Cosmic-Ray Anisotropy

- Galactic Cosmic-Ray Puzzles (Forever Mystery?) -

Markus Ahlers

UW-Madison \& WIPAC
"Multi-Messenger Approaches to Cosmic Rays:
Origins and Space Frontiers"
State College, June 21, 2016

Phase-Space Distribution I

- cosmic-ray (CR) arrival directions described by phase-space distribution

$$
f(t, \mathbf{x}, \mathbf{p})=\underbrace{\phi(t, \mathbf{x}, p) /(4 \pi)}_{\text {monopole }}+3 \widehat{\mathbf{p}} \underbrace{\Phi(t, \mathbf{x}, p) /(4 \pi)}_{\text {dipole }}+\ldots
$$

- local CR spectral density $\left[\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right]$

$$
n_{\mathrm{CR}}(p)=\frac{1}{T_{\mathrm{exp}}} \int_{0}^{T_{\mathrm{exp}}} \mathrm{~d} t p^{2} \underbrace{\phi(t, p)}_{\propto p^{-\left(\Gamma_{\mathrm{CR}}+2\right)}} \propto p^{-\Gamma_{\mathrm{CR}}}
$$

- in the absence of sources, follows Liouville's equation, $\dot{f}=0$, or

$$
\partial_{t} f+\dot{\mathbf{x}} \nabla_{\mathbf{x}} f+\dot{\mathbf{p}} \nabla_{\mathbf{p}} f=0
$$

- from here on: neglect energy losses and assume $p \gg m$
- rotation in regular $(\boldsymbol{\Omega})$ and turbulent $(\boldsymbol{\omega}(\mathbf{x}))$ fields with operator $\mathbf{L} \equiv-\mathbf{p} \times \nabla_{\mathbf{p}}$:

$$
\dot{\mathbf{p}}=-(\boldsymbol{\Omega}+\boldsymbol{\omega}(\mathbf{x})) \times \mathbf{p} \quad \text { and } \quad \dot{\mathbf{p}} \nabla_{\mathbf{p}} \rightarrow-i(\boldsymbol{\Omega}+\boldsymbol{\omega}(\mathbf{x})) \mathbf{L}
$$

Phase-Space Distribution II

- splitting the phase space distribution into $f=\langle f\rangle+\delta f$ with the magnetic ensemble-average $\langle f\rangle$ (assuming 3D-isotropic turbulence)

$$
\partial_{t}\langle f\rangle+\hat{\mathbf{p}} \nabla_{\mathbf{x}}\langle f\rangle-i \mathbf{\Omega}\langle f\rangle=\langle i \boldsymbol{\omega} \mathbf{L} \delta f\rangle
$$

+ BGK approximation,
[Bhatnagaer, Gross \& Krook'54]

$$
\langle i \omega \mathbf{L} \delta f\rangle \rightarrow \underbrace{-\nu[\langle f\rangle-\phi /(4 \pi)]}_{\text {isotropization }}
$$

+ dipole approximation,

$$
\partial_{t} \phi+\nabla_{\mathbf{x}} \boldsymbol{\Phi} \simeq 0 \quad \text { and } \quad \partial_{t} \boldsymbol{\Phi}+(1 / 3) \nabla_{\mathbf{x}} \phi+\boldsymbol{\Omega} \times \boldsymbol{\Phi} \simeq-\nu \boldsymbol{\Phi}
$$

+ diffusion approximation, $\partial_{t} \Phi \simeq 0$,

$$
\underbrace{\partial_{t} \phi \simeq \nabla_{\mathbf{x}}\left(\mathbf{K} \nabla_{\mathbf{x}} \phi\right)}_{\text {diffusion equation }} \text { and } \underbrace{\mathbf{\Phi \simeq - \mathbf { K } \nabla _ { \mathbf { x } } \phi}}_{\text {Fick's law }}
$$

- diffusion tensor \mathbf{K} (in BGK approximation)

$$
K_{i j}=\underbrace{\frac{1}{3 \nu} \hat{B}_{i} \hat{B}_{j}}_{\text {parallel }}+\underbrace{\frac{\nu}{3\left(\nu^{2}+\Omega^{2}\right)}\left(\delta_{i j}-\hat{B}_{i} \hat{B}_{j}\right)}_{\text {perpendicular }}+\underbrace{\frac{\Omega}{3\left(\nu^{2}+\Omega^{2}\right)} \epsilon_{i j k} \hat{B}_{k}}_{\text {drift }}
$$

