3.2.1 Definition
To facilitate the writing of lengthy sums, a shorthand notation, called summation notation or sigma notation is used.
The capital Greek letter sigma, \(\Sigma\), (equivalent to the Latin S) is used to denote summation as follows: let \(f\) be a function defined on \(\{1, 2, \dots , n\}\), then
\[\sum_{i=1}^{n}f(i)= f(1) + f(2) + \cdots + f(n).\]
For example,
\[\sum _{i=1}^5 i^2 = 1^2+2^2+3^3+4^2+5^5,\]
that is, the symbol \(\displaystyle \sum _{i=1}^5 i^2\) denotes the sum of the numbers \(i^2\) obtained by letting \(i\) run from 1 to 5. \(i\) is called the index of summation, and is a “dummy variable,” as it can be replaced by any other letter. For example,
\[\sum _{i=1}^4 \frac{i}{i+1}=\sum _{j=1}^4 \frac{j}{j+1}=\sum _{k=1}^4 \frac{k}{k+1}=\sum _{n=1}^4\frac{n}{n+1} =\]
\[= \frac{1}{1+1}+\frac{2}{2+1}+\frac{3}{3+1}+\frac{4}{4+1} = \frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}.\]
Using this notation, we can write
\[R(f,5)=f\left(x_1\right)\Delta x+f\left(x_2\right)\Delta x+f\left(x_3\right)\Delta x+f\left(x_4\right)\Delta x+f\left(x_5\right)\Delta x=\sum _{i=1}^5 f\left(x_i\right)\Delta x,\]
where \(x_1\), \(x_2\), \(\dots\), \(x_5\) represent the right-endpoints of the intervals.
On Your Own 1. Verify the numerical value of each sum
(a) \(\displaystyle \sum _{i=1}^3 (i^2+2i) = 26\); (b) \(\displaystyle \sum _{k=1}^4\frac{1}{k}= \frac{25}{12}\).
Example 1. (Sums of Consecutive Odd Numbers.) Consider the sum \(\displaystyle \sum _{i=1}^k (2i-1)\).
(a) Compute the sum for \(k=1,2,3,4\); (b) conjecture a general formula for any \(k \in \mathbb{N}\).
Solution. (a) Denote by \(\displaystyle s_k=\sum _{i=1}^k (2i-1)\), then
\[ s_1=\sum _{i=1}^1 (2i-1)=2(1)-1=1, \;\;\; s_2=\sum _{i=1}^2 (2i-1)=( 2(1)-1) +( 2(2)-1)=1+3=4,\]
similarly,
\[s_3=\sum _{i=1}^3 (2i-1)=1+3+5=9,\;\; s_4=\sum _{i=1}^4 (2i-1)=1+3+5+7=16.\]
(b) Note the pattern:
\[s_1=1,\;\; s_2=4=2^2,\;\; s_3=9=3^2,\;\; s_4=16=4^2\,\dots .\]
Thus, we can conjecture that
\[s_k=\sum _{i=1}^k (2i-1)=k^2,\]
that is, the sum of the first \(k\) odd numbers is equal to \(k^2\).
On Your Own 2. (Sums of Consecutive Even Numbers.)
(a) Compute \(\displaystyle \sum _{i=1}^k 2i\) for \(k=1,2,3,4\);
(b) conjecture a general formula for any natural number \(k\).
Example 2. In Chapter 1, Proposition 2, we proved the following formula:
\[a^n – b^n = (a – b)\left(a^{n-1} + a^{n-2}b + a^{n-3} b^2+ \cdots + a^2b^{n-3}+ab^{n-2}+b^{n-1}\right).\]
Using sigma notation, this formula can be rewritten as follows:
\[a^n – b^n = (a – b)\sum_{i=1}^{n} a^{n-i}b^{i-1}.\]
3.2.2 Properties of Summations
Basic Properties
Proposition 1. Let \(a_i\), \(b_i\), \(i=1,\dots , n\) and \(c\) be real numbers, then
\begin{eqnarray}
\sum _{i=1}^n \left(a_i \pm b_i\right) &= &\sum _{i=1}^n a_i \pm \sum _{i=1}^n b_i, \label{ch03-02-eq01}\tag{3.1} \\
\sum _{i=1}^n c a_i &= &c\sum _{i=1}^n a_i.\label{ch03-02-eq02}\tag{3.2}
\end{eqnarray}
Proof.
