Issues on CR propagation and local sources

Kfir Blum
Weizmann Institute

MACROS 2016 PSU

Positrons and antiprotons

Positrons and antiprotons

> global, steady state, homogeneous diffusion model, calibrated on old nuclear data

> global, steady state, homogeneous diffusion model

diffusion model constructed to give a large-scale description
Ginzburg \& Ptuskin, Rev.Mod.Phys. 48 (1976) 161-189
Strong, Moskalenko, Ptuskin, Ann.Rev.Nucl.Part.Sci. 57 (2007) 285-327

Irwin et al, ApJ 144(2012) [stacking 30 galaxies]

Positrons and antiprotons

What's consistent w/ old global models and what not?
Model building hints in data

- Antiprotons vs. B/C
- e+

antiprotons

$$
\frac{n_{\bar{p}}}{n_{\text {Boron }}}=\frac{Q_{\bar{p}}}{Q_{\text {Boron }}}
$$

$$
\frac{J_{\bar{p}}}{J_{p}}=10^{1-\gamma_{p}} \zeta_{\bar{p}, A>1} C_{\bar{p}, p p} \frac{\sigma_{p p, \text { inel }}}{m_{p}} \frac{X_{\mathrm{esc}}}{1+\frac{\sigma_{\overline{\bar{p}}}}{m_{p}} X_{\mathrm{esc}}}
$$

$$
X_{\mathrm{esc}}=\frac{\frac{n_{B}}{n_{C}}}{\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) \frac{n_{i}}{n_{C}}-\left(\frac{\sigma_{B}}{\bar{m}}\right) \frac{n_{B}}{n_{C}}}
$$

antiprotons vs. boron (AMS02 2014): results

antiprotons vs. boron (AMS02 2014)

$$
\frac{n_{\bar{p}}}{n_{\text {Boron }}}=\frac{Q_{\bar{p}}}{Q_{\text {Boron }}}
$$

Consistent w/ secondary.

Changing $C \rightarrow B$ cross sec' from $72: 8 \mathrm{mb}$ to 60 mb (at fixed C/NO contribution)

antiprotons vs. boron (AMS02 2014)

Positrons and antiprotons

What's consistent w/ old global models and what not?
Model building guidelines in data

- Antiprotons vs. B/C consistent w/ secondary, no problem w/ global models
- e+
positrons

$$
\frac{J_{e^{+}}}{J_{p}}=f_{e^{+}} \times 10^{1-\gamma_{p}} \zeta_{e^{+}, A>1} C_{e^{+}, p p} \frac{\sigma_{p p, \text { inel }}}{m_{p}} X_{\mathrm{esc}}
$$

$$
\frac{J_{e^{+}}}{J_{p}}=f_{e^{+}} \times 10^{1-\gamma_{p}} \zeta_{e^{+}, A>1} C_{e^{+}, p p} \frac{\sigma_{p p, \text { inel }}}{m_{p}} X_{\mathrm{esc}}
$$

e+ lose energy through IC and synchrotron radiation.
The amount of loss depends on the propagation time $t_{\text {esc }}$ vs. energy loss time $t_{\text {cool }}$
e+ data itself is the first (semi-)direct observational probe of $t_{\text {esc }}$.

What we can say:

$$
f_{e^{+}}<1
$$

AMSO2 (2013): results

Katz et al, MNRAS 405 (2010) 1458
Blum, Katz, Waxman, PRL 111, 211101 (2013)

AMS02 (2014 I+II) (last error bar: rough estimate)

A clean test: $\quad e^{+} / \bar{p}$

branching fraction in pp collision:

$$
\frac{J_{e^{+}}}{J_{\bar{p}}} \lesssim \frac{C_{e^{+}, p p}(\varepsilon)}{C_{\bar{p}, p p}(\varepsilon)}=\frac{Q_{e^{+}, p p}}{Q_{\bar{p}, p p}}
$$

Katz et al, MNRAS 405 (2010) 1458

A clean test: $\quad e^{+} / \bar{p}$

branching fraction in pp collision:

$$
\frac{J_{e^{+}}}{J_{\bar{p}}} \lesssim \frac{C_{e^{+}, p p}(\varepsilon)}{C_{\bar{p}, p p}(\varepsilon)}=\frac{Q_{e^{+}, p p}}{Q_{\bar{p}, p p}}
$$

Katz et al, MNRAS 405 (2010) 1458

Positrons and antiprotons

What's consistent w/ old global models and what not?
Model building guidelines in data

- Antiprotons vs. B/C consistent w/ secondary, no problem w/ global models
- e+ consistent w/ robust calculation for secondary
inconsistent w/ common diffusion model

