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Phase-Space Distribution I

• cosmic-ray (CR) arrival directions described by phase-space distribution

f (t, x, p) = φ(t, x, p)/(4π)︸ ︷︷ ︸
monopole

+3 p̂Φ(t, x, p)/(4π)︸ ︷︷ ︸
dipole

+ . . .

• local CR spectral density [GeV−1cm−3]

nCR(p) =
1

Texp

∫ Texp

0
dt p2 φ(t, p)︸ ︷︷ ︸
∝ p−(ΓCR+2)

∝ p−ΓCR

• in the absence of sources, follows Liouville’s equation, ḟ = 0, or

∂t f + ẋ∇x f + ṗ∇p f = 0

• from here on: neglect energy losses and assume p� m

• rotation in regular (Ω) and turbulent (ω(x)) fields with operator L ≡ − p×∇p:

ṗ = −(Ω + ω(x))× p and ṗ∇p → −i(Ω + ω(x))L
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Phase-Space Distribution II
• splitting the phase space distribution into f = 〈 f 〉+ δf with the magnetic

ensemble-average 〈 f 〉 (assuming 3D-isotropic turbulence)

∂t〈 f 〉+ p̂∇x〈 f 〉 − iΩL〈 f 〉 = 〈iωLδf 〉

+ BGK approximation, [Bhatnagaer, Gross & Krook’54]

〈iωLδf 〉 → −ν[〈 f 〉 − φ/(4π)]︸ ︷︷ ︸
isotropization

+ dipole approximation,

∂tφ+∇xΦ ' 0 and ∂tΦ + (1/3)∇xφ+ Ω×Φ ' −νΦ

+ diffusion approximation, ∂tΦ ' 0,

∂tφ ' ∇x(K∇xφ)︸ ︷︷ ︸
diffusion equation

and Φ ' −K∇xφ︸ ︷︷ ︸
Fick’s law

• diffusion tensor K (in BGK approximation)

Kij =
1

3ν
B̂iB̂j︸ ︷︷ ︸

parallel

+
ν

3(ν2 + Ω2)
(δij − B̂iB̂j)︸ ︷︷ ︸

perpendicular

+
Ω

3(ν2 + Ω2)
εijkB̂k︸ ︷︷ ︸

drift
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CR Dipole Anisotropy

• diffusion tensor K (general):

Kij =
B̂iB̂j

3ν‖
+
δij − B̂iB̂j

3ν⊥
+
εijkB̂k

3νA

• expected dipole anisotropy:

δ ≡ fmax − fmin

fmax + fmin
= 3K∇nCR

nCR

• amplitude and phase depend on:

• rigidity dependence of diffusion, K ∝ ρ 0.3−0.6

• observational limitations! Ü Dan’s talk

• (local) source distribution [Erlykin & Wolfendale’06]

[Blasi & Amato’12; Sveshnikova et al.’13; Pohl & Eichler’13]

• (local) ordered magnetic field B
[e.g. Schwadron et al.’14; Mertsch & Funk’14]

• relative velocity of the medium [Compton & Getting’35]

rnCR

�KrnCR

density gradient

dipole anisotropy

relative intensity

deficitexcess
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Compton-Getting Effect
• phase-space distribution is Lorentz-invariant, f ?(p?) = f (p) [Forman’70]

• Lorentz boost (starred quantities in plasma rest-frame):

p? = p +

(
p +

1
2
β · p

)
β +O(β3)

• Taylor expansion

f (p) ' f ?(p) + (p? − p)∇p? f ?(p) +O(β2) ' f ?(p) + pβ∇p? f ?(p) +O(β2)

Ü splitting in φ and Φ is not invariant: [Compton & Getting’35;Jones’90]

φ = φ? Φ = Φ? +
1
3
β
∂φ?

∂ ln p

• remember: φ ∼ p−2nCR ∝ p−(2+ΓCR)

δ = δ? + (2 + ΓCR)β︸ ︷︷ ︸
Compton-Getting effect

8 However, what is the correct plasma rest-frame?
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Observed Dipole Amplitude and Phase

naive expectation (∝ E1/3 )
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Observational Limitations

Equatorial
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• ground-based detectors are calibrated by CR data Ü reduces anisotropies

• true CR dipole defined by amplitude A1, and orientation (RA,DEC) = (α1,δ1)

8 observable only projected dipole with amplitude A1 cos δ1 and orientation (α1,0)

8 further problems by limited field of view (cross-talk with small-scale structure)
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Observational Limitations
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Local Sources

Figure 8. Anisotropy amplitude for ten random realizations of sources in the cylindrical model for
H = 1 kpc (left panel) and H = 2 kpc (right panel).

