
Flexibility of bacterial flagella in external shear results in complex

swimming trajectories

M. Tournus1, A. Kirshtein1, L. V. Berlyand1, and I. S. Aranson2

1Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
2Materials Science Division, Argonne National Laboratory, 9700 S.Cass Avenue, Argonne, IL 60439, USA

Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60202

Email : tournus.magali@gmail.com

Abstract

Many bacteria use rotating helical flagella in swimming
motility. In search for food or migration towards a new
habitat, bacteria occasionally unbundle their flagellar fil-
aments and tumble, leading to an abrupt change in di-
rection. Flexible flagella can also be easily deformed by
external shear flow, leading to complex bacterial trajecto-
ries. Here we examine the effects of flagella flexibility on
the navigation of bacteria in two fundamental shear flows:
planar shear and Poiseuille flow realized in long channels.
On the basis of slender body elastodynamics and numer-
ical analysis, we discovered a variety of nontrivial effects
stemming from the interplay of self-propulsion, elasticity,
and shear-induced flagellar bending. We show that in pla-
nar shear flow the bacteria execute periodic motion, while
in Poiseuille flow they migrate towards the center of the
channel or converge toward a limit cycle. We also find
that even a small amount of random reorientation can in-
duce a strong response of bacteria leading to the overall
non-periodic trajectories. Our findings exemplify the sen-
sitive role of flagellar flexibility and shed new light on the
navigation of bacteria in complex shear flows.

1 Introduction

Bacteria are among the oldest and simplest living organ-
isms on Earth. Bacterial activity influences the planets
environmental dynamics in multiple ways, from maintain-
ing soil structure to controlling the biochemistry and pho-
tosynthetic productivity of the oceans [1]. To search for
food or populate new territories, bacteria often migrate
en mass over large distances. This collective behavior is
known as swarming motility. Besides many obvious evolu-
tionary advantages, collective behavior appears to be also
an effective strategy to prevail against antibiotics [2].

The flow produced in dense bacterial colonies in the
course of swarming can be very complex because of the in-
teraction between the bacteria and the fluid [3, 4, 5, 6, 7].
While the flow might visually resemble the turbulent mo-

tion emerging in rapidly stirred fluids, there is a funda-
mental difference: in hydrodynamic turbulence the me-
chanical energy is injected at the macroscopic scale, e.g.,
by stirring the liquid. In contrast, in “bacterial turbu-
lence”, the energy is injected at the microscopic scale by
the rotation of helical bacterial flagella, which makes its
physical properties deeply distinguished from the turbu-
lent flow of liquid. In particular, the scale of large vortices
generated by the collective bacterial locomotion does not
depend on the energy injection rate [5, 6]. This complex
phenomena, arising due to the intricate interplay between
fluid motion and bacterial motility, are difficult to charac-
terize experimentally. Despite significant recent progress
in modeling of bacterial collective behavior [8, 9, 10, 11],
a predictive model that describes multiple aspects of bac-
terial turbulence (see for example [12]) has not emerged
to date.

Many bacteria use rotating helical flagella for motility
and for periodic reorientation, e.g., in response to chemi-
cal gradients (chemotaxis) [13]. Peritrichously-flagellated
bacteria, such as common B subtilis or E coli have multi-
ple flagellar filaments distributed over its entire bacterial
body. In the course of swimming the filament bundles
are spun together. However, bacteria unbundle the fila-
ments and tumble, leading to abrupt reorientation. The
transition between the two phases (coiled and unbundle)
is triggered by the reversal of a driving motor torque[14].
The flagellar filaments are typically at least twice longer
that the bacterial body, and are very flexible, suggesting
that they can be easily deformed either by the external
shear flow or by the flows of other bacteria. In combi-
nation with self-propulsion, the bending of flagella could
result in a significant effect on bacterial rheotaxis, i.e. a
propensity of microorganism to turn into an oncoming
current. It was shown, e.g., that uni-flagellated bacteria
exploit flagella buckling to change direction [15, 16]. In
addition, flagellum flexibility possibly affects the rheotac-
tic behavior of sperm cells [17, 18, 19].

Recently, the trajectories of self-propelled ellipsoidal
rigid swimmers in a 2D Poiseuille flow have been explored.
Since the proximity of the boundary can significantly af-
fect bacterial rheotaxis [20, 21], the swimmer is assumed
to stay far enough from the walls to exclude those interac-
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tions. The propulsion force enables the swimmer to move
across the streamlines. The main result is that a self-
propelled swimmer in a two-dimensional channel exhibits
periodic stable oscillations around the centerline [22, 23].
These periodic trajectories are strongly influenced by ran-
dom reorientations (tumbling) [24] and the proximity of
rigid walls [25, 26]. Bacterial transport appears to be sup-
pressed in shear Poiseuille flow, leading to the depletion of
swimmers at the center of the channel [27]. However, the
response of bacterial flagella to an applied shear remains
poorly understood.

A variety of specific models for helical flagellum have
been derived and studied numerically. The pioneering
work in that direction is due to [28], who derived from
first principles the flow around a moving helix, calculated
the associated force and torque, and determined thereby
the motion of the helix attached to a large body. In order
to understand the propulsion, [29] examined the linear re-
lationships between forces and torques and between trans-
lational and angular velocities of helical objects. Specific
models were developed for microswimmers. For example,
the rotational dynamics of a superhelix towed in a Stokes
fluid was studied in [30], and a recent review can be found
in [31].