Other ideas:

- Local, non steady state sources
- Pulsars
up to now: dry particle physics perspective

Other ideas:

- Local, non steady state sources
- Pulsars
now: astrophysics

Other ideas:

- Local, non steady state sources
- Pulsars
nearby supernova $O(100 \mathrm{pc})$ away and 10^{6} years ago
Savchenko, Kachelries, Semikoz, ApJ809 (2015)
Kchelries, Neronov, Semikoz, PRL115 (2015)
Giacinti, Kachelries, Semikoz, PRD91 (2015)
Giacinti, Kachelries, Semikoz, PRD88 (2013)
Secondary e+ and pbar from same spectrum p (should add C, B/C?)

Age of 200 GV CR is $\sim \mathbf{O}$ (1 Myr)

200GV CR live in local ISM density $\sim 1 \mathrm{mp} / \mathrm{cm}^{3}$

Calibrating global diffusion model from local nuclei would be wrong

Other ideas:

- Local, non steady state sources
- Pulsars
a supernova in a dense gas cloud 200pc away and 10^{5} years ago
Kohri, Ioka, Fujita, Yamazaki, 1505.01236
See also e.g. Ohira, Kawanaka, loka, PRD93(2016)

Other ideas:

- Local, non steady state sources
- Pulsars
a supernova in a dense gas cloud 200pc away and Kohri, Ioka, Fujita, Yamazaki, 1505.01236
See also e.g. Ohira, Kawanaka, loka, PRD93(2016)

Other ideas:

- Local, non steady state sources
- Pulsars
a supernova in a dense gas cloud 200pc away and 10^{5} years ago
Kohri, Ioka, Fujita, Yamazaki, 1505.01236
See also e.g. Ohira, Kawanaka, Ioka, PRD93(2016)

Other ideas:

- Local, non steady state sources
- Pulsars

Profumo, Central Eur.J.Phys. 10 (2011) 1-31

Yuksel, Kistler, Stanev, PRL103.051101 (2009)

Other ideas:

- Local, non steady state sources
- Pulsars

Why would pulsars inject this e+ flux?

Profumo, Central Eur.J.Phys. 10 (2011) 1-31

Other ideas:

- Local, non steady state sources
- Pulsars

Why would pulsars inject this e+ flux?

Summary

pbar consistent with secondary (pbar/p)/(B/C) e+ consistent w/ pbar
e+ rule out canonical diffusion model
secondary e+ require $\mathrm{t}_{\text {esc }} \sim \mathrm{t}_{\text {cool }}$ (why?)
\rightarrow R-dependent mean ISM density
CR containment region may vary w/ R (why not?) inferred density at 300GV ~ density of MW gas disc

Local secondary source/non steady state: $\mathrm{pbar} / \mathrm{p}$ consistent $\mathrm{w} / \mathrm{B} / \mathrm{C} \rightarrow$ source better spalate nuclei. If dominate $\mathrm{pbar} / \mathrm{p}$, should also dominate $\mathrm{B} / \mathrm{C}, \ldots \mathrm{p}$ and $\mathrm{C} \ldots$

Pulsar/dark matter:
Why would a primary source inject this $\mathrm{J}_{\mathrm{e}+}$?
Future tests w/ AMS02: radioactive nuclei at 10-100GV

Thank you!

Xtras

Interpretation: model dependence

Interpretation: model dependence

$$
\begin{aligned}
f_{e+}^{\mathrm{LBM}}(\epsilon) & =\frac{t_{c}(\epsilon)}{t_{e}(\epsilon)} \int_{1}^{\infty} d x x^{-\gamma_{i}} \exp \left[-\frac{t_{c}(\epsilon)}{t_{e}(\epsilon)} \frac{1-x^{\delta-1}}{1-\delta}\right] \longrightarrow \frac{1}{\gamma_{i}-1} \frac{t_{c}(\epsilon)}{t_{e}(\epsilon)} \\
f_{e+}^{\mathrm{diff}}(\epsilon) & =\sqrt{\frac{t_{c}(\epsilon)}{t_{e}(\epsilon)}} \sqrt{\frac{1-\delta}{\pi}} \int_{1}^{\infty} d x \frac{x^{-\gamma_{i}}}{\sqrt{1-x^{\delta-1}}} \sum_{n=-\infty}^{\infty}(-1)^{n} \exp \left[-\frac{1-\delta}{1-x^{\delta-1}} \frac{t_{c}(\epsilon)}{t_{e}(\epsilon)} n^{2}\right] \\
& \longrightarrow \sqrt{\frac{t_{c}(\epsilon)}{t_{e}(\epsilon)}} C_{\text {diff }}\left(\gamma_{i}, \delta\right), \quad C_{\text {diff }}(2.7,0.4) \approx 0.8
\end{aligned}
$$