\begin{align*}
\sum _{i=1}^n \left(a_i + b_i\right)& =(a_1+b_1)+(a_2+b_2)+(a_3+b_3)\cdots + (a_{n-1}+b_{n-1})+(a_n+b_n) = \\
&\underset{?}{=} (a_1+a_2+a_3+ \cdots + a_{n-1} + a_n ) + (b_1+a_2+b_3+ \cdots + b_{n-1} + b_n ) =\\
&=\sum _{i=1}^n a_i + \sum _{i=1}^n b_i.
\end{align*}
The other proofs are similar.
□
Remark. The above properties extend to more terms. For example,
\[
\sum _{i=1}^n \left(r a_i + s b_i +t c_i – u d_i\right) =
r \sum _{i=1}^n a_i +
s \sum _{i=1}^n b_i +
t \sum _{i=1}^n c_i –
u \sum _{i=1}^n d_i.
\]
Telescoping Sums
We will be encountering the following special type of summation.
Definition 1.A sum \(\displaystyle \sum _{i=1}^n b_i\), with \(b_i= a_{i+1}-a_{i}\), \(a_i\in \mathbb{R}\), is called a telescoping sum}.
A formula to evaluate a telescoping sum is readily available.
Proposition 2. Assume that \(\displaystyle \sum _{i=1}^n b_i\) is telescoping with \(b_i= a_{i+1}-a_{i}\), \(a_i\in \mathbb{R}\). Then \(\displaystyle \sum _{i=1}^n b_i=a_{n+1}-a_1\)
Proof.
Since \(b_i= a_{i+1}-a_{i}\), then
\[
\sum _{i=1}^n b_i=
\left(a_2 – a_1\right) +
\left(a_3 – a_2\right) +
\left(a_4 – a_3\right) + \cdots +
\left(a_{n} – a_{n-1}\right) +
\left(a_{n+1} – a_n \right) = -a_1+a_{n+1}.
\]
□
Example 1.[(Sums of Consecutive Odd Numbers) In Example 1 in 3.2.1, we conjectured that \(\displaystyle \sum _{i=1}^k (2i-1) = k^2\). Here we prove its validity by means of the formula for a telescoping sum.
(1) Note that \(2i-1 = i^2-(i-1)^2\).
This is immediate since \(i^2-(i-1)^2 = i^2-(i^2-2i+1)=2i-1\).
(2) Thus, we can conclude that the sum \(\displaystyle \sum _{i=1}^k (2i-1) = \sum _{i=1}^k(i^2-(i-1)^2)\) is a telescoping sum, with \(b_i=2i-1\), \(a_i=i^2\), and \(a_{i-1} =(i-1)^2\), thus
\[ \sum _{i=1}^k (2i-1) = \sum _{i=1}^k(i^2-(i-1)^2) = k^2-(1-1)^2 =k^2. \]
Note. We will use a similar procedure when proving other summation formulas below. Thus, make sure you understand this example very well.
Summation Formulas
The proposition below deals with sums of powers of consecutive natural numbers. There is a general procedure to obtain the formulas for such sums. Make sure you understand this general procedure.
Proposition 3.
(1) \(\displaystyle \sum _{i=1}^n 1=\underbrace{1+1+1+\text{…}+1+1}_n=n\).
(2) \(\displaystyle \sum _{i=1}^n i=1+2+3+\text{…}+(n-1)+n=\frac{n(n+1)}{2}\).
(3) \(\displaystyle \sum _{i=1}^n i^2=1^2+2^2+3^2+\text{…}+(n-1)^2+n^2=\frac{n(n+1)(2n+1)}{6}\).