It is also important to distinguish between different
mechanisms leading to the alignment and reorientation
of microswimmers. Some are due to biological mecha-
nisms, such as chemotaxis [13], whereas others originate
due to pure hydrodynamic effects, as a combined effect
of the surrounding fluid flow and the specific shape of
the body considered. Here we focus on the latter mech-
anisms. There is also a significant body of works dealing
with the response of microswimners to an external shear
flow (rheotaxis), we will mention just a few for review.
The study was pioneered in Ref. [17] which pointed out
that spermatozoa tend to align in the flow direction, and
that this phenomenon is purely due to passive hydrody-
namic effects. In [32] the gyrotaxis effect in biflagellated
swimming algae was described. Ref. [33] demonstrated
that the differences in drag forces between body and flag-
ella lead to preferential alignment with the flow. Recent
experiments suggest that rheotaxis may significantly af-
fect the navigation of mamalian sperm cells [18, 19]. The
nontrivial rheotactic response of B. subtilis bacteria due
to chirality of flagella was predicted in [31].

Here, in order to examine the complex response of bac-
teria in an external shear, we model the swimmer as a flex-
ible entity consisting of a rigid ellipsoidal body attached to
a flexible flagellum. The trajectory of the swimmer is rep-
resented by the center of mass of the body. To simplify the
analysis and exclude side wall effects, we consider bacte-
ria swimming in wide channels. Using elastic slender body
dynamics in Stokes flow, we have shown that bacteria can
exhibit complex trajectories due to the combined effects
of flagellar flexibility and self-propulsion. This behavior
is fundamentally different from that predicted for passive
ellipsoidal particles [34] that move along streamlines and
whose orientation is described by Jeffery orbits [22]. We
have examined the behavior of bacteria in two external

shear flows: planar shear between two flat walls moving
in opposite directions and two-dimensional Poiseuille flow
realized in long flat channels. We have shown that in the
case of planar shear flow the bacteria execute periodic or-
bits, with both the period and the amplitude determined
by the shear rate, the shape of the swimmer, and the
flexibility of the flagella. For the case of Poiseuille flow
we have found that for a realistic range of the parame-
ter values, the swimmer migrates towards the centerline
of the channel and swims against the flow. Moreover,
for softer flagella, our analysis indicates a different trend:
the swimmer executes a periodic motion – a limit cycle.
The amplitude of the oscillations around the centerline
depends on the flexibility of the flagellum. We have also
found that the occasional tumbling of bacteria may have
a profound effect on the bacterial swimming trajectories
due to the complex interplay between flagellar flexibility
and self-propulsion. In particular, we have found that
tumbling can result in long non-periodic excursions of the
bacteria, mediated by periods of steady swimming along
the centerline.

Throughout this paper, we will highlight the difference
passive ellipsoid particles [34], active fixed shape ellip-
soidal swimmers [22], flagellated non-motile objects (e.g.,
dead bacteria), and flagellated self-propelled swimmers.

2 Model

Physical framework

Our main hypothesis is that, via its nontrivial coupling
between the body orientation and self-propulsion, a flex-
ible flagellum can significantly affect bacterial swimming
trajectories and possibly the rheological property of the
suspension [36, 37, 38]. We consider a microswimmer in
a viscous fluid constituted of an ellipsoidal body linked
to a flexible thin rod (flagellum) to explore its behavior
in a Poiseuille flow and planar shear flow. For the sake
of simplicity we replace the helicoidal flagellum by a thin
rod. Also, we neglect effects associated with the counter-
rotation of the bacterial body [35]. The self-propulsion
is implemented via a tangential force density (traction)
distributed uniformly along the rod.

In our model, the geometrical and physical properties
we take into account are the length of the flagellum, its
propulsion-force and its elasticity.

The bacterial body on a local shear flow undergoes a
rotation described by the classical Jeffery equations [34],
and is rigidly attached to a flagellum of length L (see Fig-
ure 1). We derive the equation of motion of the flagellum
in the framework of slender body theory in the Stokes flow
approximation [39]. A somewhat similar derivation is per-
formed in [40] for a free one-armed-swimmer modeled as
a slender elastica (not attached to another body), which
deforms under the effect of external magnetic torques in a
Stokes flow. The novelty of our model lies in the interplay
between the flexibility of the flagellum described by the
slender elastica, self-propulsion, and external shear flow.
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For simplicity we consider that the attachment of flagella
filaments to the bacterial body is rigid1. We also assume
that the microswimmer does not affect the surrounding
fluid. In order to exclude wall effects, we consider swim-
ming in wide channels where hydrodynamic and steric in-
teractions with the walls are negligible.
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Figure 1: Schematic representation of the swimmer (body
+ flagellum). Inset: Limiting configuration of the swim-
mer in Poiseuille flow (on the centerline, resisting the
flow).

Mathematical model

The key ingredient of our model is the classical Jeffery
equation (for the body) modified by an additional torque
term (coming from the flagellum). This term is deter-
mined via coupling the Jeffery’s orbits with a correspond-
ing nonlinear 4th order equation for the flagellum derived
from basic physical principles. The flow is assumed to be
parallel to the x axis and its velocity vector is u(y)ex.
Here we summarize the model in dimensionless form (see
Methods 6.1).

Since the bacterial body is modeled by a rigid ellipsoid,
we describe its motion by a Jeffery equation [34] with
parameter β, the Bretherton constant of the body (β = 0
for needles and 1/2 for spheres), where the shear rate
is taken to be the flow rate u′(yh) at the center of the
ellipsoid (yh is the y−coordinate of the center of mass of
the ellipsoid, and the fluid velocity does not depend on
x). We add an additional term N0 corresponding to the
normal internal stress due to the flagellum. The modified
Jeffery equation is written as

1Individual flagellar filament is attached to body via a soft
hook. As it was shown in [16], the flexibility and buckling of the
hook plays a profound role in the tumbling of uni-flagellated
bacteria. However, in the case of bacteria with multiple flagel-
lar filaments distributed over the bacterial body, such as Bacil-
lus subtilis, flexibility due to soft hook coupling is not impor-
tant since the flagella form tight bundles.


dθ0
dt

= −u′(yh)
(

(1− β) sin2 θ0 + β cos2 θ0
)

+
3L

l
krN0,

θ0(0) = θ0,in,
(1)

where θ0 is the orientation of the swimmer body (see Fig-
ure 1), l and L are respectively the length of the body
and of the flagellum, and kr is a ratio between the drag
coefficients of the body and flagellum (end of Section 6.1).