CR Dipole Anisotropy

- diffusion tensor \mathbf{K} (general):

$$
K_{i j}=\frac{\hat{B}_{i} \hat{B}_{j}}{3 \nu_{\|}}+\frac{\delta_{i j}-\hat{B}_{i} \hat{B}_{j}}{3 \nu_{\perp}}+\frac{\epsilon_{i j} \hat{B}_{k}}{3 \nu_{A}}
$$

- expected dipole anisotropy:

$$
\delta \equiv \frac{f_{\max }-f_{\min }}{f_{\max }+f_{\min }}=3 \mathbf{K} \frac{\nabla n_{\mathrm{CR}}}{n_{\mathrm{CR}}}
$$

- amplitude and phase depend on:
- rigidity dependence of diffusion, $\mathbf{K} \propto \rho^{0.3-0.6}$
- observational limitations!
\rightarrow Dan's talk
[Erlykin \& Wolfendale'06]
[Blasi \& Amato'12; Sveshnikova et al.'13; Pohl \& Eichler'13]
- (local) ordered magnetic field B
[e.g. Schwadron et al.'14; Mertsch \& Funk'14]

∇n_{CR}

density gradient
$-\mathbf{K} \nabla n_{\mathrm{CR}}$
dipole anisotropy
relative intensity

- relative velocity of the medium [Compton \& Getting'35]

Compton-Getting Effect

- phase-space distribution is Lorentz-invariant, $f^{\star}\left(\mathbf{p}^{\star}\right)=f(\mathbf{p})$
- Lorentz boost (starred quantities in plasma rest-frame):

$$
\mathbf{p}^{\star}=\mathbf{p}+\left(p+\frac{1}{2} \boldsymbol{\beta} \cdot \mathbf{p}\right) \boldsymbol{\beta}+\mathcal{O}\left(\beta^{3}\right)
$$

- Taylor expansion

$$
f(\mathbf{p}) \simeq f^{\star}(\mathbf{p})+\left(\mathbf{p}^{\star}-\mathbf{p}\right) \nabla_{\mathbf{p}^{\star}} f^{\star}(\mathbf{p})+\mathcal{O}\left(\beta^{2}\right) \simeq f^{\star}(\mathbf{p})+p \boldsymbol{\beta} \nabla_{\mathbf{p}^{\star}} f^{\star}(\mathbf{p})+\mathcal{O}\left(\beta^{2}\right)
$$

\rightarrow splitting in ϕ and $\mathbf{\Phi}$ is not invariant:
[Compton \& Getting'35;Jones'90]

$$
\phi=\phi^{\star} \quad \boldsymbol{\Phi}=\boldsymbol{\Phi}^{\star}+\frac{1}{3} \boldsymbol{\beta} \frac{\partial \phi^{\star}}{\partial \ln p}
$$

- remember: $\phi \sim p^{-2} n_{\mathrm{CR}} \propto p^{-\left(2+\Gamma_{\mathrm{CR}}\right)}$

$$
\boldsymbol{\delta}=\boldsymbol{\delta}^{\star}+\underbrace{\left(2+\Gamma_{\mathrm{CR}}\right) \boldsymbol{\beta}}_{\text {Compton-Getting effect }}
$$

x However, what is the correct plasma rest-frame?

Observed Dipole Amplitude and Phase

Observational Limitations

- ground-based detectors are calibrated by CR data \rightarrow reduces anisotropies
- true CR dipole defined by amplitude A_{1}, and orientation (RA,DEC) $=\left(\alpha_{1}, \delta_{1}\right)$
\mathbf{X} observable only projected dipole with amplitude $A_{1} \cos \delta_{1}$ and orientation ($\alpha_{1}, 0$)
X further problems by limited field of view (cross-talk with small-scale structure)

Observational Limitations

dipole anisotropy

- ground-based detectors are calibrated by CR data \rightarrow reduces anisotropies
- true CR dipole defined by amplitude A_{1}, and orientation (RA,DEC) $=\left(\alpha_{1}, \delta_{1}\right)$
\mathbf{X} observable only projected dipole with amplitude $A_{1} \cos \delta_{1}$ and orientation ($\alpha_{1}, 0$)
\mathbf{X} further problems by limited field of view (cross-talk with small-scale structure)

