2 = 0. P∞

1 then simplifies to

P∞
1 =

1

16π
sin 2α sin2 β. (70)

P∞
2 can be calculated similarly, and is given by

P∞
2 = − 1

30, 270π

(

19 + 60 cos 2β − 15 cos4β + 120 cos4α sin4 β
)

. (71)
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Figure 9. Plot of P∞ for µ = γB
D

≪ 1, given by equation (72) for
µ = 0.1 (left). Darker regions indicate the peaks and troughs. The
peaks (red) are located at approximately α = π

4 , 5π
4 with β = π

2 .

Thus,

P∞ =
1

4π

[

1 + µ
1

4
sin 2α sin2 β

−µ2 2

15135

(

19 + 60 cos 2β − 15 cos4β + 120 cos4α sin4 β
)

]

+ O(µ3).

(72)

A plot of P∞ is given in Figure 9.
Using equation (29), we get the effective viscosity

η̂ :=
Σ12

γ
=η + φ

[

ηM0 −
fpK

160πa2γ
µ + ηM2µ

2 + O
(

µ3
)

]

+ O(φ2), (73)

where M0 and M2 are scalar functions of eccentricity e given by

M0 :=
b2

a2

(

3

5

(Y H)2

Y C
+

1

2
XM + Y M + ZM

)

(74a)

and

M2 := − 1

420

b2

a2

(

3

5

(Y H)2

Y C
− 2XM + Y M + ZM

)

, (74b)

where Y C , Y H , XM , Y M , and ZM are resistance functions defined in equations
(93e-93i), and K is a scalar function of e and λ. Mi and K are plotted in Fig.
7 and 4, respectively. The second and fourth terms in equation (73) are the pas-
sive contributions due to the presence of inert spheroids. The third term is the
active contribution due to forward self-propulsion. This formula indicates that the
suspension is very weakly non-newtonian (since η̂ = C + O(γ2)). Once again, the
active term does not disappear as γ → 0. As before, this is a singular limit of the
Fokker-Planck equation and we refer the reader to section 4.2 for further discussion.

Assuming fp > 0, one can use equation (15a) to write equation (73) in terms of
v.
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The normal stress differences are given by

Σ11 − Σ22

γ2
=0 (75)

Σ22 − Σ33

γ2
=

[

η
b2

7a2γ

(

3(Y H)2

10Y C
+

XM

2
+

Y M

2
− ZM

)

µ − fpK

2240πa2γ2
µ

+O(µ2)
]

φ + O(φ2). (76)

The results here, similar to those in section 4.1, contrast with those in [29] in that the
first normal stress difference is zero. Nevertheless, as in [29], the active contribution
to the second normal stress difference is negative for “pushers” (fp > 0) and positive
for “pullers” (fp < 0).

4.4. Effective viscosity in weak oscillatory flows. We now place our particles
in a pure oscillatory shear flow described by

E =
1

2
sin ω0t





0 γ 0
γ 0 0
0 0 0



 , (77)

Ω =
(

0, 0,
γ

2
sin ω0t

)

. (78)

In this flow, the deterministic particle trajectories will obey
{

α̇D = γ
2 sin ω0t (1 + B cos 2α)

β̇D = γ sin ω0tB
4 sin 2α sin 2β.

(79)

Using these to construct
˙̂
d and plugging them into (22) yields the time-dependent

Fokker-Planck equation

∂P

∂t
=

1

2
γ sin ω0t

[

B sin 2α sin β

(

3P sin β − ∂P

∂β
cosβ

)

− (1 + B cos 2α)
∂P

∂α

]

+ D∆α,βP.

(80)

Letting

L := B sin 2α sin β

(

3 sin β − cosβ
∂

∂β

)

− (1 + B cos 2α)
∂

∂α
, (81)

writing

P (α, β, t) =

∞
∑

k=−∞
eikω0tPk(α, β), (82)

and matching terms, we get

− kωPk =
γ

4
(LPk−1 − LPk+1) + iD∆α,βPk. (83)

Assuming γ ≪ D, we can write Pk =
∑∞

l=0 Pk,l(α, β)
(

γ
D

)l
and get, for Pk,0,

− k
ω0

D
Pk,0 = i∆α,βPk,0. (84)

These have solutions

Pk,0 =

{

1
4π

k = 0
0 k 6= 0.