The flagellum is represented by a 1D elastica of bend-
ing rigidity Kb parametrized by the non-dimensional ar-
clength 0 ≤ s ≤ 1. We denote by θ(s, t) the angle between
the flagellum and the x-axis (see Figure 1). We denote by
Q the integrated internal stress in the flagellum and by
Q0 the force exerted by the flagellum on the body decom-
posed on the Frenet basis (τ ,n) of the flagellum as

Q = Λτ +Nn, Q0 = Λ0τ +N0n. (2)

The equations describing the shape and motion of the
flagellum are derived from the balances of forces and in-
ternal torques (see Methods, equations (20) and (22)).
The forces taken into account are the fluid friction force
(proportional to the relative velocity between the flagel-
lum and the fluid according to resistive force theory) and
the propulsion force, generated by an internal motor. The
force density Fp is assumed constant along the flagellum.
Typical value for the total force is about 1 pN, and length
of the flagellum is about 10 µm, so the density force is
of 0.1 µN/m. The balance of forces provides a vectorial
relation decomposed on the Frenet basis. Substituting
balance equations into geometrical identities (see Meth-
ods, equations (27)) we obtain two scalar equations for
the angle θ and stress Λ

∂2Λ

∂s2
=

1

α
Λ

(
∂θ

∂s

)2

−Kb

(
∂2θ

∂s2

)2

− u′(y)

2
sin(2θ)

− (α+ 1)

α
Kb

∂3θ

∂s3
∂θ

∂s
, t ≥ 0,

(3)

and

∂θ

∂t
=− Kb

α

∂4θ

∂s4
+

(
1

α
Λ +Kb

(
∂θ

∂s

)2
)
∂2θ

∂s2

+

(
α+ 1

α

∂Λ

∂s
+ Fp

)
∂θ

∂s
− u′(y)

(
sin2 (θ)

)
,

t > 0, θ (s, 0) = θin (s)

(4)

where α is a drag anisotropy factor taking into account
the shape of the flagellum.

The physical hypotheses included in equations (3) and
(4) are the inextensibility and the elasticity of the flagel-
lum (see Methods, equations (21) and (26)).

Equations (3) and (4) come with a set of boundary
conditions, encoding the fact that the end of the flagellum
is free at s = 1,

∂θ

∂s
(1, t) =

∂2θ

∂s2
(1, t) = Λ (1, t) = 0, (5)
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and the interface between the body and the flagellum is
rigid

θ (0, t) = θ0 (t) , Λ (0, t) = Λ0 (t) , (6)

The balance of internal torques combined with rigid
attachment between the body and the flagellum provides
the expression of N0

N0(t) = −Kb
∂2θ

∂s2
(0, t) . (7)

Another consequence of rigid attachment is the equal-
ity of the velocity at the interface body/flagellum. This
vectorial equality provides directly two scalar equations,
corresponding to the tangential part

krΛ0 =
α

L

(
u(y(0))− u(yh)

)
cos(θ0) +

∂Λ

∂s
+ Fp − ∂θ

∂s
N0,

(8)
and to the normal part of the velocity equality.

( α
αh

+
3α

2

)
krN0 = −α

L
sin(θ0)

(
u(y(0))− u(yh)

)
+
αl

2L
u′(y)

[
(1− β) sin2(θ0) + β cos2(θ0)

]
+
[
−Kb

∂3θ

∂s
+
∂θ

∂s
Λ
]
,

(9)

These two last algebraic equations only hold at s = 0.
To close the system, since the fluid velocity and thus the

shear rate (u′(y)) may depend on swimmer coordinate y,
we need to localize the swimmer. The y-coordinate of the
body satisfies the following ordinary differential equation,
similarly to [23]

dyh(t)

dt
= krΛ0(t) sin(θ0(t)) +

kr
αh
N0(t) cos(θ0(t)),

yh(0) = yh0 .

(10)
and the position along the flagellum follows from geomet-
rical considerations

∂y(s, t)

∂s
= sin(θ(s, t)),

y(0, t) = yh(t) +
l

2L
sin(θ0(t)).

(11)

The x-coordinates are not needed, however, their expres-
sion is provided in the Methods section, since they are
used to plot the trajectories.

3 Results

In this section, the model is studied numerically for two
types of shear flows: a planar shear (linear profile) and a
Poiseuille flow (nonlinear profile). The equations for the
flagellum, (3) and (4), are solved using a centered finite
difference scheme on a uniform grid (v 100 point per mi-
cron on the flagellum and 10−2s timestep). In (4), the
fourth and second order derivatives are taken implicitly,
which still allows for the resolution of the scheme without

iterations. We compute N0 from the boundary condition
and substitute its value into (1), which we solve with the
forward Euler scheme. The numerical scheme is imple-
mented in C++. See Supplementary Material S2.

3.1 Planar shear flow

In a planar shear flow, we compare the outcome of the nu-
merical study to a theoretical result derived in the asymp-
totic limit of large bending stiffness Kb � 1 of the (rigid)
flagellum. The fluid speed in planar shear flow is given by

u(y) = γy. (12)

We observe periodic trajectories (see Figure 2). When
starting close to the centerline, the trajectory is closed
(see Figure 2(a)). However, when starting on the upper
part of the channel, there is a drift toward the right af-
ter one period, because the swimmer spends more time in
the upper part of the channel than in the lower part. The
value of the drift linearly depends on the y-initial posi-
tion and vanishes when starting at y = 0. (See video in
suppl. material). For analysis, we linearize Eqs. (1),(3)-
(9) around the state given by Kb → ∞, and perform a
multiscale perturbation method.

From (3)-(9), in the limit of large Kb the evolution of
the bacterial body angle is given asymptotically by

θ00(t) = arctan

[√
b

1− b tan

(
t
√
b(1− b)

(
1 +

c

Kbb

))]
.