Figure 9. Phase of the anisotropy in a cylindrical model with H = 1 kpc (left panel) and H = 4 kpc
(right panel).

is dominated by the regular, large scale, distribution of the sources. In both cases, most
realizations lead to an anisotropy that mostly grows with energy. In other words, for large
values of H it becomes harder to explain the anisotropy signal observed at Earth. In this
sense, though not ruled out, large values of H appear to be disfavored. Interestingly enough,
in the case with H = 1 kpc, there are a few realizations that lead to an anisotropy which is
remarkably similar to the observed one.

The trend just described can be illustrated more clearly by using the phase of the
anisotropy vector, as plotted in Fig. 9 for a halo of size H = 1 kpc (left) and H = 4 kpc
(right). For small values of H the phase varies wildly reflecting the occasional dominance of
a nearby recent source. Again, this behavior is reminiscent of that found by the EASTOP
experiment [23], as discussed above. For H = 4 kpc the main contribution to anisotropy
comes from the inhomogeneous source distribution in the Galactic disc, and the energy
dependence of the phase of the anisotropy becomes much more regular, with an offset with
respect to zero that reflects the presence of some nearby source.

– 17 –

Figure 2. Anisotropy amplitude for ten random realizations of sources in the cylindrical model,
assuming δ = 1/3 and a SN rate R = 1/100 yr−1 (R = 1/30 yr−1) on the left (right). The halo
size is H = 4 kpc. The injection spectrum is assumed to have slope (below the cutoff) such that
γ + δ = 2.67. The data points are from [20–22].

impose that the slope γ of the injection spectrum is related to δ through γ + δ = 2.67, in
order to ensure a good fit to the CR spectrum at Earth (see Paper I). The red, staircase line
represents the average amplitude calculated using the 10 random realizations.

In all figures the (black) crosses, the (blue) diamonds and the (orange) stars are taken
from Ref. [20]. The (green) triangles are from EASTOP [21, 23] and the (red) squares are
the Akeno data points [22]. The oblique (red) lines at high energy show the upper limits on
the amplitude of anisotropy from KASCADE and GRANDE [24].

The comparison between the two panels shows that the spread in the anisotropy patterns
is not affected in a significant way by the SN rate. This can be qualitatively understood if
one considers that for H = 4 kpc, the anisotropy signal is already dominated by δA1 (see
§ 5). Looking at Eq. 3.5 one sees that the rate of Supernova explosions R only enters ⟨JCR⟩
(and the same is true for nCR) through the normalization of the probability distribution. It
is then clear that any dependence on R will disappear when δA1 is obtained as the ratio
between ⟨JCR⟩ and nCR. Both panels of Fig. 2 show very clearly the strong dependence
of the strength of anisotropy on the specific realization of source distribution, thereby also
disproving the naive expectation that the anisotropy should be a growing function of energy
with the same slope as the diffusion coefficient D(E). Whenever the small scale contribution
is not negligible, the observed anisotropy can in fact even be a non monotonic function of
energy, with dips and bumps, and with wide energy regions in which it is flat with energy,
quite like what the data show at energies E < 105 GeV. It is interesting however that none
of our realizations of the source distribution leads to anisotropies as low as the one suggested
by the data in the energy region 105 − 106 GeV (contributed by the EASTOP experiment).

Data in this region are in fact somewhat puzzling because they are so low as to suggest
that the Compton-Getting effect [25] leads to a level of anisotropy close to the lowest expected
limit. The Compton-Getting anisotropy is estimated to be between 3 × 10−4 and 10−3

depending on the velocity with which the Earth moves with respect to the rest-frame of the
CR scattering centers. This velocity is not known and the above estimates refer to a velocity
range from a minimum of ∼ 20 km/s to a maximum of ∼ 250 km/s, corresponding to the
motion of the solar system through the Galaxy [26]. It is clear that the measured anisotropy
between 105 and 106 GeV is only marginally consistent with a velocity of few tens of km/s
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[Blasi & Amato’12]

[Erlykin & Wolfendale’06; Sveshnikova et al.’13; Pohl & Eichler’13]
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Local Magnetic Field
• strong ordered magnetic fields in the

local environment

Ü diffusion tensor reduces to projector:

Kij →
B̂iB̂j

3ν‖

• TeV–PeV dipole data consistent with
magnetic field direction inferred by
IBEX data [McComas et al.’09]

• 1–100 TeV phase indicates a local
gradient within longitudes:

120◦ . l . 300◦

• phase flip induced by Vela SNR? [MA’16]

• or a luminous 2Myr old SNR?
[Savchenko, Kachelrieß & Semikoz’15]
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Ü diffusion tensor reduces to projector:
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Map of CR Arrival Directions

