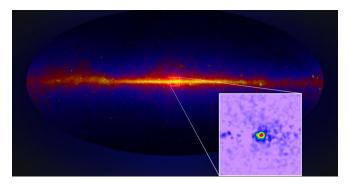
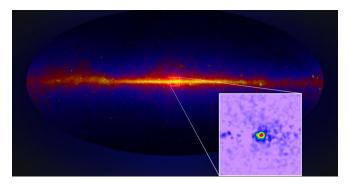

The gamma-ray mystery at the center of the Milky Way


Ben Safdi Massachusetts Institute of Technology

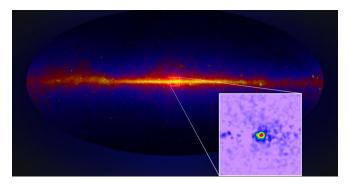
B.S., S. Lee, T. Linden, M. Lisanti, L. Necib, N. Rodd, S. Sharma, T. Slatyer, W. Xue

[JCAP 1505 (2015) , PRL 116 (2016), 1604.01026, 1606.04101]

(ロ) (同) (三) (三) (三) (○) (○)

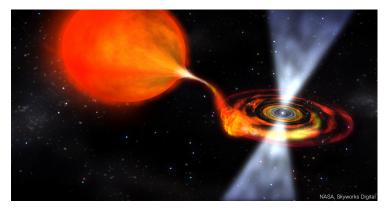

Hints of dark matter annihilation in Fermi data?

 Spherically symmetric excess (consistent with DM annihilation) Goodenough & Hooper, 2009; Fermi 2015; ...


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Hints of dark matter annihilation in Fermi data?

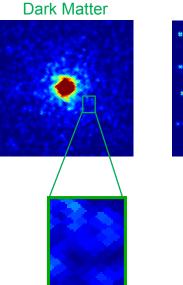
- Spherically symmetric excess (consistent with DM annihilation) Goodenough & Hooper, 2009; Fermi 2015; ...
- ▶ Natural thermal relic: $\sigma_A v \sim 10^{-26} \text{ cm}^3 \text{ s}^{-1}$ (400+ papers)
- Energy spectrum is hard (peaking ~2 GeV) (see. Dylan et. al. 2014 and Calore et. al. 2015)


Hints of dark matter annihilation in Fermi data?

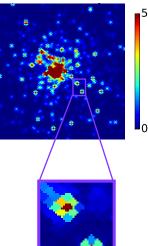
- Spherically symmetric excess (consistent with DM annihilation) Goodenough & Hooper, 2009; Fermi 2015; ...
- ▶ Natural thermal relic: $\sigma_A v \sim 10^{-26} \text{ cm}^3 \text{ s}^{-1}$ (400+ papers)
- Energy spectrum is hard (peaking ~2 GeV) (see. Dylan et. al. 2014 and Calore et. al. 2015)
- Robust against mis-modeling cosmic-ray-induced emission

(but see E. Carlson et. al. 2016)

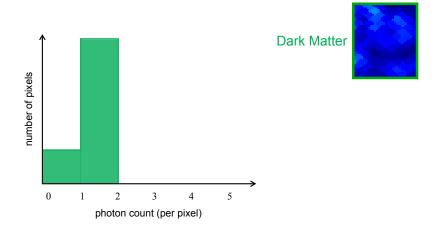
Dark Matter or dim Point Sources?



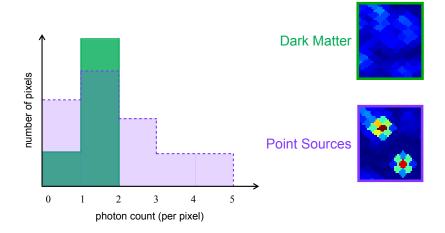
- New method: Non Poissonian Template Fit (NPTF)
 - ► JCAP 2015: S. Lee, M. Lisanti, **B. S.**
 - Phys. Rev. Lett. 2016: S. Lee, M. Lisanti, B. S., T. Slatyer, W. Xue


・ロト・日本・日本・日本・日本

- ▶ 1604.01026: T. Linden, N. Rodd, **B.S.**, T. Slatyer
- many works in progress: B.S., ...