(13)
Here b and c are geometrical constants, which only depend
on L, l, α, αh, kr and β (see Supplementary Material S1).

Equation (13) describes how the period of the body
angle θ0 depends on the bending stiffness Kb. For large
bending stiffnesses, the body rotates according to the Jef-
fery equation with parameter b < β. As expected, the
effective aspect ratio of the flagellated swimmer is larger
than that of the non-flagellated one. The flagellum ampli-
fies the contrast between slow rotation (swimmer paral-
lel to the flow) and fast rotation (swimmer perpendicular
to the flow). The relation given by Eq. (13) as well as
the corresponding numerical solution are plotted in Fig-
ure 2(b), using the values established in the literature
for B. Subtilis. The result shows that the period of the
body rotation decreases when the flagellum becomes softer
(smaller bending stiffness). As expected, in the limit of
large Kb there is a good agreement between the asymp-
totic analysis and numerics.

The decrease of the rotation period with the decrease
in bending stiffness can be understood as follows. A softer
flagellum on the average bends more than a rigid one. As a
result, a swimmer with a bent flagellum has an effectively
smaller aspect ratio than with a more rigid one. In turn,
the rotation period decreases with the increase in aspect
ratio.

Thus, in a planar shear flow, as for non-flagellated
swimmers [34], the trajectories of flagellated swimmers
are periodic, and the period is mainly determined by the
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Figure 2: (a): Trajectories of the self-propelled swimmer in a planar shear flow for two different initial positions.

Green arrows indicate the orientation θ0(t) of the swimmer body. (b): Dependence of the rotation period on
1

Kb
,

where Kb is the bending stiffness (dimensionless, see Methods 6.1, rescaling) The red line is the period extracted by
formula (13). The dots are corresponding numerical results. Other parameters are taken as written in Table 1. For
comparison, the rotation period of similar non-flagellated swimmer is about 23 s.

elasticity of the flagellum: the softer the flagellum, the
smaller the period.

Dependence of the period on the length of the flagellum
can be thought as a competition of two effects. On one
hand, longer flagellum increases effective aspect ratio of
the flagellated swimmer. On the other hand, the longer
the flagellum is, the easier it is to bend. Numerical results
show that the period has local maximum when L ≈ 9·10−6

(with other parameters as written in Table 1).

Let us point out that the shape of the flagellum strongly
depends on Kb and that a buckling instability occurs up to
a threshold which is about a hundred times smaller than
the realistic value Kb = 3 × 10−23. (see the electronic
Supplementary Material S2).

3.2 Poiseuille flow

The majority of experiments [19, 20, 27] are performed in
a rectangular channel of width w (or in circular channel
of radius r0). In the planar geometry, assuming no-slip
boundary conditions, the x-component of fluid velocity
has the following parabolic profile,

u(y) = p
(
y2 − w2

4

)
, (14)

where p is the applied pressure normalized on the dynamic
viscosity of suspending liquid.

First, we demonstrate the stability of steady-state
swimming along the centerline. In [23], the trajectories
of a self-propelled ellipsoidal swimmer (with point-force
propulsion) in a Poiseuille flow are shown to be periodic.
The presence of the flagellum makes our system more dif-
ficult to deal with, nevertheless, in the large Kb limit the

properties of the trajectories can be studied analytically.
In particular, it is clear that the states [y = 0, θ = 0]
and [y = 0, θ = π] (i.e. the swimmer with a straight
flagellum swims along the centerline) are the only sta-
tionary states of the system. In the large Kb limit, the
state [y = 0, θ = π] (i.e. swimming against the flow) is
the only linearly stable equilibrium.

The linearized system around the stationary state [y =
0, θ = π] is of the form:

dθ0(t)

dt
= −2py(t) + 3N0(t),

dy(t)

dt
=
Fp cos(π)

3
θ0(t) +

cos(π)

4
N0(t),

(15)

where N0 is determined by

∂θ

∂t
(s, t) = −Kb

2

∂4θ

∂s4
+
Fp
3

(1− s)∂
2θ

∂s2
,

N0 = −Kb
∂2θ

∂s2
(s = 0)

N0 = −βp
4
y − Kb

2

∂3θ

∂s3
(s = 0) +

Fp
3

∂θ

∂s
(s = 0),

∂θ

∂s
(1, t) =

∂2θ

∂s2
(1, t) = 0, θ(0, t) = θ0(t).

(16)
We recall that Fp < 0, which implies that the second order
term in the first line of (16) causes a buckling instability.
If there is no flagellum, i.e. N0 = 0, the matrix of the
linear system d

dt
(θ0, y)T = A (θ0, y)T is

A =

(
0 −2p

Fp cos(π)

3
0

)
.
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Tr(A) = 0 and Det(A) > 0, which means that the eigen-
values are imaginary. From (16), N0 is computed as

N0 = −1

3

(dθ0
dt

+ βpy
)
. (17)

Substitution of (17) into the linear system (15) gives us,
after straightforward computations, that [y = 0, θ = π] is
stable whereas [y = 0, θ = 0] is not. This is in agreement
with the numerical observation that in Poiseuille flow, for
large enough values of the bending stiffness, the bacteria
swim opposite to the flow direction for large times. The
bacterium was launched at y = 5, with an angle θ0 = 0
(i.e. parallel to the walls) and a straight flagellum. The
swimmer performs large loops, first in the upper part of
the channel, then in both halves (see Figure 3(a)). The
amplitude of the loops is decreasing with time, and at
the end, the swimmer converges to the centerline of the
channel and orients against the flow (see inset to Figure
1).