Ü Cosmic ray anisotropies up to the level of one-per-mille have been observed at
various energies [Super-Kamiokande’07; Milagro’08; ARGO-YBJ’09,’13;EAS-TOP’09]

[Tibet AS-γ’05,’06,’15;IceCube’10,’11,’16; HAWC’13,’14]Cosmic-Ray Anisotropy in IceCube 7

Figure 3. Relative intensity (left) and pre-trial statistical significance (right) maps shown before (top) and after (bottom) dipole- and
quadrupole-subtraction. The maps are in equatorial coordinates and use an angular smoothing radius of 5�. The dashed line indicates the
Galactic plane and the triangle indicates the Galactic center.

Figure 4. Significance map in the vicinity of Region 1 (see Tab. 2) as previously published using only data taken with the IC59 configu-
ration (Abbasi et al. 2011) with 20� smoothing (left) and for the full data set used in this analysis with 5� smoothing (right). Maps are
shown in equatorial coordinates.

the IC59 map with 5� smoothing but not at high enough
significance to be previously reported.

The angular power spectrum for the six-year data set
is shown in Fig. 5. Similar to previous work, it is cal-
culated using PolSpice (Szapudi et al. 2001; Chon et al.
2004), which corrects for systematic e↵ects introduced by
partial-sky coverage. The power spectrum is calculated
for the unsmoothed data map and is shown before (blue)
and after (red) subtracting the dipole and quadrupole
functions from the sky map. The gray bands indicate
the 68% and 95% spread in the C` for a large number
of power spectra for isotropic data sets generated by in-
troducing Poisson fluctuations in the reference skymap.
The power spectrum confirms the presence of significant
structure up to multipoles ` ' 20, corresponding to an-
gular scales of less than 10�.

The error bars on the C` shown in Fig. 5 are statistical.
We estimate the systematic error caused by the partial-
sky coverage by comparing the angular power spectrum
before and after subtraction of the best-fit dipole and
quadrupole functions. After the subtraction, C1 and C2

are consistent with zero, as expected. In principle, the
two spectra should be identical for all ` � 3, but because
of the partial-sky coverage, the multipole moments are

no longer independent. While PolSpice tries to mitigate
the e↵ect of coupling between multipole moments, a sig-
nificant coupling between the low-` modes remains. As
a consequence, the subtraction of dipole and quadrupole
fits also leads to a strong reduction in the power of the
` = 3, ` = 4, and ` = 5 multipoles. The systematic er-
ror on these multipoles is therefore large, as we cannot
rule out that the presence of these multipoles is entirely
caused by systematic e↵ects. For multipoles ` � 6, the
distortion is much smaller and the spectra agree within
uncertainties. For these moments, the systematic errors
on the C` are therefore at most of the same order as the
statistical errors.

In the unsubtracted power spectrum, the uncertainty
in the lower multipole moments causes the C` value for
` = 5 to be negative — a result of PolSpice’s calculation
of the C` values through the use of the two-point autocor-
relation function. Simulations using artificial sky maps
with strong dipole components indicate that this behav-
ior is typical for the weighting and apodization used in
this analysis (see Abbasi et al. (2011) for details) and is
another indication of the coupling between low-` multi-
poles.

ECR ' 10 TeV, NCR ∼ 3.2× 1011 [IceCube (IC59-IC86-IV)’16]
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Map of CR Arrival Directions

Ü Cosmic ray anisotropies up to the level of one-per-mille have been observed at
various energies [Super-Kamiokande’07; Milagro’08; ARGO-YBJ’09,’13;EAS-TOP’09]

[Tibet AS-γ’05,’06,’15;IceCube’10,’11,’16; HAWC’13,’14]

6 HAWC Collaboration

Figure 4. Relative intensity of the cosmic-ray flux for 113 days of HAWC-95/111, in equatorial coordinates. Right ascension runs from 0◦
to 360◦ from right to left. The solid horizontal line denotes a declination of 0◦. Lines of equal right ascension and declination are separated
by 30◦. The map contains 4.9 × 1010 events. An integration time of ∆t = 24h is used to access the largest features present in the map.
The map is shown with 10◦ smoothing applied.