Observational Limitations

- ground-based detectors are calibrated by CR data \rightarrow reduces anisotropies
- true CR dipole defined by amplitude A_{1}, and orientation (RA,DEC) $=\left(\alpha_{1}, \delta_{1}\right)$
\mathbf{X} observable only projected dipole with amplitude $A_{1} \cos \delta_{1}$ and orientation ($\alpha_{1}, 0$)
\mathbf{X} further problems by limited field of view (cross-talk with small-scale structure)

Observational Limitations

- ground-based detectors are calibrated by CR data \rightarrow reduces anisotropies
- true CR dipole defined by amplitude A_{1}, and orientation (RA,DEC) $=\left(\alpha_{1}, \delta_{1}\right)$
\mathbf{X} observable only projected dipole with amplitude $A_{1} \cos \delta_{1}$ and orientation ($\alpha_{1}, 0$)
X further problems by limited field of view (cross-talk with small-scale structure)

Local Sources

[Erlykin \& Wolfendale'06; Sveshnikova et al.'13; Pohl \& Eichler'13]

Local Magnetic Field

- strong ordered magnetic fields in the local environment
\rightarrow diffusion tensor reduces to projector:

$$
K_{i j} \rightarrow \frac{\hat{B}_{i} \hat{B}_{j}}{3 \nu_{\|}}
$$

- $\mathrm{TeV}-\mathrm{PeV}$ dipole data consistent with magnetic field direction inferred by IBEX data
[McComas et al.'09]
- 1-100 TeV phase indicates a local gradient within longitudes:

$$
120^{\circ} \lesssim l \lesssim 300^{\circ}
$$

- phase flip induced by Vela SNR? [MA'16]
- or a luminous 2Myr old SNR?
[Savchenko, Kachelrieß \& Semikoz'15]

Local Magnetic Field

- strong ordered magnetic fields in the local environment
\rightarrow diffusion tensor reduces to projector:

$$
K_{i j} \rightarrow \frac{\hat{B}_{i} \hat{B}_{j}}{3 \nu_{\|}}
$$

- $\mathrm{TeV}-\mathrm{PeV}$ dipole data consistent with magnetic field direction inferred by IBEX data
[McComas et al.'09]
- 1-100 TeV phase indicates a local gradient within longitudes:

$$
120^{\circ} \lesssim l \lesssim 300^{\circ}
$$

- phase flip induced by Vela SNR? [MA'16]
- or a luminous 2Myr old SNR?
[Savchenko, Kachelrieß \& Semikoz'15]

Map of CR Arrival Directions

\rightarrow Cosmic ray anisotropies up to the level of one-per-mille have been observed at various energies [Super-Kamiokande'07; Milagro'08; ARGO-YBJ'09,'13;EAS-TOP'09] [Tibet AS- γ '05,'06,'15;'lceCube'10,'11,'16; HAWC'13,'14]

Map of CR Arrival Directions

\rightarrow Cosmic ray anisotropies up to the level of one-per-mille have been observed at various energies [Super-Kamiokande'07; Milagro'08; ARGO-YBJ'09,'13;EAS-TOP'09] [Tibet AS- γ '05,'06,'15;'lceCube'10,'11,'16; HAWC'13,'14]

$$
E_{\mathrm{CR}} \simeq 1 \mathrm{TeV}, N_{\mathrm{CR}} \sim 4.9 \times 10^{10}\left[\mathrm{HAWC}^{\prime} 14\right]
$$

Suggested Origin of Small-Scale Anisotropy

- local magnetic field structure with energy-dependent magnetic mirror leakage
[Drury \& Aharonian'08]
- preferred CR transport directions
- magnetic reconnections in the heliotail
[Malkov, Diamond, Drury \& Sagdeev'10]
[Lazarian \& Desiati' 10]
- non-isotropic particle transport in the heliosheath
[Desiati \& Lazarian'11]
- heliospheric electric field structure
[Drury'13]
- magnetized outflow from old SNRs
[Biermann, Becker, Seo \& Mandelartz'12]
- strangelet production in molecular clouds or neutron stars
[Kotera, Perez-Garcia \& Silk '13]
\rightarrow small-scale anisotropies from local magnetic field mapping of a global dipole
[Giacinti \& Sigl'12; MA'14; MA \& Mertsch'15]