The flow strength was taken sufficiently high to avoid
any collision between the swimmer and the wall. Thus the
swimmer always drifts downstream. Due to the vorticity
of the flow, the swimmer first (short time, x ≈ −104 on
Figure 3 (a)) performs a “tumbling” motion (as defined
in [22]), i.e. the body is undergoing complete rotation, in
one part of the channel and has a slight drift toward the
center of the channel 2. Due to this drift, after some time,
the swimmer crosses the centerline. It then begins (at an
intermediate time) to visit both sides of the channel, per-
forming a “swinging” motion (as defined in [22]), i.e. the
body oscillates around the angle π, because the differ-
ence of vorticity between the upper- and lower-side of the
channel prevents it from undergoing a complete rotation.
However, due to the flagella flexibility, the amplitude of
the excursions becomes smaller and smaller, and for large
time, the swimmer reaches a stable stationary state, in
stark contrast with the behavior of a swimmer modeled
by a rigid body without a flagellum. The equations de-
scribing the trajectory of a self-propelled fixed shape el-
lipsoidal swimmers have been studied in [23] where the
authors observed two different periodic behaviors, “tum-
bling” and “swinging”, depending on the y-coordinate of
the initial position. In our case, there is a drift towards
the center of the channel due to presence of the flagel-
lum, which breaks the periodicity of the trajectories and
allows the swimmer to switch from “tumbling” motion to
“swinging” motion (see Figure 3(b), non-closed and closed
curves respectively).

3.2.1 Heuristics for the convergence toward
the centerline for large bending stiff-
ness

Here we present a simple explanation of why the swim-
mer converges toward the centerline due to its flagellum
flexibility in the case where the flagellum is rigid enough.

2Here we distinguish “tumbling” motion due to vorticity of
the flow from “run-and-tumble” behavior of bacteria due to
unbundling of flagella

Two mechanisms are responsible for the convergence to-
ward the center: the elastic response of the flagellum tends
to displace the center of mass of the swimmer, and the
propulsion force amplifies this phenomenon.

The propulsion force amplifies the drift toward
the center. First, the convergence toward the center is
not a sole property of self-propelled swimmers. Numer-
ical results show that our flagellated object (e.g., dead
bacterium) with no propulsion force (i.e for Fp = 0) un-
dergoes a slight drift toward the center of the channel (see
Figure 3 (d), Kb = 3 · 10−23). Under assumptions used
in [34] passive ellipsoid is expected to drift along the
streamlines. This small drift toward the center is negligi-
ble comparing to the lift force that occurs to the nonlinear
profile of the Poiseuille flow [42], which in contrast, makes
the swimmer migrate away from the center (see Section
6.2.1). However, for self-propelled swimmers, the migra-
tion toward the center is amplified by the propulsion force,
whereas the lift force is not.

The elastic response of the flagellum tends to
displace the center of mass of the swimmer. For
large enough bending stiffness (e.g., larger than 3.10−23)
there is an overall tendency of the flagellum to straighten
due to the bending rigidity described by the fourth order
term in (4). This phenomenon results in a net displace-
ment of the body, for both self and non-self propelled
swimmers, and the direction of the body displacement is
the orientation of the body. The y−component of this
displacement determines if the swimmer drifts toward or
away from the center. The higher the shear rate experi-
enced by the flagellum, the more important the vertical
displacement. Because the shear rate experienced by the
flagellum is higher when further from the centerline, this
displacement is more important when the swimmer is ori-
ented toward the center.

Why convergence toward the center does not
occur in planar shear flow? The migration toward
the center is not observed in planar shear flow. The rea-
son is the following: In a planar shear flow, whatever the
orientation of the swimmer is, the shear experienced by
each point of the flagellum only depends on the position
of the body (since the shear rate is constant everywhere).
No direction (away or toward the enter) is privileged.

3.2.2 Non-monotone dependence of the lim-
iting behavior on the bending stiffness

The heuristic explanation we provided above is no longer
valid for small values of the bending stiffness. For the cho-
sen value of dimensionless pressure gradient p = 104 and
smaller bending stiffnessKb = 10−24 (representative value
for Bacillus subtilis is Kb = 3 · 10−23) the self-propelled
swimmer no longer drifts toward the center, but instead
converges towards a limit cycle (see Figure 3(c)), where
the swimmer swings around the centerline. When fur-
ther decreasing the bending stiffness (Kb = 2 · 10−25), the
behavior is again similar to Kb = 3 · 10−23. This sug-
gests that the behavior of the system is highly nontrivial.
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Figure 3: (a): Representative trajectory (x(t), y(t)) of the swimmer in the channel for different intervals of time,
for the physical value of the bending stiffness (Kb = 3 · 10−23). The arrows indicate the orientation θ0(t) of the
swimmer body. The blue circles indicate the sign of the vorticity. (b) and (c): Phase portraits of the trajectories
of the self-propelled swimmer. For large values of the bending stiffness, the swimmer converges toward the center
of the channel swimming against the flow (b), for a smaller value of the bending stiffness, there is a limit cycle (c).
(d): Averaged trajectory over a period of the passive swimmer for three different bending stiffness. Depending of the
bending stiffness value, there is an averaged drift toward or away from the center. The inset corresponds to the real
shape of the trajectory. The convergence is slow, so we need to consider large values on the x− axis (downstream).
(e): Averaged y velocity of the passive swimmer 〈Vy〉 vs bending stiffness compared to the size of the limit cycle R vs
bending stiffness for the self-propelled swimmer. Dots correspond to values given by the numerical scheme, the dotted
lines are an interpolation of the dots. R is the maximum distance from the center of the channel that the swimmer
reaches in large time (i.e R := lim supt→∞ |y0(t)|). Except for Kb, parameter values were taken as written in Table
1 and p = 104 1/ms. The vertical line indicate the buckling threshold.
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It has been observed numerically that depending on the
bending stiffness of the flagellum, the non self-propelled
flagellated object (Fp = 0) can either drift toward the
walls or toward the center (see Figure 3(d), Kb = 10−24