The relative intensity of the cosmic-ray flux for an inte-
gration time of ∆t = 24h and a smoothing scale θ = 10◦

is shown in Fig. 4. Several significant features appear
in this map. The localized excess region at right ascen-
sion 60◦ and declination −10◦, which roughly coincides
with Region A of the Milagro map and (more accurately)
with Region 1 of the ARGO-YBJ map, dominates the sky
map. In addition, the large-scale structure of the cosmic-
ray flux, with its broad deficit region at 200◦, is clearly
visible in this map. The large-scale structure potentially
distorts any smaller structures, enhancing their excess in
the region near the maximum of the large-scale structure
and suppressing them near the broad minimum. As we
are interested in structure on scales smaller than 60◦,
corresponding to multipoles ℓ > 3, we need to remove
the lower order multipoles from the sky map. We apply
two different methods to remove or suppress the ℓ ≤ 3
term.

In the first method, we directly fit the relative intensity
map to the sum of the monopole (ℓ = 0), dipole (ℓ = 1),
quadrupole (ℓ = 2), and octupole (ℓ = 3) terms of an
expansion in Laplace spherical harmonics Yℓm. The fit
function F (α, δ) therefore has the form

F (αi, δi) =

3∑

ℓ=0

ℓ∑

m=−ℓ

aℓmYℓm(π − δi, αi) , (4)

where (αi, δi) are the right ascension and declination of
the ith pixel and the aℓm are the 16 free parameters of
the fit. We then subtract the fit result from the map,
and analyze the residual map.

We perform the fit on the 525 716 pixels of the rela-
tive intensity map that lie in the field of view of HAWC.
The χ2/ndf = 527 282/525 700 corresponds to a χ2-
probability of 6.0%. The marginal probability indicates
that additional smaller structure is still present in the
data. Note that this fit gives a significantly better re-
sult than the fit with ℓmax = 2 only (DC offset + dipole
+ quadrupole), corresponding to a χ2-difference of 262
with 7 degrees of freedom. The residual map in relative

intensity (top) and significance (bottom) are shown in
Fig. 5.

The second method uses a shorter integration time,
∆t = 4 h, to filter any structure with angular extent
greater than 60◦. In Fig. 6, we show the relative intensity
(top) and significance maps (bottom) produced with this
method. A comparison between Fig. 5 and Fig. 6 shows
that the maps are largely equivalent. While regions A
and C agree well in shape and relative intensity, region
B extends into mid-latitudes for the ∆t = 4h map.

There are also regions of strong deficits visible, typ-
ically on both sides of the strong excess regions. The
appearance of these deficit regions, correlated with
the excess regions, is a well-known artifact of the
method (Abdo et al. 2008). They appear because the
background near strong excesses is overestimated due to
the fact that the excess events are part of the background
estimation.

The two methods to remove the large-scale anisotropy
are affected by different systematic uncertainties. Esti-
mating the background using ∆t = 24h and explicitly
subtracting lower order multipoles should, in principle,
minimize artifacts from the presence of strong excesses
described above. However, because of the incomplete sky
coverage, the removal of the lower order multipoles can
potentially affect higher order terms, too. This effect
is studied with the angular power spectrum analysis de-
scribed in Section 4.3 and is found to be small in HAWC
data. Filtering the low order multipoles by choosing a
short integration time ∆t also influences higher order
multipoles (in a less transparent way than the direct sub-
traction), and it depends on the choice of ∆t.

In the following analysis, we estimate the systematic
error on the relative intensity of cosmic-ray excess regions
by comparing the intensity obtained with the two meth-
ods, and, in addition, by comparing two different integra-
tion times (3 h and 4 h) which are both found to preserve
the power in the higher order multipoles of the angular
power spectrum (Section 4.3). The larger difference of
the two alternative methods is taken as the systematic
uncertainty reported in Section 4.2 for the various regions

ECR ' 1 TeV, NCR ∼ 4.9× 1010 [HAWC’14]
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Suggested Origin of Small-Scale Anisotropy

• local magnetic field structure with energy-dependent magnetic mirror leakage
[Drury & Aharonian’08]

• preferred CR transport directions [Malkov, Diamond, Drury & Sagdeev’10]

• magnetic reconnections in the heliotail [Lazarian & Desiati’10]

• non-isotropic particle transport in the heliosheath [Desiati & Lazarian’11]

• heliospheric electric field structure [Drury’13]

• magnetized outflow from old SNRs [Biermann, Becker, Seo & Mandelartz’12]

• strangelet production in molecular clouds or neutron stars
[Kotera, Perez-Garcia & Silk ’13]

Ü small-scale anisotropies from local magnetic field mapping of a global dipole
[Giacinti & Sigl’12; MA’14; MA & Mertsch’15]
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Analogy to Gravitational Lensing
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Gedanken Experiment

• Idea: local realization of magnetic turbulence introduces small-scale structure
[Giacinti & Sigl’11]

• Particle transport in (static) magnetic fields is governed by Liouville’s equation of
the CR’s phase-space distribution f :