Analogy to Gravitational Lensing

CMB temperature fluctuations

small scale temperature fluctuations

Cosmic Ray Gradient

Gedanken Experiment

- Idea: local realization of magnetic turbulence introduces small-scale structure
- Particle transport in (static) magnetic fields is governed by Liouville's equation of the CR's phase-space distribution f :

$$
\dot{f}(t, \mathbf{x}, \mathbf{p})=0
$$

- "trivial" solution:

$$
f(0, \mathbf{0}, \mathbf{p})=f(-T, \mathbf{x}(-T), \mathbf{p}(-T))
$$

- Gedanken Experiment:

Assume that at look-back time $-T$ initial condition is homogenous, but not isotropic:

$$
f(0, \mathbf{0}, \mathbf{p})=\widetilde{f}(\mathbf{p}(-T))
$$

Angular Power Spectrum

- Every smooth function $g(\theta, \phi)$ on a sphere can be decomposed in terms of spherical harmonics Y_{m}^{ℓ} :

$$
g(\theta, \phi)=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\theta, \phi) \quad \leftrightarrow \quad a_{\ell m}=\int \mathrm{d} \Omega\left(Y_{\ell}^{m}\right)^{*}(\theta, \phi) g(\theta, \phi)
$$

- angular power spectrum:

$$
C_{\ell}=\frac{1}{2 \ell+1} \sum_{m=-\ell}^{\ell}\left|a_{\ell m}\right|^{2}
$$

- related to the two-point auto-correlation function: ($\mathbf{n}_{1 / 2}$: unit vectors, $\left.\mathbf{n}_{1} \cdot \mathbf{n}_{2}=\cos \eta\right)$

$$
\xi(\eta)=\frac{1}{8 \pi^{2}} \int \mathrm{~d} \mathbf{n}_{1} \int \mathrm{~d} \mathbf{n}_{2} \delta\left(\mathbf{n}_{1} \mathbf{n}_{2}-\cos \eta\right) g\left(\mathbf{n}_{1}\right) g\left(\mathbf{n}_{2}\right)=\frac{1}{4 \pi} \sum_{\ell}(2 \ell+1) C_{\ell} P_{\ell}(\cos \eta)
$$

\rightarrow Note that individual C_{ℓ} 's are independent of coordinate system (assuming full sky coverage).

Gedanken Experiment (continued)

- Initial configuration has power spectrum \widetilde{C}_{ℓ}.
- For small correlation angles η flow remains correlated even beyond scattering sphere.
- Correlation function for $\eta=0$:

$$
\xi(0)=\frac{1}{4 \pi} \int \mathrm{~d} \hat{\mathbf{p}}_{1} \tilde{f}^{2}\left(\mathbf{p}_{1}(-T)\right)
$$

- On average, the rotation in an isotropic random rotation in the turbulent magnetic field leaves an isotropic distribution on a sphere invariant:

$$
\langle\xi(0)\rangle=\frac{1}{4 \pi} \int \mathrm{~d} \hat{\mathbf{p}}_{1} \widetilde{f}^{2}\left(\mathbf{p}_{1}\right)
$$

\rightarrow The weighted sum of $\left\langle C_{\ell}\right\rangle$'s remains constant:

$$
\frac{1}{4 \pi} \sum_{\ell \geq 0}(2 \ell+1) \widetilde{C}_{\ell}=\frac{1}{4 \pi} \sum_{\ell \geq 0}(2 \ell+1)\left\langle C_{\ell}(T)\right\rangle
$$

Evolution Model

- Diffusion theory motivates that each $\left\langle C_{\ell}\right\rangle$ decays exponentially with an effective relaxation rate

$$
\nu_{\ell} \propto \mathbf{L}^{2} \propto \ell(\ell+1)
$$

- A linear $\left\langle C_{\ell}\right\rangle$ evolution equation with generation rates $\nu_{\ell \rightarrow \ell^{\prime}}$ requires:

$$
\partial_{t}\left\langle C_{\ell}\right\rangle=-\nu_{\ell}\left\langle C_{\ell}\right\rangle+\sum_{\ell^{\prime} \geq 0} \nu_{\ell^{\prime} \rightarrow \ell} \frac{2 \ell^{\prime}+1}{2 \ell+1}\left\langle C_{\ell^{\prime}}\right\rangle \quad \text { with } \quad \nu_{\ell}=\sum_{\ell^{\prime} \geq 0} \nu_{\ell \rightarrow \ell^{\prime}}
$$