Interpretation: model dependence

Interpretation:

$B / C: \quad X_{\text {esc }} \approx g\left(\frac{R}{10 \mathrm{CV}}\right)^{-0.4} \mathrm{~g} \mathrm{~cm}^{-2}$

Common diffusion models: $\mathrm{t}_{\text {esc }} \sim \mathrm{X}_{\text {esc }}$

$$
\begin{aligned}
& \rho \sim X_{\text {disc }} / L, X_{\text {esc }} \sim(L / D) c X_{\text {disc }}, \\
& t_{\text {esc }} \sim X_{\text {esc }} / \rho c \sim L^{2} / D,
\end{aligned}
$$

because L is constant, $t_{\text {esc }} \sim X_{\text {esc }} \sim R^{-0.4}$

Inconsistent w/ diffusion model

Generally inconsistent w/ steady-state secondary if scale size of system is R-independent

R~10GV

R~300GV

More general (still steady state) set-up: ρ depends on CR rigidity

$$
X_{\text {esc }}=c \bar{\rho} t_{\text {esc }} \rightarrow t_{\text {esc }}=5 \mathrm{Myr}\left(\frac{\bar{\rho}}{m_{p} \mathrm{~cm}^{-3}}\right)^{-1}\left(\frac{\mathcal{R}}{10 \mathrm{GV}}\right)^{-0.4}
$$

* More energetic CR fail to return from far above disc
* Leads to ρ rising w/ CR rigidity

Interpretation for secondary production
$\mathrm{t}_{\mathrm{c}} / \mathrm{t}_{\text {esc }}$ constant or growing $\mathrm{w} /$ rigidity?

———LBM $\left(y_{i}=2.7\right)$
----- LBM ($y_{i}=2$)
__ diffusion ($\gamma_{i}=2.7$)
----- diffusion $\left(\gamma_{i}=2\right)$

Interpretation for secondary production
$\mathrm{t}_{\mathrm{c}} / \mathrm{t}_{\text {sc }}$ constant or growing $\mathrm{w} /$ rigidity?

Comments:

- Cooling time for $300 \mathrm{GV} \mathrm{e}+$ is $\sim 1 \mathrm{Myr}$.
 Setting $\mathrm{t}_{\text {sc }} \sim \mathrm{t}_{\mathrm{c}}$, we get $\rho \sim 1 \mathrm{~m}_{\rho} / \mathrm{cm}^{3}$, like in gas disc

Interpretation for secondary production
$\mathrm{t}_{\mathrm{c}} / \mathrm{t}_{\text {esc }}$ constant or growing $\mathrm{w} /$ rigidity?

Comments:

- Other things happen around 200GV?

Escape time falling fast w/ energy: implication for CR injection spectrum

$$
\text { Expect: } \quad J_{p, \text { inject }} \propto \mathcal{R}^{-\gamma_{0}}, \quad \gamma_{0} \gtrsim 2
$$

Worry in literature: "if $t_{\text {esc }} \sim R^{-1}$ then..."

$$
\begin{gathered}
J_{p, \text { obs }} \sim t_{\mathrm{esc}} \times J_{p, \text { inject }} \propto \mathcal{R}^{-\gamma_{0}-1} \sim \mathcal{R}^{-2.8} \\
\gamma_{0}<2
\end{gathered}
$$

Escape time falling fast w/ energy: implication for CR injection spectrum

Expect: $\quad J_{p, \text { inject }} \propto \mathcal{R}^{-\gamma_{0}}, \quad \gamma_{0} \gtrsim 2$

Worry in literature: "if $t_{\text {sc }} \sim R^{-1}$ then..."

$$
\begin{gathered}
J_{p, \text { obs }} \sim t_{\mathrm{esc}} \times J_{p, \text { inject }} \propto \mathcal{R}^{-\gamma_{0}-1} \sim \mathcal{R}^{-2.8} \\
\gamma_{0}<2
\end{gathered}
$$