ḟ (t, x, p) = 0

• “trivial” solution:
f (0, 0, p) = f (−T, x(−T), p(−T))

• Gedanken Experiment:
Assume that at look-back time −T initial condition is homogenous, but not
isotropic:

f (0, 0, p) = f̃ (p(−T))
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Angular Power Spectrum

• Every smooth function g(θ, φ) on a sphere can be decomposed in terms of
spherical harmonics Y`m:

g(θ, φ) =
∞∑
`=0

∑̀
m=−`

a`mYm
` (θ, φ) ↔ a`m =

∫
dΩ(Ym

` )∗(θ, φ)g(θ, φ)

• angular power spectrum:

C` =
1

2`+ 1

∑̀
m=−`

|a`m|2

• related to the two-point auto-correlation function: (n1/2 : unit vectors, n1 · n2 = cos η)

ξ(η) =
1

8π2

∫
dn1

∫
dn2δ(n1n2 − cos η)g(n1)g(n2) =

1
4π

∑
`

(2`+ 1)C`P`(cos η)

Ü Note that individual C`’s are independent of coordinate system (assuming full
sky coverage).
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Gedanken Experiment (continued)

• Initial configuration has power spectrum C̃`.

• For small correlation angles η flow remains
correlated even beyond scattering sphere.

• Correlation function for η = 0:

ξ(0) =
1

4π

∫
dp̂1 f̃

2
(p1(−T))

scattering length

p1

p2

p2(-T)

p1(-T)

• On average, the rotation in an isotropic random rotation in the turbulent magnetic
field leaves an isotropic distribution on a sphere invariant:

〈ξ(0)〉 =
1

4π

∫
dp̂1 f̃

2
(p1)

Ü The weighted sum of 〈C`〉’s remains constant:

1
4π

∑
`≥0

(2`+ 1)C̃` =
1

4π

∑
`≥0

(2`+ 1) 〈C`(T)〉
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Evolution Model
• Diffusion theory motivates that each 〈C`〉 decays exponentially with an effective

relaxation rate [Yosida’49]

ν` ∝ L2 ∝ `(`+ 1)

• A linear 〈C`〉 evolution equation with generation rates ν`→`′ requires:

∂t〈C`〉 = −ν`〈C`〉+
∑
`′≥0

ν`′→`
2`′ + 1
2`+ 1

〈C`′〉 with ν` =
∑
`′≥0

ν`→`′

• For ν` ' ν`→`+1 and C̃` = 0 for l ≥ 2 this has the analytic solution:

〈C`〉(T) ' 3C̃1

2`+ 1

`−1∏
m=1

νm

∑
n

∏̀
p=1(6=n)

e−Tνn

νp − νn

• For ν` ' `(`+ 1)ν we arrive at a finite asymptotic ratio:

lim
T→∞

〈C`〉(T)

〈C1〉(T)
' 18

(2`+ 1)(`+ 2)(`+ 1)

Markus Ahlers (UW-Madison) Cosmic-Ray Anisotropy June 21, 2016 slide 21



Comparison with CR Data
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[MA’14; updated with HAWC data]

lim
T→∞

〈C`〉(T)

〈C1〉(T)
' 18

(2`+ 1)(`+ 2)(`+ 1)
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Multipole Cross-Talk
• relative intensity

I(α, δ) = 1 +
∑
`≥1

∑
m 6=0

a`mY`m(α, π/2− δ)

• dipole: a1−1 = (δ0h + iδ6h)
√

2π/3 and a11 = −a∗1−1

• traditional dipole analyses extract amplitude “A1” and phase “α1” from data
projected into right ascension (s1/2 ≡ sin δ1/2)

A1eiα1 =
1
π

∫ 2π

0
dαeiα 1

s2 − s1

∫ s2

s1

d sin δ I(α, δ)︸ ︷︷ ︸
projection

• the presence of high-` multipole moments introduces cross-talk:

A1eiα1 =
∑
`

1
s1 − s2

√
(2`+ 1)

π`(`+ 1)

s2∫
s1

ds P1
`(s)a`−1

Ü Can now estimate the systematic uncertainties of dipole measures from
dipole-induced small-scale power spectrum.
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Systematic Uncertainty of CR Dipole
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Systematic Uncertainty of CR Dipole
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Simulation via Backtracking
• Consider a local (quasi-)stationary solution of the diffusion approximation:

4π〈 f 〉 ' φ+ r∇φ− 3 p̂ K∇φ︸ ︷︷ ︸
1st linear correction

• backtracking over long time-scales T and evaluating in mean field

4πfi ' 4π δf (−T, ri(−T), pi(−T))︸ ︷︷ ︸
deviation from 〈 f〉

+φ+ [ri(−T)− 3p̂i(−T)K]∇φ

• Ensemble-averaged C`’s (` ≥ 1): [MA & Mertsch’15]