- For $\nu_{\ell} \simeq \nu_{\ell \rightarrow \ell+1}$ and $\widetilde{C}_{\ell}=0$ for $l \geq 2$ this has the analytic solution:

$$
\left\langle C_{\ell}\right\rangle(T) \simeq \frac{3 \widetilde{C}_{1}}{2 \ell+1} \prod_{m=1}^{\ell-1} \nu_{m} \sum_{n} \prod_{p=1}^{\ell} \frac{e^{-T \nu_{n}}}{\nu_{p}-\nu_{n}}
$$

- For $\nu_{\ell} \simeq \ell(\ell+1) \nu$ we arrive at a finite asymptotic ratio:

$$
\lim _{T \rightarrow \infty} \frac{\left\langle C_{\ell}\right\rangle(T)}{\left\langle C_{1}\right\rangle(T)} \simeq \frac{18}{(2 \ell+1)(\ell+2)(\ell+1)}
$$

Comparison with CR Data

Multipole Cross-Talk

- relative intensity

$$
I(\alpha, \delta)=1+\sum_{\ell \geq 1} \sum_{m \neq 0} a_{\ell m} Y_{\ell m}(\alpha, \pi / 2-\delta)
$$

- dipole: $a_{1-1}=\left(\delta_{0 \mathrm{~h}}+i \delta_{6 \mathrm{~h}}\right) \sqrt{2 \pi / 3}$ and $a_{11}=-a_{1-1}^{*}$
- traditional dipole analyses extract amplitude " A_{1} " and phase " α_{1} " from data projected into right ascension $\left(s_{1 / 2} \equiv \sin \delta_{1 / 2}\right)$

$$
A_{1} e^{i \alpha_{1}}=\frac{1}{\pi} \int_{0}^{2 \pi} \mathrm{~d} \alpha e^{i \alpha} \underbrace{\frac{1}{s_{2}-s_{1}} \int_{s_{1}}^{s_{2}} \mathrm{~d} \sin \delta I(\alpha, \delta)}_{\text {projection }}
$$

- the presence of high- ℓ multipole moments introduces cross-talk:

$$
A_{1} e^{i \alpha_{1}}=\sum_{\ell} \frac{1}{s_{1}-s_{2}} \sqrt{\frac{(2 \ell+1)}{\pi \ell(\ell+1)}} \int_{s_{1}}^{s_{2}} \mathrm{~d} s P_{\ell}^{1}(s) a_{\ell-1}
$$

\rightarrow Can now estimate the systematic uncertainties of dipole measures from dipole-induced small-scale power spectrum.

Systematic Uncertainty of CR Dipole

IceCube

Tibet-AS γ

EAS-TOP
$\left(\Delta \delta_{\text {cq }}^{*} / \delta^{*}\right)_{68 \%}=0.31, \delta_{1}=10^{\circ}, \delta_{2}=58^{\circ}$

Systematic Uncertainty of CR Dipole

Simulation via Backtracking

- Consider a local (quasi-)stationary solution of the diffusion approximation:

$$
4 \pi\langle f\rangle \simeq \phi+\underbrace{\mathbf{r} \nabla \phi-3 \widehat{\mathbf{p}} \mathbf{K} \nabla \phi}_{\text {1st linear correction }}
$$

- backtracking over long time-scales T and evaluating in mean field

$$
4 \pi f_{i} \simeq 4 \pi \underbrace{\delta f\left(-T, \mathbf{r}_{i}(-T), \mathbf{p}_{i}(-T)\right)}_{\text {deviation from }\langle f\rangle}+\phi+\left[\mathbf{r}_{i}(-T)-3 \hat{\mathbf{p}}_{i}(-T) \mathbf{K}\right] \nabla \phi
$$

- Ensemble-averaged C_{ℓ} 's $(\ell \geq 1)$:
[MA \& Mertsch'15]

$$
\frac{\left\langle C_{\ell}\right\rangle}{4 \pi} \simeq \int \frac{\mathrm{~d} \hat{\mathbf{p}}_{1}}{4 \pi} \int \frac{\mathrm{~d} \hat{\mathbf{p}}_{2}}{4 \pi} P_{\ell}\left(\hat{\mathbf{p}}_{1} \hat{\mathbf{p}}_{2}\right) \lim _{T \rightarrow \infty} \underbrace{\left\langle\mathbf{r}_{1 i}(-T) \mathbf{r}_{2 j}(-T)\right\rangle}_{\text {relative diffusion }} \frac{\partial_{i} n_{\mathrm{CR}} \partial_{j} n_{\mathrm{CR}}}{n_{\mathrm{CR}}^{2}}
$$