and Kb = 9 · 10−24 respectively). Also, we observed the
self propelled swimmer reaching either a stable stationary
state, or a limit cycle. For different bending stiffness val-
ues the y-averaged velocity of a non self-propelled object is
plotted on Figure 3(e). If the averaged velocity is negative
(e.g. Kb ≥ 3 · 10−23), the non self-propelled object tends
to reach the center of the channel. If the averaged veloc-
ity is positive (e.g. Kb = 10−24), the swimmer migrates
away from the center. Clearly, there is a strong correlation
between the size of limit cycle R for self-propelled swim-
mer and average y velocity 〈Vy〉 of non-motile flagellated
body, see Figure 3(e). Ranges of the bending stiffness
where the averaged velocity of the non self-propelled ob-
ject is negative correspond approximately to ranges where
the self-propelled swimmer converges toward the center
(size of the limit cycle = zero). Conversely, ranges of
the bending stiffness where the averaged velocity of the
non-motile body is positive correspond to ranges where
the self-propelled swimmer converges toward a limit cycle.
It means that the bending stiffness value determines the
qualitative behavior of the swimmer.

When decreasing Fp, but staying close to the physical
value (50%), the curve R is slightly shifted on the left and
has a smaller amplitude. The pressure gradient of the flow
p on the other hand does not affect qualitatively the large
time behavior of the swimmer, but it has a quantitative
effect: the ranges of values of Kb where the swimmer con-
verges toward the stationary state or the limit cycle are
the same, whatever p. However, increasing p accelerates
the convergence toward the steady state, and reduces the
size R of the limit cycle.

3.2.3 Random reorientation (tumbling
events)

For large values of the bending stiffness, the swimmer
asymptotically converges toward the centerline. However,
tumbling, that is in that context an abrupt reorientation
of a swimmer, may destabilize the steady state. To ver-
ify this assumption, we incorporated random reorientation
in our model. A good approximation to the probability
distribution of tumbling events in time is a Poisson distri-
bution, [41]. It implies that the total number of tumbles
occurring between time s and t is a Poisson random vari-
able with parameter λr(t−s), where λr is the intensity of
the Poisson law. The Poisson process determines the in-
stant of reorientation, and the angle changes according to
the uniform distribution on [0,2π]. The flagellum reorients
as well with the same angle. With random reorientation
present, the relaxation toward the steady state no longer
occurs. We display on Figure 4 two selected time intervals
at which tumbling occurs. Recall that the fluid is moving
is the negative direction, so that each plot has to be read
from right to left. On plots (a) and (b), the swimmer un-
dergoes a “swing” when the tumble event occurs. If no

random reorientation, the angle of the body would have
relaxed toward π and the y− amplitude of the trajectory
would have decreased to y = 0. The tumble event reori-
ents the swimmer and makes it switch to another point of
the phase portrait Figure 3, panel (b). On Figure 4, panel
(a), after the tumble event the swimmer is still ”swing-
ing”, but the amplitude of the trajectory has increased.
On plots (c) and (d), the swimmer was also undergoing
a “swinging” motion when the tumble event occurs. The
new orientation of the swimmer is 3π/2, and the motion
switches to a “tumbling” motion (i.e. the swimmer is un-
dergoing a complete rotation) on the lower part of the
channel. Thus, the qualitative behavior of the swimmer
may drastically change due to a relatively rare random
reorientation, eliminating the overall convergence to the
centerline.

4 Conclusions

We introduced a non-linear model based on partial differ-
ential equations that couples body motion of a swimmer
with flexible flagellum attached to it. Linear asymptotic
analysis of this model for planar shear flow shows how
classical Jeffery orbits change due to the flagellum. In
particular, we found the dependence of the body rotation
period on the bending stiffness of the flagellum. Next, we
performed numerical analysis of this model in Poiseuille
flow and made several important observations. First, the
model exhibits non-periodic trajectories due to the pres-
ence of the flagellum. This stands in contrast with clas-
sical periodic trajectories for Jeffery equation for passive
particles, and even more striking, when compared to pe-
riodic trajectories for fixed shape active swimmers [23]
that are self-propelled but have no flagellum. Second, we
observe that the large time behavior of our system is non-
monotonic with respect to the bending stiffness. Namely,
for large bending stiffness, the system reaches a steady
state. When bending stiffness is decreased, it converges
towards limit cycle. Further decrease in the bending stiff-
ness results in the system reaching the steady state again.
Finally, we observe that even a small amount of random
tumbling events drastically affect the above described be-
havior.
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Figure 4: (a) and (c): Trajectories of the self-propelled swimmer in the (x, y) space for two selected time intervals.
The fluid flows from the right to the left and the blue circles indicate the sign of the vorticity. Green arrows indicate
the orientation θ0(t) of the swimmer body. The symbol ’+’ shows the tumbling events. (b) and (d): Orientation θ0
of the swimmer as a function of x. The intensity of the Poisson process is taken to be 0.1/min, which means that a
tumbling event occurs in average every 10 minutes. Other parameters are taken as written in Table 1.

6 Methods

6.1 Derivation of the equations of mo-
tion

The flexible flagellum

To derive the equations of motion we employ resistive
force theory and theory of the elasticity of a slender body.
We use the arclength 0 ≤ s ≤ L to parametrize the flagel-
lum. We denote by θ(s, t) the angle between the flagellum
and the x-axis (see Figure 1). We also introduce the local
tangent, normal, and binormal vectors,

τ =

 cos (θ)
sin (θ)

0

 ,n =

 − sin (θ)
cos (θ)

0

 ,b =

 0
0
1

 ,

and write the velocity of the point of the flagellum as

v = vττ + vnn. (18)

Denoting by Q the integrated internal stress in the flagel-
lum and by Q0 the force exerted by the flagellum on the
body,

Q = Λτ +Nn, Q0 = Λ0τ +N0n. (19)

In the framework of the resistive force theory, the force
exerted by the fluid on the flagellum is proportional to
the relative velocity between the flagellum and the fluid.
The force balance states that the divergence of the in-
ternal stress is equal to the external force applied to the

flagellum, yielding the following relations

∂

∂s

(
Λτ +Nn

)
= ζf

(
vτ − u(y) cos θ

)
τ

+ αζf
(
vn + u(y) sin θ

)
n− Fpτ .