〈C`〉
4π
'
∫

dp̂1

4π

∫
dp̂2

4π
P`(p̂1p̂2) lim

T→∞
〈r1i(−T)r2j(−T)〉︸ ︷︷ ︸

relative diffusion

∂inCR∂jnCR

n2
CR

• Sum of 〈C`〉 related to diffusion tensor:

1
4π

∑
`≥0

(2`+ 1)〈C`〉 ' 2TKs
ij
∂inCR∂jnCR

n2
CR

Markus Ahlers (UW-Madison) Cosmic-Ray Anisotropy June 21, 2016 slide 26



Simulation via Backtracking

• CR arrival direction determined by backtracking of CRs towards a homogeneous
initial dipole anisotropy (ballistic Ü laminar Ü turbulent)

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 -0.10 -0.05 0.00 0.05 0.10 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -1.0 -0.5 0.0 0.5 1.0

• Kolmogorov turbulence with energy density comparable to B0

• two cases: dipole vector aligned with or perpendicular to B0

• asymptotically limited by simulation noise:

N ' 4π
Npix

2TKs
ij
∂inCR∂jnCR

n2
CR
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Movie 1 (link): Sample map of z(−T) with B = B0ez (monopole & dipole removed)

Movie 2 (link): Power spectrum convergence for ∇nCR ‖ B.

Movie 3 (link): Power spectrum convergence for ∇nCR ⊥ B.

Markus Ahlers (UW-Madison) Cosmic-Ray Anisotropy June 21, 2016 slide 28

http://icecube.wisc.edu/~mahlers/sample_map.mp4
http://icecube.wisc.edu/~mahlers/parallel.mp4
http://icecube.wisc.edu/~mahlers/perpendicular.mp4


Comparison to CR Data
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Markus Ahlers (UW-Madison) Cosmic-Ray Anisotropy June 21, 2016 slide 29



Summary

• Large scale anisotropy can be understood in the context of standard diffusion
theory:

• Dipole phase aligns with local ordered magnetic field.
• Amplitude variations as a result of local sources (Vela?).

Ü Need better data (reconstruction & analysis methods).

• Small-scale anisotropy can be a result of local magnetic turbulence:

• Effect analogous to induced high-` multipoles in CMB temperature power
spectrum from gravitational lensing in small-scale structure.

• Ensemble-averaged C`’s (` ≥ 1) related to relative diffusion:

〈C`〉
4π
'
∫

dp̂1

4π

∫
dp̂2

4π
P`(p̂1p̂2) lim

T→∞
〈r1i(−T)r2j(−T)〉︸ ︷︷ ︸

relative diffusion

∂inCR∂jnCR

n2
CR

• issues: damping effects for CR rigidity distributions, partial sky coverage of
experiments, angular resolution, noise. . .
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Thank you for your attention!
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Local Description: Relative Scattering

• evolution of C`’s: [MA & Mertsch’15]

∂t〈C`〉 = − 1
2π

∫
dp̂1

∫
dp̂2P`(p̂1p̂2)〈(p1∇f1 + iωLf1) f2〉

• large-scale dipole anisotropy gives an effective “source term”:

− 1
2π

∫
dp̂1

∫
dp̂2P`(p̂1p̂2)〈(p1∇f1) f2〉 → Q1δ`1

• BGK-like Ansatz for scattering term (〈iωLf 〉 → − ν2 L2〈f 〉) [Bhatnagaer, Gross & Krook’54]

− 1
2π

∫
dp̂1

∫
dp̂2P`(p̂1p̂2)〈(iωLf1) f2〉 →

1
2π

∫
dp̂1

∫
dp̂2P`(p̂1p̂2)ν̃(p̂1p̂2)L2〈f1f2〉

• Note that ν̃(1) = 0 for vanishing regular magnetic field.