No Diffuse Bkgd

Point Sources



Safdi [1412.609

P(D) distribution in X-ray astronomy; Malyshev and Hogg, 2011; Lee, Lisanti, BS 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

P(D) distribution in X-ray astronomy; Malyshev and Hogg, 2011; Lee, Lisanti, BS 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• $p_k^{(p)}$ = probability of finding k photons in pixel p

- $\blacktriangleright \ p_k^{(p)}$ = probability of finding k photons in pixel p
- ► Smooth emission: Poissonian counting statistics: $p_k^{(p)} = \lambda^k e^{-\lambda}/k!$

- $p_k^{(p)}$ = probability of finding k photons in pixel p
- ► Smooth emission: Poissonian counting statistics: $p_k^{(p)} = \lambda^k e^{-\lambda}/k!$
- Point-source emission: Non-Poissonian counting statistics

- $p_k^{(p)}$ = probability of finding k photons in pixel p
- ► Smooth emission: Poissonian counting statistics: $p_k^{(p)} = \lambda^k e^{-\lambda}/k!$
- Point-source emission: Non-Poissonian counting statistics
 - (1) What is probability to find a PS in a given pixel?

(ロ) (同) (三) (三) (三) (○) (○)

- ▶ $p_k^{(p)}$ = probability of finding k photons in pixel p
- ► Smooth emission: Poissonian counting statistics: $p_k^{(p)} = \lambda^k e^{-\lambda} / k!$
- Point-source emission: Non-Poissonian counting statistics
 - (1) What is probability to find a PS in a given pixel?
 - (2) Given a PS, what is the probability it produces k photons?

(ロ) (同) (三) (三) (三) (○) (○)

- $p_k^{(p)}$ = probability of finding k photons in pixel p
- ► Smooth emission: Poissonian counting statistics: $p_k^{(p)} = \lambda^k e^{-\lambda} / k!$
- Point-source emission: Non-Poissonian counting statistics
 - (1) What is probability to find a PS in a given pixel?
 - (2) Given a PS, what is the probability it produces k photons?

Source-count:
$$\frac{dN^{(p)}}{dF} = A^p \begin{cases} \left(\frac{F}{F_b}\right)^{-n_1}, & F \ge F_b \\ \left(\frac{F}{F_b}\right)^{-n_2}, & F < F_b \end{cases}$$

F is average flux (photons / cm² / s)

- $p_k^{(p)}$ = probability of finding k photons in pixel p
- ► Smooth emission: Poissonian counting statistics: $p_k^{(p)} = \lambda^k e^{-\lambda} / k!$
- Point-source emission: Non-Poissonian counting statistics
 - (1) What is probability to find a PS in a given pixel?
 - (2) Given a PS, what is the probability it produces k photons?

► Source-count:
$$\frac{dN^{(p)}}{dF} = A^p \begin{cases} \left(\frac{F}{F_b}\right)^{-n_1}, & F \ge F_b \\ \left(\frac{F}{F_b}\right)^{-n_2}, & F < F_b \end{cases}$$

- F is average flux (photons / cm² / s)
- A^p follow a spatial template

Non-Poissonian template fit (NPTF)

• data set d (counts in each pixel $\{n_p\}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Non-Poissonian template fit (NPTF)

• data set d (counts in each pixel $\{n_p\}$)

• model \mathcal{M} with parameters θ

Non-Poissonian template fit (NPTF)

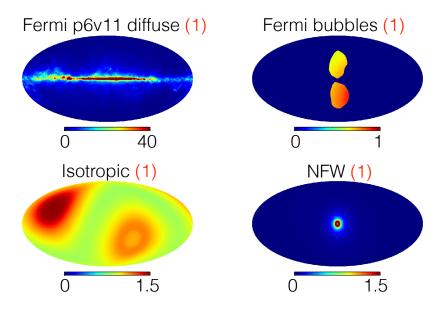
- data set d (counts in each pixel $\{n_p\}$)
- model \mathcal{M} with parameters θ
- The likelihood function:

$$p(d| heta, \mathcal{M}) = \prod_{\mathsf{pixels } p} p_{n_p}^{(p)}(heta)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

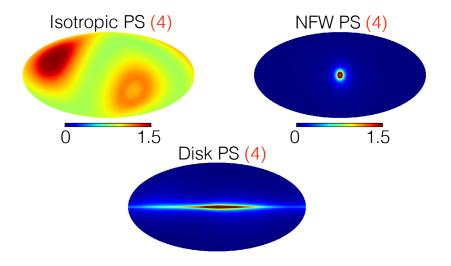
Thank you Fermi!