- Sum of $\left\langle C_{\ell}\right\rangle$ related to diffusion tensor:

$$
\frac{1}{4 \pi} \sum_{\ell \geq 0}(2 \ell+1)\left\langle C_{\ell}\right\rangle \simeq 2 T K_{i j}^{s} \frac{\partial_{i} n_{\mathrm{CR}} \partial_{j} n_{\mathrm{CR}}}{n_{\mathrm{CR}}^{2}}
$$

Simulation via Backtracking

- CR arrival direction determined by backtracking of CRs towards a homogeneous initial dipole anisotropy (ballistic \rightarrow laminar \rightarrow turbulent)

- Kolmogorov turbulence with energy density comparable to \mathbf{B}_{0}
- two cases: dipole vector aligned with or perpendicular to \mathbf{B}_{0}
- asymptotically limited by simulation noise:

$$
\mathcal{N} \simeq \frac{4 \pi}{N_{\mathrm{pix}}} 2 T K_{i j}^{s} \frac{\partial_{i} n_{\mathrm{CR}} \partial_{j} n_{\mathrm{CR}}}{n_{\mathrm{CR}}^{2}}
$$

Movie 1 (link): Sample map of $z(-T)$ with $\mathbf{B}=B_{0} \mathbf{e}_{z}$ (monopole \& dipole removed)

Movie 2 (link): Power spectrum convergence for $\nabla n_{\mathrm{CR}}| | \mathbf{B}$.

Movie 3 (link): Power spectrum convergence for $\nabla n_{\mathrm{CR}} \perp \mathbf{B}$.

Comparison to CR Data

[MA \& Mertsch'15]

Summary

- Large scale anisotropy can be understood in the context of standard diffusion theory:
- Dipole phase aligns with local ordered magnetic field.
- Amplitude variations as a result of local sources (Vela?).
\rightarrow Need better data (reconstruction \& analysis methods).
- Small-scale anisotropy can be a result of local magnetic turbulence:
- Effect analogous to induced high- ℓ multipoles in CMB temperature power spectrum from gravitational lensing in small-scale structure.
- Ensemble-averaged C_{ℓ} 's $(\ell \geq 1)$ related to relative diffusion:

$$
\frac{\left\langle C_{\ell}\right\rangle}{4 \pi} \simeq \int \frac{\mathrm{~d} \hat{\mathbf{p}}_{1}}{4 \pi} \int \frac{\mathrm{~d} \hat{\mathbf{p}}_{2}}{4 \pi} P_{\ell}\left(\hat{\mathbf{p}}_{1} \hat{\mathbf{p}}_{2}\right) \lim _{T \rightarrow \infty} \underbrace{\left\langle\mathbf{r}_{i i}(-T) \mathbf{r}_{2 j}(-T)\right\rangle}_{\text {relative diffusion }} \frac{\partial_{i} n_{\mathrm{CR}} \partial_{j^{\prime}} n_{\mathrm{CR}}}{n_{\mathrm{CR}}^{2}}
$$

- issues: damping effects for CR rigidity distributions, partial sky coverage of experiments, angular resolution, noise...

Thank you for your attention!

Appendix

Local Description: Relative Scattering

- evolution of C_{ℓ} 's:

$$
\partial_{t}\left\langle C_{\ell}\right\rangle=-\frac{1}{2 \pi} \int \mathrm{~d} \hat{\mathbf{p}}_{1} \int \mathrm{~d} \hat{\mathbf{p}}_{2} P_{\ell}\left(\hat{\mathbf{p}}_{1} \hat{\mathbf{p}}_{2}\right)\left\langle\left(\mathbf{p}_{1} \nabla f_{1}+i \omega \mathbf{L} f_{1}\right) f_{2}\right\rangle
$$