ν̃(x) ' ν0(1− x)p
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Convergence of Power Spectrum
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Simulated Turbulence

• 3D-isotropic turbulence: [Giacalone & Jokipii’99]

δB(x) =
N∑

n=1

A(kn)(an cosαn + bn sinαn) cos(knx + βn)

• αn and βn are random phases in [0, 2π), unit vectors an ∝ kn × ez and bn ∝ kn × an

• with amplitude

A2(kn) =
2σ2B2

0G(kn)∑N
n=1 G(kn)

with G(kn) = 4πk2
n

kn∆lnk
1 + (knLc)γ

• Kolmogorov-type turbulence: γ = 11/3

• N = 160 wavevectors kn with |kn| = kmine(n−1)∆lnk and ∆lnk = ln(kmax/kmin)/N

• λmin = 0.01Lc and λmax = 100Lc [Fraschetti & Giacalone’12]

• rigidity: rL = 0.1Lc

• turbulence level: σ2 = B2
0/〈δB2〉 = 1
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Powerspectrum of CR Arrival Directions
Ü Cosmic ray anisotropies up to the level of one-per-mille have been observed at

various energies
[Tibet AS-γ’05,’06; Super-Kamiokande’07; Milagro’08; ARGO-YBJ’09,’13;EAS-TOP’09]

[IceCube’10,’11; HAWC’13,’14]
8 M. G. Aartsen et al.

Figure 5. Angular power spectra for the relative intensity map for six years of IceCube data. Blue and red points show the power spectrum
before and after the subtraction of the best-fit dipole and quadrupole terms from the relative intensity map. Error bars are statistical (see
the text for a discussion of systematic errors). The gray bands indicate the 68% (dark) and 95% (light) spread in the C` for a large sample
of isotropic data sets. The power spectrum is calculated using the unsmoothed map.

4.2. Energy Dependence of Anisotropy

To study the energy dependence of the cosmic-ray
anisotropy, we split the data into the nine energy bins de-
scribed in Section 3.2. This results in a sequence of maps
with increasing median energy, starting from 13TeV for
the lowest-energy bin to 5.3 PeV for the highest-energy
bin. The sky maps in relative intensity for all nine en-
ergy bins in equatorial coordinates are shown in Fig. 6.
In addition to the nine maps based on IceCube data,
we also show the IceTop map with its median energy of
1.6 PeV. Because of the reduced statistics in these maps,
we have applied a top-hat smoothing procedure with a
smoothing radius of 20� to all, improving the sensitivity
to larger structure. Note that the relative intensity scale
for these plots is identical for energies up to 580TeV,
where it then switches to a di↵erent scale to account for
the strong increase in relative intensity. For the IceTop
bins with 580 TeV, 1.4PeV, and 5.4 PeV median energy
and for the IceTop data, Fig. 7 shows the sky maps in
statistical significance.

The maps clearly indicate a strong energy dependence
of the global anisotropy. The large excess from 30� to
120� and deficit from 150� to 250� that dominate the sky
map at lower energies gradually disappear above 50 TeV.
Above 100 TeV a change in the morphology is observed.
At higher energies, the anisotropy is characterized by a
wide relative deficit from 30� to 120�, with an amplitude
increasing with energy up to at least 5 PeV, the highest
energies currently accessible to IceCube. To illustrate
the phase change, the relative intensity sky maps are
shown in polar coordinates in Fig. 8. It is important to
note that the time-scrambling method used to calculate
the reference map decreases in sensitivity as we approach
the polar regions. This e↵ect is clearly visible in Fig. 8,
where the relative intensity approaches zero at the pole
for each map, but is not indicative of the morphology of
the true anisotropy.

Because of the poor energy resolution, it is di�cult to

accurately determine the energy where the transition in
anisotropy occurs and how rapid the transition is. To il-
lustrate the energy dependence of the phase and strength
of the anisotropy, we show in Fig. 9 amplitude (left) and
phase (right) of the dipole moment as a function of en-
ergy. Both values are calculated by fitting the set of
harmonic functions with n  3 to the projection of the
two-dimensional relative intensity map (Fig. 6) in right
ascension,

3X

n=0

An cos[n(↵� �n)] , (1)

where An is the amplitude and �n is the phase of the nth

harmonic term, respectively. The fit is performed on a
projection with a 5� bin width in right ascension. We fit
the one-dimensional projection in right ascension rather
than the full sky map because the two-dimensional fit
of spherical harmonics to the map is di�cult to perform
with a limited field of view. As a result of the method
we apply to generate the reference map, the sky map will
in any case only show the projection of any dipole com-
ponent, so the one-dimensional fit is su�cient to study
the energy dependence of the dominant dipole. The val-
ues for the projections in each energy bin are provided
in Tab. 3.

