Places we go
![DSC02832_RioTinto](https://sites.psu.edu/macaladylab/files/2021/01/DSC02832_RioTinto.jpg)
Photo credit J. L. Macalady.
Iberian Pyrite Belt
Collaborations
Dr. Javier Sánchez España, Instituto Geológico y Minero de España
Dr. Víctor Parro García, Centro de Astrobiología
Ayala-Muñoz, D. et al. (2020). Metagenomic and metatranscriptomic study of microbial metal resistance in an acidic pit lake. Microorganisms 8(9), 1350.
Grettenberger, C. L. et al. (2020). Microbial population structure in a stratified, acidic pit lake in the Iberian Pyrite Belt. Geomicrobiology Journal 37(7), 623-634.
![Gola di Frasassi](https://sites.psu.edu/macaladylab/files/2021/01/IMG_2622.jpg)
Photo credit J. L. Macalady.
Sulfidic Karst, Italy
Collaborations
Alessandro Montanari, Osservatorio Geologico di Coldigioco
Mansor, M. et al. (2018). Transport-Induced Spatial Patterns of Sulfur Isotopes (δ34S) as Biosignatures. Astrobiology 18(1), 59-72.
Zerkle, A. L. et al. (2016). Sulfur isotope values in the sulfidic Frasassi cave system, central Italy: A case study of a chemolithotrophic S-based ecosystem. Geochimica et Cosmochimica Acta 173, 373-386
Hamilton, T. L. et al. (2015). Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem. Frontiers in Microbiology 5.
Jones, D. S. et al. (2015). Fate of sulfide in the Frasassi cave system and implications for sulfuric acid speleogenesis. Chemical Geology 410, 21-27
Jones, D. S. et al. (2012). Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME Journal 6(1), 158-170.
![IMG_1201](https://sites.psu.edu/macaladylab/files/2021/01/IMG_1201.jpg)
Photo credit J. L. Macalady.
Svalbard
Collaborations
Polska Stacja Polarna, Hornsund
Dr. Ken Mankoff, Geological Survey of Denmark and Greenland (GEUS)
![P4140039.JPG](https://sites.psu.edu/macaladylab/files/2021/01/P4140039.jpg)
Photo credit J. L. Macalady.
Appalachian Coal Drainages and Karst
Collaborations
Butler Cave Conservation Society
Grettenberger, C. L. et al. (2017). Efficient low-pH iron removal by a microbial iron oxide mound ecosystem at Scalp Level Run. Applied and Environmental Microbiology 83(7).
Jones, D. S. et al. (2015). Geochemical niches of Iron-oxidizing acidophiles in acidic coal mine drainage. Applied and Environmental Microbiology 81(4), 1242-1250.
![OLYMPUS DIGITAL CAMERA](https://sites.psu.edu/macaladylab/files/2021/01/PA190171.jpg)
Photo credit J. L. Macalady.
Fayetteville Green Lakes
Collaborations
Meyer, K. M. et al. (2011). Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake. Geobiology 9(4), 321-329.
![OLYMPUS DIGITAL CAMERA](https://sites.psu.edu/macaladylab/files/2021/01/P7190085_KakukSanctuary.jpg)
Photo credit J.L. Macalady.
The Bahamas Karst
Collaborations
Brian Kakuk, Bahamas Caves Research Foundation
The National Geographic Society
Dr. Kenneth Broad, University of Miami RSMAS
Haas, S. et al. (2018). Low-light anoxygenic photosynthesis and Fe-S-biogeochemistry in a microbial mat. Frontiers in Microbiology 9.
![IMG_0743](https://sites.psu.edu/macaladylab/files/2021/01/IMG_0743.jpg)
Photo credit J. L. Macalady.
The Dominican Republic, La Altagracia Karst
Collaborations
Dominican Republic Speleological Society (DRSS)
Museo del Hombre Dominicano
![P1040070.JPG](https://sites.psu.edu/macaladylab/files/2021/01/P1040070.jpg)
Photo credit J. L. Macalady.
Hamilton, T. L. et al. (2018). Cyanobacterial photosynthesis under sulfidic conditions: Insights from the isolate Leptolyngbya sp. strain hensonii. ISME Journal 12(2), 568-584.
Hamilton, T. L. et al. (2017). Microbial communities and organic biomarkers in a Proterozoic-analog sinkhole. Geobiology 16(6), 784-797.
![IMGP1466](https://sites.psu.edu/macaladylab/files/2021/02/IMGP1466-1-e1612836981883.jpg)