Answer: worry is based on constant halo assumption, that may be incorrect.
Steady state scaling is $\quad J_{p, \text { obs }} \sim \frac{Q_{p} \times t_{\mathrm{esc}}}{V} \propto \frac{J_{p, \text { inject }} \times t_{\mathrm{esc}}}{V}$
V could depend on rigidity: $\mathrm{V}=\mathrm{V}(\mathrm{R})$
Example: homogeneous thin-disc diffusion, $\mathrm{V} \sim \mathrm{L}=\mathrm{L}(\mathrm{R})$
$t_{\mathrm{esc}} \propto \frac{L^{2}}{D}, \quad X_{\mathrm{esc}} \propto \frac{L c}{D} \times X_{\mathrm{disc}}$
$\rightarrow J_{p, \mathrm{obs}} \sim X_{\mathrm{esc}} \times J_{p, \text { inject }} \propto \mathcal{R}^{-\gamma_{0}-0.4} \sim \mathcal{R}^{-2.8}$
based on: Porter \& Strong, astro-ph/0507119

What is the cooling time of CR $\mathrm{e} \pm$?

K-N bump @E~10-100 GeV due to starlight.

```
Index ~ 0.8-0.9
t cool ~ 1 Myr@ @ 300 GeV
```


Global diffusion model was tuned to fit local stable nuclei

Maurin et al, Astrophys.J.555:585-596,2001

Global diffusion model was tuned to fit local stable nuclei

diffusion models fit grammage: $\quad X_{\text {esc }}=X_{\text {disc }} \frac{L c}{2 D} \frac{2 R}{L} \sum_{k=1}^{\infty} J_{0}\left[v_{k}\left(r_{\mathrm{s}} / R\right)\right] \frac{\tanh \left[v_{k}(L / R)\right]}{v_{k}^{2} J_{1}\left(v_{k}\right)}$ Katz et al, MNRAS 405 (2010) 1458

Other ideas:

- Local, non steady state sources
- Pulsars

remember this?

Profumo, Central Eur.J.Phys. 10 (2011) 1-31
2. Propagation time scales: radioactive nuclei
\rightarrow Secondary radioactive nuclei carry time info (like positrons)

reaction	$t_{1 / 2}$ [Myr]	σ [mb]
${ }_{4}^{10} \mathrm{Be} \rightarrow{ }_{5}^{10} \mathrm{~B}$	1.51 (0.06)	210
${ }_{13}^{26} \mathrm{Al} \rightarrow{ }_{12}^{26} \mathrm{Mg}$	0.91 (0.04)	411
${ }_{17}^{36} \mathrm{Cl} \rightarrow{ }_{18}^{36} \mathrm{Ar}$	0.307 (0.002)	516
${ }_{25}^{54} \mathrm{Mn} \rightarrow{ }_{26}^{54} \mathrm{Fe}$	0.494 (0.006)*	685

How to compare radioactive decay of a nucleus, with energy loss of e+?
e+

We'll get there in a few slides.

Radioactive nuclei: Charge ratio

A STUDY OF THE SURVIVING FRACTION OF THE COSMIC-RAY RADIOACTIVE DECAY ISOTOPES
${ }^{10} \mathrm{Be},{ }^{26} \mathrm{Al},{ }^{36} \mathrm{Cl}$, and ${ }^{54} \mathrm{Mn}$ AS A FUNCTION OF ENERGY USING THE CHARGE RATIOS $\mathrm{Be} / \mathrm{B}, \mathrm{Al} / \mathrm{Mg}, \mathrm{Cl} / \mathrm{Ar}$, AND $\mathrm{Mn} / \mathrm{Fe}$ MEASURED ON HEAO-3
W. R. Webber ${ }^{1}$ and A. Soutoul

Received 1997 November 6; accepted 1998 May 11
(WS98)

Radioactive nuclei: Charge ratio vs. isotopic ratio

Charge ratios
Isotopic ratios
$\mathrm{Be} / \mathrm{B}, \mathrm{Al} / \mathrm{Mg}, \mathrm{Cl} / \mathrm{Ar}, \mathrm{Mn} / \mathrm{Fe}$

$$
{ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be},{ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al},{ }^{36} \mathrm{Cl} / \mathrm{Cl},{ }^{54} \mathrm{Mn} / \mathrm{Mn}
$$

Radioactive nuclei: Charge ratio vs. isotopic ratio

Charge ratios
Isotopic ratios

$$
\begin{aligned}
& \mathrm{Be} / \mathrm{B}, \mathrm{Al} / \mathrm{Mg}, \mathrm{Cl} / \mathrm{Ar}, \mathrm{Mn} / \mathrm{Fe} \\
& { }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be},{ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al},{ }^{36} \mathrm{Cl} / \mathrm{Cl},{ }^{54} \mathrm{Mn} / \mathrm{Mn}
\end{aligned}
$$