(20)

Here, Fp is the propulsion force density generated by
the flagellum. The parameter ζf is the drag coefficient
of the flagellum, and α is a drag anisotropy factor due
to the shape of the flagellum. Following [40], we set
ζf = 2πη0/ log(L/D), where η0 is the viscosity of the
fluid, and α = 2 (slender body). The elasticity of the
flagellum is represented by the constitutive relation

M = Kbκb, (21)

where κ is the local flagellum curvature, defined by κ =
∂θ

∂s
. The balance of internal torques gives

∂M

∂s
+ τ ×Q = 0, (22)

which combined with (21) gives an expression of the nor-
mal component of the internal stress

N = −Kb
∂2θ

∂s2
. (23)

The force balance vector relation (20) can be separated
into the tangential and normal parts

ζfvτ =ζfu (y) cos θ +
∂Λ

∂s
+ Fp − κN,

αζfvn =− αζfu (y) sin θ +
∂N

∂s
+ κΛ.

(24)
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We derive the equations for Λ and θ, using the geomet-
rical Frenet relations

∂τ

∂s
= κn,

∂n

∂s
= −κτ,

yielding

dτ

ds
=
dv

ds
=
(∂vτ
∂s
− κvn

)
τ +

(∂vn
∂s

+ κvτ
)
n. (25)

The inextensibility of the flagellum can be cast in the
form

dτ

ds
=
(∂θ
∂t

)
n (26)

By identifying the terms in (25) and (26) we obtain

∂vτ
∂s

= κvn,
∂θ

∂t
=
∂vn
∂s

+ κvτ , (27)

which gives us the following equations on Λ and θ

α
∂2Λ

∂s2
=

(
∂θ

∂s

)2

Λ− αKb

(
∂2θ

∂s2

)2

− α

2
u′(y)ζf sin (2θ)

− ∂θ

∂s
(α+ 1)Kb

∂3θ

∂s3
,

(28)

αζf
∂θ

∂t
=−Kb

∂4θ

∂s4
+

(
Λ + αKb

(
∂θ

∂s

)2
)
∂2θ

∂s2

+
(

(α+ 1)
∂Λ

∂s
+ αFp

)∂θ
∂s
− u′(y)αζf sin2(θ).

(29)
Boundary conditions. The flagellum boundary is free

at s = L and the connection between the body and the
flagellum is rigid. It gives the set of boundary conditions:

∂θ

∂s
(L, t) =

∂2θ

∂s2
(L, t) = Λ (L, t) = 0, (30)

θ (0, t) = θ0 (t) , Λ (0, t) = Λ0 (t) , (31)

where θ0(t) and Λ0(t) are respectively the angle of body
with the x-axis and the tangential internal stress at the
interface body/flagellum. We add the condition

N0(t) = −Kb
∂2θ

∂s2
(0, t) , (32)

which is a consequence of the rigid connection between
the body and the flagellum, combined with (23).

Motion of the bacterial body

The motion of passive rigid ellipsoids is described by the
Jeffery’s equation. In the first order approximation, the
flow around the ellipsoid can be treated as a planar shear
flow. We describe the bacterial body motion by the Jeffery
equations, where the shear rate is taken to be the flow rate
at the center of the ellipsoid. We add an additional term
corresponding to the normal internal stress coming from
the flagellum. The modified Jeffery equation is written as

dθ0
dt

= −u′(yh)
( l2

l2 + d2
sin2 θ0(t) +

d2

l2 + d2
cos2 θ0(t)

)
+

l

2ζr
N0(t),

(33)
where yh is the y−coordinate of the center of mass of the
ellipsoid. The velocity of the body center of mass has
two components, the first comes from the flow, and the
second comes from the stress of the flagellum. We neglect
the perturbations produced by the body on the flow .

Body-flagellum interface conditions

The body makes contact with the flagellum at s = 0. The
rigidity of the junction enables the equality of the local
velocities at the contact body/flagellum. Using (24), the
local velocities of the flagellum are expressed as

vτ (0) =u (y(0)) cos θ +
1

ζf

[∂Λ

∂s
(0) + Fp − κN0,

]
vn(0) =− u (y(0)) sin θ +

1

ζf

[∂N
∂s

(0) + κΛ0

]
.

(34)

The velocities of the body are given by

vhτ = u(yh) cos θ0 +
1

ζh
Λ0

vhn = −u(yh) sin θ0 +
1

ζhαh
N0,

(35)

where ζh is the drag coefficient of the body, ζh =
2πη0l/ log(l/d), and αh is an anisotropy drag factor, taken
to be 2 (slender body approximation, [40]). The tangen-
tial components of the velocities are the same, but there
is an extra term for the normal velocities given that vn(0)
represents the normal velocity at the flagellum-body con-
tact whereas vn,0 is the normal velocity of the center of

the body whcih are at a distance
l

2
of each other.

vτ (0) = vτ,0, vn(0) = vn,0 +
l

2

dθ0
dt
. (36)

The equalities in (36) holding at s = 0 are expressed as
follows, using (34) and (35).

1

ζh
Λ0 = cos(θ0)

(
u(y(0))− u(yh)

)
+

1

ζf

[∂Λ

∂s
+ Fp +Kb

∂θ

∂s

∂2θ

∂s2

]
,

1

ζhαh
N0 +

l

2

dθ0
dt

= − sin(θ0)
(
u(y(0))− u(yh)

)
+

1

αζf

[
−Kb

∂3θ

∂s
+
∂θ

∂s
Λ
]
.