The red data points in Fig. 9 are based on the Ice-
Top data. While the phase agrees well with that of
the IceCube data at similar energies, the amplitude of
the anisotropy is larger for the IceTop data than for
any IceCube energy bin. A possible explanation for the
di↵erence could be the di↵erent chemical composition
of the IceCube and IceTop data sets. Table 4 shows
the relative composition of cosmic rays detected in Ice-
Cube and IceTop according to simulation, based on a
primary cosmic-ray composition according to the model
by Hörandel (2003). For IceCube, we list the composi-
tion for all nine energy bins. Elements are grouped in

[IceCube [arXiv:1603.01227]]
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Powerspectrum of CR Arrival Directions
Ü Cosmic ray anisotropies up to the level of one-per-mille have been observed at

various energies
[Tibet AS-γ’05,’06; Super-Kamiokande’07; Milagro’08; ARGO-YBJ’09,’13;EAS-TOP’09]

[IceCube’10,’11; HAWC’13,’14]10 HAWC Collaboration

Figure 8. Angular power spectra of the unsmoothed relative intensity map (Fig. 4) before (blue) and after (red) fitting and subtraction of
the dipole, quadrupole, and octupole moments (ℓ ≤ 3). The error bars on the Cℓ are statistical. Note that the ℓ < 3 terms in the residual
spectrum are not shown because they were found to be compatible with zero within statistical uncertainties. The gray bands show the 68%
and 95% spread of the Cℓ for isotropic data sets.

from the diagonal components of the covariance matrix
(see Efstathiou (2004) for a detailed discussion). The
gray bands in Fig. 8 indicate the 68% and 95% spread
of the Cℓ around the median for a large number of rel-
ative intensity maps representing isotropic arrival direc-
tion distributions. These isotropic skymaps were gener-
ated by comparing the counts from the reference map to
a Poisson-fluctuated reference map.

The angular power spectrum of the relative intensity
map shows, as expected, a strong dipole (ℓ = 1) and
quadrupole (ℓ = 2) moment. With increasing ℓ, the
strength of the corresponding moments Cℓ decreases, but
higher order multipoles up to ℓ = 15 still contribute
significantly to the sky map. After subtraction of the
dipole, quadrupole, and octupole (ℓ = 3) moments by the
fit method described above, the dipole and quadrupole
moments are missing in the spectrum and the octupole
moment is diminished by two orders of magnitude. All
other moments are still present and, excluding ℓ = 4,
have the same strength as in the original map given sta-
tistical uncertainties. This indicates that the procedure
described above is successful in reducing the correlation
between the different ℓ modes caused by the incomplete
sky coverage. However, the fact that the octupole mo-
ment is not completely removed after the fit shows that
some correlation between modes persists.

As mentioned in Section 4.1, sky maps produced with
the direct integration method to estimate the reference
level are potentially biased because the method can mask
or reduce the strength of declination-dependent struc-
tures. Since the angular power spectrum is based on
these sky maps, it is also affected by this limitation of
the technique. The effect can lead to an underestima-
tion of the power in certain multipoles, especially those
with low ℓ, and might thus distort the shape of the power
spectrum. It also complicates comparisons between the
measured power spectrum and theoretical predictions.

However, the angular power spectrum remains a power-
ful diagnostic tool, for example in the evaluation of the
two methods used to eliminate large-scale structure de-
scribed in Section 4.1.

4.4. Study of the Region A Excess

The study of Region A in Milagro data showed that the
spectrum of the cosmic-ray flux in this region is harder
than the isotropic cosmic-ray flux, with a possible cut-
off around 10TeV. At this point, a detailed study of the
energy dependence of the flux in the excess regions with
HAWC is not possible. Energy estimators based on the
tank signal as a function of distance to the shower core
are currently being developed, but these techniques will
only reach their full potential with data from the com-
plete 300-tank detector. Here, we perform a study based
on a simple energy proxy that is based on the number
of PMTs in the event and the zenith angle of the cosmic
ray. In Fig. 9, we show the median cosmic-ray energy
as a function of these two parameters, based on simu-
lations. As expected, for a fixed number of PMTs, the
median energy rises with zenith angle, as the shower has
to traverse a larger integrated atmospheric depth.

Based on this plot, we identify 7 bins in median energy
given by (1.7+6.6

−1.3)TeV, (3.2+10.9
−2.4 )TeV, (5.6+14.2

−3.9 ) TeV,

(8.4+20.3
−5.9 )TeV, (9.8+24.8

−6.7 ) TeV, (14.1+28.7
−9.9 )TeV, and

(19.2+32.3
−13.3)TeV, respectively. We define Region A as

all pixels within a radius of 10◦ about the center at
(α, δ) = (60.0◦, −7.1◦). The relative intensity of the
cosmic-ray flux in Region A is then obtained using the
sum of all the angular bins in this region, for the 7 me-
dian energy bins. To check the technique we also use
the amplitude of a two-dimensional Gaussian fit to the
relative intensity map. Since the relative intensity of the
excess as a function of radial distance to the center is
relatively flat near the center, the methods give similar
results.

[HAWC [arXiv:1408.4805]; note: low−` power under-estimated]
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