(85)
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In order to calculate the effective rheology, we only really need to know P1,1 and
P−1,1, and we now have enough information to calculate them. Applying equation
83, we see that

ω0

D
P−1,1 = −1

4
L

1

4π
+ i∆α,βP−1,1 and (86a)

−ω0

D
P1,1 =

1

4
L

1

4π
+ i∆α,βP1,1. (86b)

These have solutions

P−1,1 =
3iBD

16π(6D − iω0)
sin 2α sin2 β and (87a)

P1,1 = − 3iBD

16π(6D + iω0)
sin 2α sin2 β. (87b)

Thus,

P−1e
−iω0t + P1e

iω0t =
3

8π

γB sin 2α sin2 β
(

6D sin ω0t − ω0 cosω0t
)

36D2 + (ω0)2

+ O
(

( γ

D

)2
)

.

(88)

Using only the sinω0t portion of this, we get the effective viscosity

η̂ :=
Σ12

γ sin ω0t
=η + φ

[

ηM0 − K
9BfpD

40πa2 (36D2 + (ω0)2)
+ O

( γ

D

)

]

+ O(φ2),

(89)

where M0 is a scalar function of eccentricity e given in equation (74a), and K is
a scalar function of e and λ given in equation (42). M0 and K are plotted in Fig.
7 and 4, respectively. Once again, the active term does not disappear as γ → 0.
As before, this is a singular limit of the Fokker-Planck equation and we refer the
reader to section 4.2 for further discussion. Assuming fp > 0, one can use equation
(15a) to write equation (89) in terms of v.

The normal stress differences are given by

Σ11 − Σ22

γ2 sin ω0t
=0 (90)

Σ22 − Σ33

γ2 sin ω0t
=

[

η
18b2BD

35a2γ(36D2 + (ω0)2)

(

3
(Y H)2

Y C
+ 5

(

XM + Y M − 2ZM
)

)

+O
( γ

D

)]

+ O(φ2). (91)

It is notable that this is the only asymptotic result in which the normal stress dif-
ferences contain no active contribution. However, the formulae for nearly-spherical
particles in a steady shear flow (eq. (62)) imply that the active contribution should
vanish for large D

γ
, the limit in which this formula is valid.

4.5. Numerics. We now evaluate the Fokker Planck equations (67) and (59) nu-
merically for bacteria in the flow described by

E =
1

2





0 γ 0
γ 0 0
0 0 0



 , (92)
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Figure 10. A plot of P∞ in the flow without vorticity for γ =
0.14s−1. Darker regions indicate the peaks and troughs. The peaks
(red) are located at approximately α = π

4 , 5π
4 with β = π

2 .

with ~Ω = (0, 0, 0) and ~Ω =
(

0, 0, γ
2

)

, respectively. The numerics are performed using
a finite difference scheme on a uniform mesh with 80,400 points with the resulting
linear system solved using the method of biconjugate gradients. We then use these
numerical solutions to evaluate η̂

η
:= Σ12

ηγ
for a range of values of γ. We first perform

these numerics for the case of elongated bacteria, allowing us to compare the results
with the asymptotics in sections 4.1, 4.3, and 4.4. Next, we consider nearly spherical
bacteria (B ≪ 1) in order to compare the results with the asymptotics in section
4.2.

In the first case, we consider elongated bacteria with the various parameters
set by values established in the literature. The results for the case of no vorticity

(~Ω = (0, 0, 0)) are plotted against γ in Fig. 5 along with asymptotics for small
and large γ given in equations (73) and (52), respectively. The numerics are fit

to C0 + C1 arctan
(

C2

√

(γ − C3)2 + C4

)

with C0 = −13930.70, C1 = 8873.75,

C2 = 622.79, C3 = 0.05, and C4 = 2.87. A plot of P∞ in this case is given
in Fig. 10 The results for the case with vorticity are plotted against γ in Fig. 6
along with asymptotics for small γ

D
given in equation (89). These numerics are

fit to C0 + C1 arctan
(

C2

√

(γ − C3)2 + C4

)

with C0 = −7311.84, C1 = 4661.12,

C2 = 845.92, C3 = −0.03 and C4 = 0.30. A plot of P∞ in this case is given in Fig.
11.

Next, we consdier the case of nearly spherical bacteria in the background flow

without vorticity. We set B := b2−a2

b2+a2 = .01 and all other parameters as above. A
plot of P∞ in this case is given in Figure 10. The results are plotted against γ in
the inset to Fig. 6 along with asymptotics for small ǫ given in equation (61). A plot
of P∞ in this case is given in Fig. 11.

5. Conclusions. We have demonstrated that bacterial self-propulsion has the ef-
fect of decreasing the effective viscosity of an ambient fluid. For weak enough
background flows, this decrease outweighs the increase in viscosity due to the fact
that a bacterium is also a rigid particle to produce a net decrease in the viscosity
of the fluid. Thus, qualitatively, the mechanism of decreased viscosity of bacterial
suspensions in experiments can be explained without considering multi-body inter-
actions. For strong background flows, as one expects, the effect of self-propulsion
becomes negligible and an active suspension becomes indistinguishable from a pas-
sive suspension.
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Figure 11. (a) A plot of P∞ in the flow with vorticity for B =
b2−a2

b2+a2 = .01 and γ = 0.017s−1. Darker regions indicate the peaks

and troughs. The peaks (red) are located at approximately α =
π
2 , 3π

2 with β = π
2 . (b) A plot of P∞ in the flow with vorticity for

b
a

= 5.7 and γ = 0.14s−1. Darker regions indicate the peaks and

troughs. The peaks (red) are located at approximately α = π
4 , 5π

4
with β = π

2 .