- High energy isotopic separation difficult. Need to resolve mass. Isotopic ratios were measured only up to $\sim 2 \mathrm{GeV} / \mathrm{nuc}$ (ISOMAX)
- Charge separation easier. Charge ratios up to $\sim 16 \mathrm{GeV} / \mathrm{nuc}$ (HEAO3-C2)
(AMS-02: Charge ratios to \sim TeV/nuc. Isotopic ratios $\sim 10 \mathrm{GeV} /$ nuc)
- Benefit: avoid low energy complications; significant range in rigidity
- Drawback: systematic uncertainties (cross sections, primary contamination)

Radioactive nuclei: Charge ratio vs. isotopic ratio

Charge ratios

$\mathrm{Be} / \mathrm{B}, \mathrm{Al} / \mathrm{Mg}, \mathrm{Cl} / \mathrm{Ar}$

Isotopic ratios
${ }^{10} \mathrm{Be} /{ }^{9} \mathrm{Be},{ }^{26} \mathrm{Al} /{ }^{27} \mathrm{Al},{ }^{36} \mathrm{Cl} / \mathrm{Cl}$

Positrons vs. radioactive nuclei

How to compare radioactive decay of a nucleus, with energy loss of e+?
e+
${ }^{10} \mathrm{Be}$

Positrons vs. radioactive nuclei

- Suppression factor due to decay ~ suppression factor due to radiative loss, if compared at rigidity such that cooling time = decay time

Explain:

$$
t_{c}=|\mathcal{R} / \dot{\mathcal{R}}| \propto \mathcal{R}^{-\delta_{c}} \quad \quad n_{e^{+}} \sim \mathcal{R}^{-\gamma}
$$

Positrons vs. radioactive nuclei

- Suppression factor due to decay ~ suppression factor due to radiative loss, if compared at rigidity such that cooling time = decay time

Explain:

$$
t_{c}=|\mathcal{R} / \dot{\mathcal{R}}| \propto \mathcal{R}^{-\delta_{c}} \quad \quad n_{e^{+}} \sim \mathcal{R}^{-\gamma}
$$

Consider decay term of nuclei and loss term of e+ in general transport equation.
decay: $\quad \partial_{t} n_{i}=-\frac{n_{i}}{t_{i}} \quad$ loss: $\quad \partial_{t} n_{e^{+}}=\partial_{\mathcal{R}}\left(\dot{\mathcal{R}} n_{e^{+}}\right)=-\frac{n_{e^{+}}}{\tilde{t}_{c}}$

$$
\tilde{t}_{c}=\frac{t_{c}}{\gamma-\delta_{c}-1}
$$

$$
\gamma \sim 3 \rightarrow \tilde{t}_{c} \approx t_{c}
$$

Comparing with radioactive nuclei

Time scales:
cooling vs decay

Comparing with radioactive nuclei

Time scales:
cooling vs decay

Comparing with radioactive nuclei

Comparing with radioactive nuclei

Comparing with radioactive nuclei

$$
\begin{gathered}
f_{s,{ }^{10} \mathrm{Be}} \approx 0.4 \\
f_{s, e^{+}} \approx 0.3
\end{gathered}
$$

Radioactive nuclei: constraints on $\quad t_{\mathrm{esc}}$

- Cannot (yet) exclude rapidly decreasing escape time
- AMS-02 should do better!

Need to tell between these fits

1. For the first time, limit cosmic ray propagation time @100's GV:

$$
t_{\mathrm{esc}}(E / Z=300 \mathrm{GeV}) \lesssim 1 \mathrm{Myr}
$$

Together with B / C and pbar/p data, this may suggest that high energy CRs do not return from too far above the Galactic gas disc:

$$
\left\langle n_{\mathrm{ISM}}(\mathcal{R})\right\rangle=\frac{X_{\mathrm{esc}}(\mathcal{R})}{c m_{\mathrm{ISM}} t_{\mathrm{esc}}(\mathcal{R})} \sim 1 / \mathrm{cm}^{3} @ \mathrm{R}=300 \mathrm{GV}
$$

\rightarrow AMS updates on B / C together $w / p, \mathrm{He}$, and $\mathrm{e}+$ flux important to check n at yet higher energies.
(will we be led to surprisingly large $n \gg 1$?)
2. As rigidity R increases, loss suppression does not decrease (perhaps even gets closer to unity?),
imply $t_{\text {esc }}(R) / t_{\text {cool }}(R) \sim$ constant (perhaps decreasing?) with R
$\rightarrow \mathrm{t}_{\text {esc }}(\mathrm{R})$ decreases faster than $X_{\text {esc }}(R)$
could do with e.g.
R-dependent boundary
need care w/ e+ production cross section,
as well as consistent $\mathrm{B} / \mathrm{C}, \mathrm{p}, \mathrm{He}$ data.

