Metric	Score			
	1	2	3	- DfAM Consideration
Part Complexity	Primitive geometry (ex. square, cylinder)	Complexity/curves that can be machined	Complex/curves that cannot be machined	AM designs can have complex geometries to improve performance as opposed to TM.
Assembly Complexity	Prismatic joint	Prismatic joints with locking features	Unidirectional joints with locking features	AM designs can have complex functional features such as assembly components.
Number of separate parts		Number/value		Designers can reduce part count by combining, thus reducing build time, assembly time and cost.
Part orientation	ZX/ZY (largest dimension in Z- direction)	XZ/YZ (second- largest dimension in Z-direction)	XY/YX (smallest dimension in Z- direction)	AM processes are typically slowest when printing in the z-direction.
Assembly feature orientation	ZX/ZY/XZ/YZ (critical mating features in X or Y planes)		XY/YX (critical mating features in the Z-plane)	The orientation of a part affects its surface finish. Stair stepping is observed when rounded features are printed vertically (along X or Y planes)
Smallest feature size		Value in mm		AM processes have a minimum feature size that can the process can build (~0.5mm for material extrusion [71]).
Smallest tolerance		Value in mm		Adequate tolerances must be given between mating features.
Support material mass		Value in grams		AM designs with overhanging features need support material. Support material mass can be reduced using
Support material removal	Internal cavities with support difficult to remove	Easily accessible support material	No support material	self-supporting angles and bridging limits. Internal cavities must have access for ease of support material removal.
Largest build plate contact		Value in mm ²		Large flat surfaces are prone to warping due to inadequate heat dissipation and thermal stresses.

 Table 1 Metrics used for assessing the students' use of DfAM in the design challenge and the DfAM consideration associated with each metric.