The reduction in viscosity due to self-propulsion predicted in our model relies
on the bacteria in question being “pushers” (i.e., fp > 0). However, our results
are still valid for “pullers” (e.g., some motile algae) which can be modeled in the
same way but with fp < 0. In this case, there is an increase in viscosity due to self
propulsion. That there is a fundamental difference in the physics of “pushers” and
“pullers” was previously observed in [14, 9].

Appendix A. Resistance Functions. This is a table of resistance functions for
prolate spheroids taken from [21].

L = log
1 + e

1 − e
(93a)

XA =
8

3
e3
[

−2e +
(

1 + e2
)

L
]−1

(93b)

Y A =
16

3
e3
[

2e +
(

3e2 − 1
)

L
]−1

(93c)

XC =
4

3
e3
(

1 − e2
) [

2e −
(

1 − e2
)

L
]−1

(93d)

Y C =
4

3
e3
(

2 − e2
) [

−2e +
(

1 + e2
)

L
]−1

(93e)

Y H =
4

3
e5
[

−2e + (1 + e2)L
]−1

(93f)

XM =
8

15
e5
[

(3 − e2)L − 6e
]−1

(93g)

Y M =
4

5
e5
[

2e(1 − 2e2) − (1 − e2)L
]

×
[(

2e(2e2 − 3) + 3(1 − e2)L
) (

−2e + (1 + e2)L
)]−1

(93h)

ZM =
16

5
e5(1 − e2)

[

3(1 − e2)2L − 2e(3 − 5e2)
]−1

(93i)
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Appendix B. Existence, Uniqueness and Regularity results. The existence
and regularity of (8a) solutions cannot be established using the standard methods
of functional analysis. This is because of the delta function in the right hand side
of eq. (8a) which is not in H−1 – the standard Sobolev space for which results for
elliptic PDEs are typically established. Furthermore, the fact that the domain of
(8a) is unbounded necessitates the use of homogeneous Sobolev spaces (see, e.g.,
[8]) instead of these.

Thus, we analyze solvability by further decomposing problem 8a into two parts:
~ud = ~u1 + ~u2, where















∆~u1 = η∇p1 + fpd̂δ(~x − ~xf ) ~x ∈ Ω \ B
∇ · ~u1 = 0 ~x ∈ Ω \ B
~u1 = 0 ~x ∈ ∂B
~u1 → 0 ~x → ∞

(94a)

and














∆~u2 = η∇p2 ~x ∈ Ω \ B
∇ · ~u2 = 0 ~x ∈ Ω \ B
~u2 = ~v + ~ω × (~x − ~xc) ~x ∈ ∂B

~u2 → E · ~x + ~Ω × ~x ~x → ∞.

(94b)

The solution to equation (94a) is given by

~u1 = fpd̂ · G (~x − ~xc)

8πη
, p1 = fpd̂ · P (~x − ~xc)

8πη
, (95)

where G is the Oseen tensor, given by

Gij =
1

r
δij +

1

r3
xixj , (96)

and P is its pressure field, given by

Pi = 2η
xi

r3
+ P∞

i , (97)

where P∞ is constant but arbitrary. Problem (94b) is a standard Dirichlet problem
with a solution (see, e.g., [8])

~u2 ∈ D1,2
(

Ω \ B
(

~xc, d̂
))

, p2 ∈ L2
(

Ω \ B
(

~xc, d̂
))

, (98)

where D1,2(Ω) is a homogeneous Sobolev space defined by

D1,2(Ω) :=







f : f ∈ L1
loc(Ω),

∑

|α|=1

‖f (α)‖L2(Ω) < ∞







. (99)

Thus, the full solution is the sum of (~u1, p1) and (~u2, p2) and, therefore, lies in an
affine space of functions parameterized by the location and the orientation of the
bacterium:

~u ∈ Au
(

~xc, d̂
)

:= D1,2
(

Ω \ B
(

~xc, d̂
))

+ cd̂ · G (~x − ~xc)

8πη
(100)

and

p ∈ Ap
(

~xc, d̂
)

:= L2
(

Ω \ B
(

~xc, d̂
))

+ cd̂ · P (~x − ~xc)

8πη
. (101)
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