Radioactive nuclei: data

Surviving fraction vs. energy (WS98)

Radioactive nuclei: data

Suppression factor vs. lifetime

Radioactive nuclei: constraints on $t_{\text {esc }}$

- Rigidity dependence: hints from current data
- Cannot (yet) exclude $\delta<-1$ with $\alpha \lesssim 0.5$
- AMS-02 should do much better!

Radioactive nuclei: constraints on $t_{\text {esc }}$

- Rigidity dependence: hints from current data
- Cannot (yet) exclude $\delta<-1$ with $\alpha \lesssim_{0.3}^{0.4}$
- AMS-02 should do much better!

Stable secondaries with no energy loss (B, pbar, sub-Fe,...)

- Empirical relation: $\quad \frac{n_{A}}{n_{B}}=\frac{Q_{A}}{Q_{B}}$
- $Q_{A}(\mathcal{R})=$ Local net production per unit column density of target, for species A

$$
\frac{n_{A}(\mathcal{R})}{n_{B}(\mathcal{R})}=\frac{Q_{A}(\mathcal{R})}{Q_{B}(\mathcal{R})} \quad \text { equivalent to: } \quad n_{A}(\mathcal{R})=Q_{A}(\mathcal{R}) \times X_{\mathrm{esc}}(\mathcal{R})
$$

- $X_{\text {esc }}=$ "mean column density" $\approx 8.7(\mathrm{R} / 10 \mathrm{GV})^{-0.4} \mathrm{~g} / \mathrm{cm}^{2}$. No species label

Stable secondaries with no energy loss (B, pbar, sub-Fe,...)

Theoretically, this is a natural relation.

Guaranteed to apply if the composition of CRs and ISM is uniform (well mixed) in the region of the Galaxy where spallation happens

$$
\begin{aligned}
& \frac{n_{A}(\mathcal{R})}{n_{B}(\mathcal{R})}=\frac{Q_{A}(\mathcal{R})}{Q_{B}(\mathcal{R})} \quad \text { equivalent to: } \quad n_{A}(\mathcal{R})=Q_{A}(\mathcal{R}) \times X_{\mathrm{esc}}(\mathcal{R}) \\
& \nu \approx 0.29 \times \frac{3 e B}{4 \pi m_{e} c}\left(\frac{\epsilon}{m_{e} c^{2}}\right)^{2} \approx 1 \mathrm{GHz}\left(\frac{B}{1 \mu \mathrm{G}}\right)\left(\frac{\epsilon}{15 \mathrm{GeV}}\right)^{2}
\end{aligned}
$$

NGC 891

Net source per unit column density traversed: production - loss

$$
Q_{B}(\mathcal{R}, \vec{r}, t)=\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) n_{i}(\mathcal{R}, \vec{r}, t)-\left(\frac{\sigma_{B}}{\bar{m}}\right) n_{B}(\mathcal{R}, \vec{r}, t)
$$

$X_{\text {esc }}$

Net source per unit column density traversed: production - loss

$$
Q_{B}(\mathcal{R}, \vec{r}, t)=\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) n_{i}(\mathcal{R}, \vec{r}, t)-\left(\frac{\sigma_{B}}{\bar{m}}\right) n_{B}(\mathcal{R}, \vec{r}, t)
$$

$X_{\text {esc }}$

Net source per unit column density traversed: production - loss

$$
Q_{B}(\mathcal{R}, \vec{r}, t)=\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) n_{i}(\mathcal{R}, \vec{r}, t)-\left(\frac{\sigma_{B}}{\bar{m}}\right) n_{B}(\mathcal{R}, \vec{r}, t)
$$

$X_{\text {esc }}$

Net source per unit column density traversed: production - loss

$$
Q_{B}(\mathcal{R}, \vec{r}, t)=\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) n_{i}(\mathcal{R}, \vec{r}, t)-\left(\frac{\sigma_{B}}{\bar{m}}\right) n_{B}(\mathcal{R}, \vec{r}, t)
$$

High-energy fragmentation $\mathrm{CH} \rightarrow \mathrm{BX}$: B inherits Lorentz factor Γ of parent C So B inherits magnetic rigidity, $\mathrm{R}_{\mathrm{B}} \approx \mathrm{R}_{\mathrm{C}} \quad R=\frac{p}{Z}=\frac{\Gamma A m_{p}}{Z} \approx 2 \Gamma m_{p}$