Pass 8 data:


Ultracleanveto class, top quartile by PSF (August 4, 2008—June 3, 2015)

Energy range: ~2–12 GeV

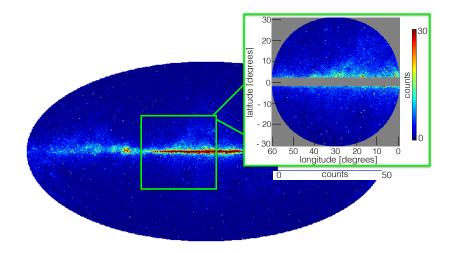
ヘロト 人間 とくほとくほとう


-

The models: Poissonian templates

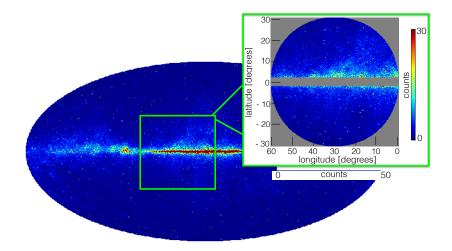
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The models: Non-Poissonian templates


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Disk: $n \propto \exp\left(-R/5 \text{ kpc}\right) \exp\left(-|z|/0.3 \text{ kpc}\right)$

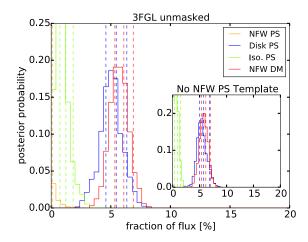
Check 1: the $\ell = 30^{\circ}$ excess


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Mask 4° around plane, out to 30° around $\ell = 30^{\circ}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mask 4° around plane, out to 30° around $\ell = 30^{\circ}$

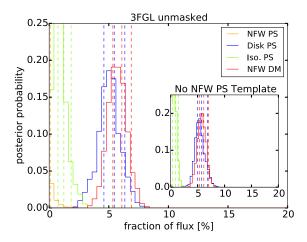


• Plots normalized for region within 10° of ROI center ($b \ge 4^{\circ}$).

<ロ> (四) (四) (三) (三) (三)

The $\ell = 30^{\circ}$ excess: no evidence for spherical PSs

- NFW DM, NFW PS templates centered around $\ell = 30^{\circ}$
- Disk template centered around $\ell = 0^{\circ}$

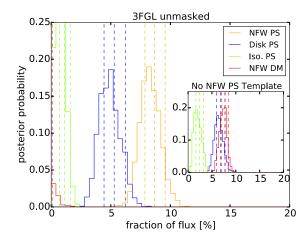


・ロト ・ 四ト ・ ヨト ・ ヨト

ъ

The $\ell = 30^{\circ}$ excess: no evidence for spherical PSs

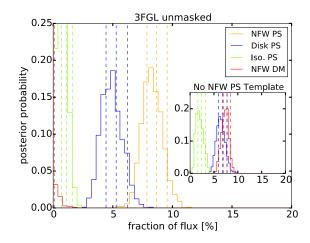
- NFW DM, NFW PS templates centered around $\ell = 30^{\circ}$
- Disk template centered around $\ell = 0^{\circ}$


 \bullet Bayes factor ~ 0.1

ROI: the $\ell = 0^{\circ}$ excess

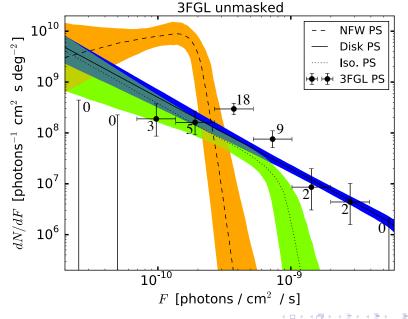
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The $\ell = 0^{\circ}$ excess: evidence for spherical PSs