- large-scale dipole anisotropy gives an effective "source term":

$$
-\frac{1}{2 \pi} \int \mathrm{~d} \hat{\mathbf{p}}_{1} \int \mathrm{~d} \hat{\mathbf{p}}_{2} P_{\ell}\left(\hat{\mathbf{p}}_{1} \hat{\mathbf{p}}_{2}\right)\left\langle\left(\mathbf{p}_{1} \nabla f_{1}\right) f_{2}\right\rangle \rightarrow Q_{1} \delta_{\ell 1}
$$

- BGK-like Ansatz for scattering term $\left(\langle i \omega \mathbf{L} f\rangle \rightarrow-\frac{\nu}{2} \mathbf{L}^{2}\langle f\rangle\right)$ [Bhatnagaer, Gross \& Krook'54]

$$
-\frac{1}{2 \pi} \int \mathrm{~d} \hat{\mathbf{p}}_{1} \int \mathrm{~d} \hat{\mathbf{p}}_{2} P_{\ell}\left(\hat{\mathbf{p}}_{1} \hat{\mathbf{p}}_{2}\right)\left\langle\left(i \omega \mathbf{L} f_{1}\right) f_{2}\right\rangle \rightarrow \frac{1}{2 \pi} \int \mathrm{~d} \hat{\mathbf{p}}_{1} \int \mathrm{~d} \hat{\mathbf{p}}_{2} P_{\ell}\left(\hat{\mathbf{p}}_{1} \hat{\mathbf{p}}_{2}\right) \tilde{\nu}\left(\hat{\mathbf{p}}_{1} \hat{\mathbf{p}}_{2}\right) \mathbf{L}^{2}\left\langle f_{1} f_{2}\right\rangle
$$

- Note that $\tilde{\nu}(1)=0$ for vanishing regular magnetic field.

$$
\tilde{\nu}(x) \simeq \nu_{0}(1-x)^{p}
$$

Convergence of Power Spectrum

[MA \& Mertsch'15]

Simulated Turbulence

- 3D-isotropic turbulence:

$$
\delta \mathbf{B}(\mathbf{x})=\sum_{n=1}^{N} A\left(k_{n}\right)\left(\mathbf{a}_{n} \cos \alpha_{n}+\mathbf{b}_{n} \sin \alpha_{n}\right) \cos \left(\mathbf{k}_{n} \mathbf{x}+\beta_{n}\right)
$$

- α_{n} and β_{n} are random phases in $[0,2 \pi)$, unit vectors $\mathbf{a}_{n} \propto \mathbf{k}_{n} \times \mathbf{e}_{z}$ and $\mathbf{b}_{n} \propto \mathbf{k}_{n} \times \mathbf{a}_{n}$
- with amplitude

$$
A^{2}\left(k_{n}\right)=\frac{2 \sigma^{2} B_{0}^{2} G\left(k_{n}\right)}{\sum_{n=1}^{N} G\left(k_{n}\right)} \quad \text { with } \quad G\left(k_{n}\right)=4 \pi k_{n}^{2} \frac{k_{n} \Delta \ln k}{1+\left(k_{n} L_{c}\right)^{\gamma}}
$$

- Kolmogorov-type turbulence: $\gamma=11 / 3$
- $N=160$ wavevectors \mathbf{k}_{n} with $\left|\mathbf{k}_{n}\right|=k_{\min } e^{(n-1) \Delta \ln k}$ and $\Delta \ln k=\ln \left(k_{\max } / k_{\min }\right) / N$
- $\lambda_{\text {min }}=0.01 L_{c}$ and $\lambda_{\text {max }}=100 L_{c}$
- rigidity: $r_{L}=0.1 L_{c}$
- turbulence level: $\sigma^{2}=\mathbf{B}_{0}^{2} /\left\langle\delta \mathbf{B}^{2}\right\rangle=1$

Powerspectrum of CR Arrival Directions

\rightarrow Cosmic ray anisotropies up to the level of one-per-mille have been observed at various energies
[Tibet AS- '05,'06; Super-Kamiokande'07; Milagro'08; ARGO-YBJ'09,'13;EAS-TOP'09]
[IceCube'10,'11; HAWC'13,'14]

Powerspectrum of CR Arrival Directions

\rightarrow Cosmic ray anisotropies up to the level of one-per-mille have been observed at various energies
[Tibet AS- γ '05,'06; Super-Kamiokande'07; Milagro'08; ARGO-YBJ'09,'13;EAS-TOP'09]
[IceCube'10,'11; HAWC'13,'14]