$x_{\text {esc }}$

Net source per unit column density traversed: production - loss

$$
Q_{B}(\mathcal{R}, \vec{r}, t)=\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) n_{i}(\mathcal{R}, \vec{r}, t)-\left(\frac{\sigma_{B}}{\bar{m}}\right) n_{B}(\mathcal{R}, \vec{r}, t)
$$

High-energy fragmentation $\mathrm{CH} \rightarrow \mathrm{BX}$: B inherits Lorentz factor Γ of parent C So B inherits magnetic rigidity, $\mathrm{R}_{\mathrm{B}} \approx \mathrm{R}_{\mathrm{C}} \quad \quad R=\frac{p}{Z}=\frac{\Gamma A m_{p}}{Z} \approx 2 \Gamma m_{p}$
$\mathrm{CNO} \rightarrow \mathrm{B}:$ accurate to $\mathrm{O}(10 \%) \ldots$


```
x _ { \text { ssc} }
```

Net source per unit column density traversed: production - loss

$$
Q_{B}(\mathcal{R}, \vec{r}, t)=\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) n_{i}(\mathcal{R}, \vec{r}, t)-\left(\frac{\sigma_{B}}{\bar{m}}\right) n_{B}(\mathcal{R}, \vec{r}, t)
$$

In general:
$n_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)=\int d^{3} r \int d t c \rho_{I S M}(\vec{r}, t) Q_{B}(\mathcal{R}, \vec{r}, t) P\left(\mathcal{R} ;\{\vec{r}, t\},\left\{\vec{r}_{\odot}, t_{\odot}\right\}\right)$

$x_{\text {esc }}$

Net source per unit column density traversed: production - loss

$$
Q_{B}(\mathcal{R}, \vec{r}, t)=\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) n_{i}(\mathcal{R}, \vec{r}, t)-\left(\frac{\sigma_{B}}{\bar{m}}\right) n_{B}(\mathcal{R}, \vec{r}, t)
$$

In general:

$$
\begin{aligned}
n_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right) & =\int d^{3} r \int d t c \rho_{I S M}(\vec{r}, t) Q_{B}(\mathcal{R}, \vec{r}, t) P\left(\mathcal{R} ;\{\vec{r}, t\},\left\{\vec{r}_{\odot}, t_{\odot}\right\}\right) \\
& =Q_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right) \int d^{3} r \int d t c \rho_{I S M}(\vec{r}, t) \frac{n_{C}(\mathcal{R}, \vec{r}, t)}{n_{C}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)} P\left(\mathcal{R} ;\{\vec{r}, t\},\left\{\vec{r}_{\odot}, t_{\odot}\right\}\right) F_{B}
\end{aligned}
$$

$$
F_{B}=\frac{\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) \frac{n_{i}(\mathcal{R}, \vec{r}, t)}{n_{C}(\mathcal{R}, \vec{r}, t)}-\left(\frac{\sigma_{B}}{\bar{m}}\right) \frac{n_{B}(\mathcal{R}, \vec{r}, t)}{n_{C}(\mathcal{R}, \vec{r}, t)}}{\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) \frac{n_{i}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)}{n_{C}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)}-\left(\frac{\sigma_{B}}{\bar{m}}\right) \frac{n_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)}{n_{C}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)}}
$$

$\mathrm{X}_{\text {esc }}$

Net source per unit column density traversed: production - loss

$$
Q_{B}(\mathcal{R}, \vec{r}, t)=\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) n_{i}(\mathcal{R}, \vec{r}, t)-\left(\frac{\sigma_{B}}{\bar{m}}\right) n_{B}(\mathcal{R}, \vec{r}, t)
$$

In general:

$$
\begin{aligned}
n_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right) & =\int d^{3} r \int d t c \rho_{I S M}(\vec{r}, t) Q_{B}(\mathcal{R}, \vec{r}, t) P\left(\mathcal{R} ;\{\vec{r}, t\},\left\{\vec{r}_{\odot}, t_{\odot}\right\}\right) \\
& =Q_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right) \int d^{3} r \int d t c \rho_{I S M}(\vec{r}, t) \frac{n_{C}(\mathcal{R}, \vec{r}, t)}{n_{C}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)} P\left(\mathcal{R} ;\{\vec{r}, t\},\left\{\vec{r}_{\odot}, t_{\odot}\right\}\right) F_{B}
\end{aligned}
$$