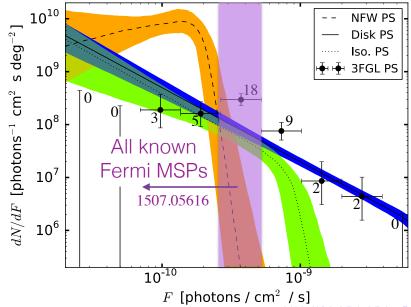

- NFW DM, NFW PS templates centered around $\ell = 0^{\circ}$
- Disk template centered around $\ell = 0^{\circ}$

イロト イ理ト イヨト イヨト

The $\ell = 0^{\circ}$ excess: evidence for spherical PSs

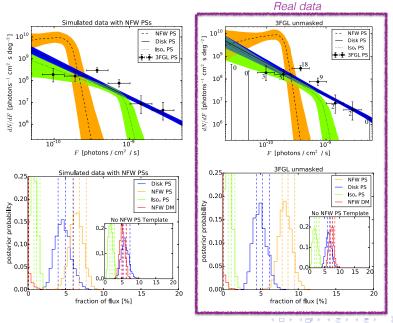

- NFW DM, NFW PS templates centered around $\ell = 0^{\circ}$
- Disk template centered around $\ell = 0^{\circ}$

• Bayes factor $\sim 10^9$ (3FGL unmasked), 10^4 (3FGL masked)

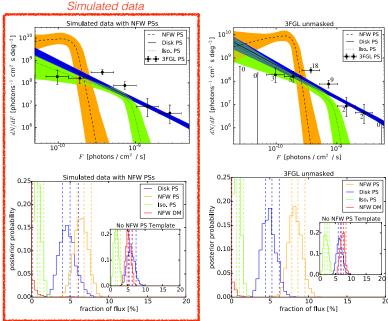

(日)

The $\ell = 0^{\circ}$ excess: source-count function

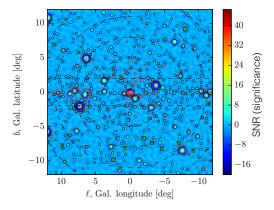
PSs consistent with MSP luminosity function?


3FGL unmasked

Check 2: Monte Carlo


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The $\ell = 0^{\circ}$ excess: Monte Carlo


⁼ naa

The $\ell = 0^{\circ}$ excess: Monte Carlo

Wavelet approach comes to same conclusion

- Bartels, Krishnamurthy, Weniger (PRL 2016)
- Signal-to-noise ratio (SNR; S) of wavelet transform
- Filters out structure of specific size (PSF)

• red: 3FGL, black: S > 2

Radio followup survey

- Follow-up survey in radio (Green Bank, Parkes) for MSPs
- Submitted and submitting: proposals for Green Bank observing time
- \bullet Simulation results: ${\sim}100$ hours of observation time, find ${\sim}5$ MSPs in the bulge

with T. Linden, S. Ransom, N. Rodd, P. Ray, J. Thaler, C. Weniger, ..., Fermi members (E. Charles, M. Di Mauro)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Tentative conclusion: GeV excess better fit by point-source emission than smooth (DM) emission

Will be released in July or August (looking for testers!)

- Will be released in July or August (looking for testers!)
- Fast and semi-analytic evaluation of $p_{n_n}^{(p)}(\theta)$ and $p(d|\theta, \mathcal{M})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Will be released in July or August (looking for testers!)
- Fast and semi-analytic evaluation of $p_{n_n}^{(p)}(\theta)$ and $p(d|\theta, \mathcal{M})$
 - ► any PSF, variety of *dN/dS* characterizations, arbitrary number of PS templates.

(日) (日) (日) (日) (日) (日) (日)

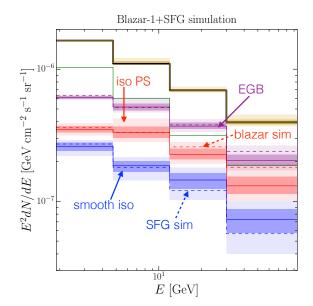
- Will be released in July or August (looking for testers!)
- Fast and semi-analytic evaluation of $p_{n_p}^{(p)}(\theta)$ and $p(d|\theta, \mathcal{M})$
 - ► any PSF, variety of *dN/dS* characterizations, arbitrary number of PS templates.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