(37)

Expression of the coordinates

Since the swimmer’s velocity depends on the local ve-
locity of the ambient fluid, which itself depends on the
y−coordinate, we express yh(t) and y(s, t), the vertical
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position of the center body and of the flagellum respec-
tively. We also study the evolution of the x-coordinate, as
it is useful to describe the trajectories. Due to geometri-
cal considerations, the body position (xh, yh) satisfies the
following equations:



dxh(t)

dt
= vτ,0 cos(θ0(t))− vn,0(t) sin(θ0(t)),

dyh(t)

dt
= vτ,0 sin(θ0(t)) + vn,0 cos(θ0(t)),

xh(0) = xh0 , yh(0) = yh0 ,

(38)

where (xh0 , y
h
0 ) is the initial position of center of mass of

the body. We substitute the expressions of the tangential
and normal velocities (35) and obtain

dxh(t)

dt
= u(xh(t), yh(t)) +

1

ζh
Λ0(t) cos(θ0(t))

− 1

αhζh
N0(t) sin(θ0(t)),

dyh(t)

dt
=

1

ζh
Λ0(t) sin(θ0(t)) +

1

αhζh
N0(t) cos(θ0(t)),

xh(0) = xh0 , yh(0) = yh0 .
(39)

The positions of the flagellum may then be written in
the form 

∂x(s, t)

∂s
= cos(θ(s, t))

∂y(s, t)

∂s
= sin(θ(s, t))

x(0, t) = xh(t) +
l

2
cos(θ0(t)),

y(0, t) = yh(t) +
l

2
sin(θ0(t)).

(40)

Rescaling

We first define the order of magnitude of the shear rate
as γ0. The variables are rescaled as

s̃ =
s

L
, ũ =

u

Lγ0
, t̃ = γ0t, Λ̃ =

Λ

ζfγ0L2
,

Λ̃0 =
Λ0

ζfγ0L2
, Ñ0 =

N0

ζfγ0L2
, ζr =

l2ζh
6
,

K̃b =
Kb

ζfγ0L4
, F̃p =

Fp
ζfγ0L

, kr =
Lζf
ζh

,

β =
d2

l2 + d2
,

In Section 2, we use these rescaled variables but we omit
the tildes, to simplify the notation.

6.2 Random reorientation (tumbling)

We define Trun as the time between two random reorien-
tation. If we denote by Nt the number of reorienations
occurring before time t, we have

P[(Nt −Ns) = k] = e−λr(t−s)

(
λr(t− s)

)k
k!

, (41)

where P is probability of the event. This causes the distri-
bution of run duration to be exponential. Indeed, if Trun1
is the time at which first reoriention occurs, we have

P(Trun1 ≥ t) = P(Nt = 0) = exp (−λrt), (42)

which means that the time of the first run has an expo-

nential distribution. The parameter
1

λr
is the expectation

of Trun and is taken to be 10 min.

To simulate the exponential distribution, we gener-
ate a uniform random variable U using a random num-
ber generator in C++. We denote by G the inverse of
the repartition function of the exponential law, namely

G(u) = − 1

λr
ln(1 − u), then the random variable G ◦ U

has an exponential distribution, since

P(G ◦ U ≤ t) = P(U ≤ F (t)) = F (t). (43)

6.2.1 Effects of the nonlinear flow profile

In the analysis above we neglected the effect due to the
nonlinear profile of the flow. In the context of a spherical
particle in an unbounded flow, the lift force exerted by
the fluid on a body whose center is in yh is of the form

Lift = 6.46 η0r∆u

√
R

4
, R = ρu′(yh)

r2

η0
, (44)

where ρ is the ratio between the solid and the fluid density,
∆u is the slip velocity of the particle (the particle velocity
minus the undisturbed velocity at the particle center), and
r is the radius of the body (see [42, 43]). This expression
is valid only for spherical swimmers. In our case, the
swimmer is close to a rod of length l. Thus, in (44) we

replace the radius r by the effective radius,
l

2
| sin(θ0)|,

which corresponds to the radius seen by the fluid. This

results in ∆u = |u(yh +
l

2
sin(θ0))− u(yh)| ≈ |4l sin(θ0)|.

In the Poiseuille flow, assuming that ρ = 1, the formula
becomes

Lift =
6.46

4

√
η0
√
u′(yh)pl3| sin3(θ0)|yey, (45)

With the order of magnitude of the parameters, Lift ≈
10−14N , which can be neglected, in comparison to the
total propulsion force L×Fp, which is of the order of few
pN. The model including this lift effect was implemented,
and no noticeable change in the behavior was observed.
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Parameter Parameter value
α 2
β 0.0192
γ 0.1 1/s
d 7.10−7 m
η0 10−3 Pa.s
Fp 10−7 N/m
Kb 3.10−23 N.m2

L 10−5 m
l 5.10−6 m
ζf 10−3 N.s/m2

ζh 2.10−8 N.s/m
p 104 1/(m s)
w 4.10−4 m

Table 1: Parameter values used in the numerical sim-
ulations

Rescaled variable Representative value
b 5.10−3

c −0.0045
Fp 100
Kb 30
kr 0.5
E 1

Table 2: Numerical values of the rescaled variables

Glossary

α Drag anisotropy factor
β Bretherton constant of the ellipsoidal body
γ Shear rate
d Thickness of the body
η0 Viscosity of the surrounding fluid
Fp Propulsion force density
Kb Bending stiffness
kr Non-dimensional parameter
Λ Internal stress of the flagellum (tangential part)
λr Parameter of the Poisson process
L Length of the flagellum
l Length of the body
N Internal stress of the flagellum (normal part)
p Pressure gradient of the Poisseuilles flow
s Current coordinate on the flagellum
t Time
θ0 Body angle (swimmer orientation)
θ Angle of the flagellum
(τ ,n,b) Frenet system
u Fluid velocity
(vτ , vn) Flagellum velocity in Frenet coordinates
(vτ,0, vn,0) Body velocity in Frenet coordinates
w Radius of the channel

(xh, yh) Coordinate of the body center
ζf Friction coefficient for the flagellum
ζh Friction coefficient for the head
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