Uniform composition: $\quad \frac{n_{i}(\mathcal{R}, \vec{r}, t)}{n_{j}(\mathcal{R}, \vec{r}, t)}=f_{i j}(\mathcal{R}) \quad$ independent of r, t

$$
F_{B}=\frac{\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) \frac{n_{i}(\mathcal{R}, \vec{r}, t)}{n_{C}(\mathcal{R}, \vec{r}, t)}-\left(\frac{\sigma_{B}}{\bar{m}}\right) \frac{n_{B}(\mathcal{R}, \vec{r}, t)}{n_{C}(\mathcal{R}, \vec{r}, t)}}{\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) \frac{n_{i}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)}{n_{C}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)}-\left(\frac{\sigma_{B}}{\bar{m}}\right) \frac{n_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)}{n_{C}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)}} \approx 1
$$

$\mathrm{X}_{\text {esc }}$

Net source per unit column density traversed: production - loss

$$
Q_{B}(\mathcal{R}, \vec{r}, t)=\sum_{i=C, N, O, \ldots}\left(\frac{\sigma_{i \rightarrow B}}{\bar{m}}\right) n_{i}(\mathcal{R}, \vec{r}, t)-\left(\frac{\sigma_{B}}{\bar{m}}\right) n_{B}(\mathcal{R}, \vec{r}, t)
$$

In general:

$$
\begin{aligned}
n_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right) & =\int d^{3} r \int d t c \rho_{I S M}(\vec{r}, t) Q_{B}(\mathcal{R}, \vec{r}, t) P\left(\mathcal{R} ;\{\vec{r}, t\},\left\{\vec{r}_{\odot}, t_{\odot}\right\}\right) \\
& =Q_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right) \int d^{3} r \int d t c \rho_{I S M}(\vec{r}, t) \frac{n_{C}(\mathcal{R}, \vec{r}, t)}{n_{C}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)} P\left(\mathcal{R} ;\{\vec{r}, t\},\left\{\vec{r}_{\odot}, t_{\odot}\right\}\right) F_{B}
\end{aligned}
$$

$$
n_{B}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right) \approx Q_{B}(\mathcal{R}) X_{\mathrm{esc}}(\mathcal{R})
$$

$$
X_{\mathrm{esc}}=\int d^{3} r \int d t c \rho_{I S M}(\vec{r}, t) \frac{n_{C}(\mathcal{R}, \vec{r}, t)}{n_{C}\left(\mathcal{R}, \vec{r}_{\odot}, t_{\odot}\right)} P\left(\mathcal{R} ;\{\vec{r}, t\},\left\{\vec{r}_{\odot}, t_{\odot}\right\}\right)
$$

antiprotons

Ginzburg \& Ptuskin, Rev.Mod.Phys. 48 (1976) 161-189

On the origin of cosmic rays: Some problems in highenergy astrophysics*

V. L. Ginzburg

P. N. Lebedev Physical Institute, Acad. Sci. USSR, Moscow, USSR

V. S. Ptuskin

Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation Acad. Sci. USSR, Moscow, USSR
This paper reviews the present state of the problem of the origin of cosmic rays. Primary attention is paid to galactic diffusion models with a halo, and questions of cosmic-ray chemical composition, electron component, and synchrotron galactic radioemission. The authors' conclusion is that models with a large halo with a characteristic cosmic-ray age $T_{\text {cr }} \sim 10^{8}$ years are confirmed by radio data, and at least do not contradict the information on cosmic-ray chemical composition. The paper also deals with the problems of anisotropy, plasma phenomena in cosmic rays, and the prospects of gamma-ray astronomy.

Ginzburg \& Ptuskin, Rev.Mod.Phys. 48 (1976) 161-189
On the origin of cosmic rays: Some problems in highenergy astrophysics*

Abstract

We should note here that the applicability of the diffusion approximations $(2.8)-(2.9)$ to cosmic-ray propagation in the magnetic fields is not at all obvious. For this approximation to be valid it is not enough that the field have a strongly pronounced irregular random component since in this case there also exists a strong tendency for particle propagation along the lines of force of the magnetic field, even if they are rather tangled. But in the

Galaxy, for example, differential rotation and the motion of gas clouds and spiral arms cause a constant mixing of the lines of force. At the same time we are usually interested not only in a picture averaged over rather large space regions (say, regions of tens and hundreds of parsecs) but also in a picture which is extended in time. To estimate average cosmic-ray gradients and their lifetime $T_{\text {сr }}$ in the Galaxy it is in fact sufficient to know the concentration N_{i} averaged for the time $t \ll T_{c r}$ $\sim 10^{6}-10^{8} \mathrm{yr}$, which means that the time of averaging may well be $10^{5} \mathrm{yr}$.