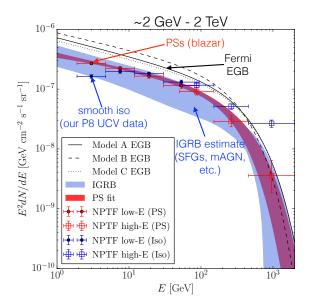
Python interface

- Will be released in July or August (looking for testers!)
- Fast and semi-analytic evaluation of $p_{n_p}^{(p)}(\theta)$ and $p(d|\theta, \mathcal{M})$
 - ► any PSF, variety of *dN/dS* characterizations, arbitrary number of PS templates.
- Python interface
- Bayesian (Multinest, Polychord) and Frequentist (Minuit) options

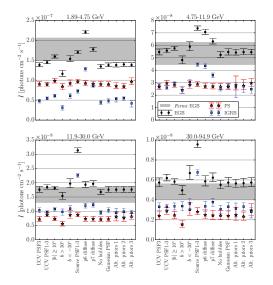
(日) (日) (日) (日) (日) (日) (日)


- Will be released in July or August (looking for testers!)
- Fast and semi-analytic evaluation of $p_{n_n}^{(p)}(\theta)$ and $p(d|\theta, \mathcal{M})$
 - any PSF, variety of dN/dS characterizations, arbitrary number of PS templates.
- Python interface
- Bayesian (Multinest, Polychord) and Frequentist (Minuit) options

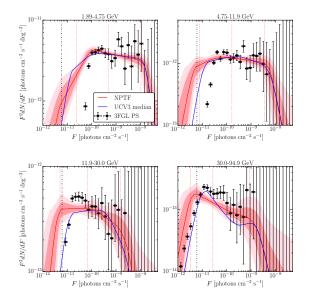
(日) (日) (日) (日) (日) (日) (日)


 Applications beyond GC excess (e.g., *Fermi* high-lat—1606.04101, IceCube)

- Will be released in July or August (looking for testers!)
- Fast and semi-analytic evaluation of $p_{n_p}^{(p)}(\theta)$ and $p(d|\theta, \mathcal{M})$
 - any PSF, variety of dN/dS characterizations, arbitrary number of PS templates.
- Python interface
- Bayesian (Multinest, Polychord) and Frequentist (Minuit) options
- Applications beyond GC excess (e.g., Fermi high-lat—1606.04101, IceCube)
- L. Necib (MIT), N. Rodd (MIT), B.S., Siddharth Sharma (Princeton)

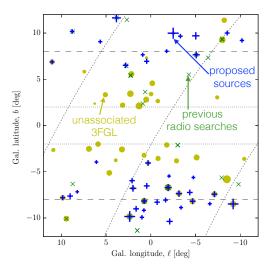

(ロ) (同) (三) (三) (三) (○) (○)

1606.04101: M. Lisanti, S. Mishra-Sharma, L. Necib, **B.S.** () 😽 () 🖉 ()

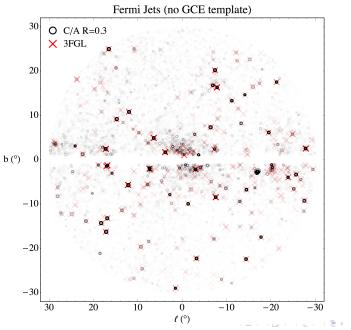


1606.04101: M. Lisanti, S. Mishra-Sharma, L. Necib, B.S.

A B > A B >



1606.04101: M. Lisanti, S. Mishra-Sharma, L. Necib, B.S.


Questions?

Radio followup survey: where to look

• Candidates identified through wavelet analysis + modified jet clustering analysis (N. Rodd, **B.S.**,J. Thaler) of *Fermi* data

PS candidates from jet clustering

Statistics of PS candidates

• In each jet: $\epsilon^{(p)} \equiv 1 - \text{CDF}(\text{data; background model})$

Statistics of PS candidates


• In each jet: $\epsilon^{(p)} \equiv 1 - \text{CDF}(\text{data; background model})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Mask all 3FGL sources

Statistics of PS candidates

- In each jet: $\epsilon^{(p)} \equiv 1 \text{CDF}(\text{data; background model})$
- Mask all 3FGL sources

 ϵ