(4) \(\displaystyle \sum _{i=1}^n i^3=1^3+2^3+3^3+\text{…}+(n-1)^3+n^3=\left(\frac{n(n+1)}{2}\right)^2\).
Proof. (1) This is immediate.
(2) Let \(\displaystyle S=\sum _{i=1}^n i\). First, write the sum \(S\) twice as shown below. Then add vertically down first, and then horizontally.
\[\begin{array}{cccccccccccc}
S & = & 1 & + & 2 & + & \text{…} & + & (n-1) & + & n & \\
S & = & n & + & (n-1) & + & \text{…} & + & 2 & + & 1 & \vphantom{\displaystyle \frac{A}{A^A}} \\ \hline
2S & = & (n+1) & + & (n+1) & + & \text{…} & + & (n+1) & + &(n+1) & \vphantom{\displaystyle \frac{A}{A^A}}
\end{array}\]
Then, \(\displaystyle 2S = n(n+1) \Longrightarrow S = \frac{n(n+1)}{2}\).
(3) The proof involves a telescoping sum, as in Example 1 in 3.2.1. Set \(\displaystyle S=\sum _{i=1}^n i^2\). To find a formula for \(S\), we are going to compute the sum \(\displaystyle \sum _{i=1}^n \left((i+1)^3-i^3\right)\) in two different ways.
(i) Note that \(\displaystyle \sum _{i=1}^n \left((i+1)^3-i^3\right)\) is a telescoping sum with \(b_i=(i+1)^3-i^3\). Thus, by Proposition 1 (2), we have
\[\sum _{i=1}^n \left((i+1)^3-i^3\right) = (n+1)^3-1^3= n^3+3n^2+3n .\]
(ii) Expanding first the expression \((i+1)^3-i^3\), and then adding, we have,
\begin{align*}
\displaystyle \sum _{i=1}^n \left((i+1)^3-i^3\right)
&\displaystyle =\sum _{i=1}^n (i^3+3i^2+3i+1-i^3)=\sum _{i=1}^n (3i^2+3i+1)=\\
&\displaystyle \underset{?}{=}3\sum _{i=1}^n i^2+3\sum _{i=1}^n i+\sum _{i=1}^n1
\underset{?}{=}
3S+3\frac{n(n+1)}{2}+n \underset{?}{=} 3S+\frac{3}{2}n^2+\frac{5}{2}n.
\end{align*}
It follows that
\[n^3+3n^2+3n+1-1=3S+\frac{3}{2}n^2+\frac{5}{2}n\Longleftrightarrow 3S=n^3+\frac{3}{2}n^2+\frac{n}{2}.\]
Finally, note that the last expression can be factored and simplify as follows
\[n^3+\frac{3}{2}n^2+\frac{n}{2}=\frac{n}{2}\left(2n^2+3n+1\right)=\frac{n(n+1)(2n+1)}{2}.\]
This proves part (3).
(4) The proof parallels the proof in (3). Set \(\displaystyle S=\sum _{i=1}^n i^3\).
Once again we are going to evaluate the sum \(\displaystyle \sum _{i=1}^n \left((i+1)^4-i^4\right)\) in two different ways.
First, the sum is telescoping, thus,
\[
\displaystyle \sum _{i=1}^n \left((i+1)^4-i^4\right)=(n+1)^4-1^4 =n^4+4n^3+6n^2+4n.
\]
Make sure to have clear why this is valid.
Second, we expand the expression in the sum, and then add.
\begin{align*}
\displaystyle \sum _{i=1}^n \left((i+1)^4-i^4\right)
&\displaystyle =\sum _{i=1}^n (i^4+4i^3+6i^2+4i+1-i^4)=\sum _{i=1}^n (4i^3+6i^2+4i+1)\\
&\displaystyle =4\sum _{i=1}^n i^3+6\sum _{i=1}^n i^2+4\sum _{i=1}^n i+\sum _{i=1}^n 1\\
&\displaystyle =4S+6\frac{n(n+1)(2n+1)}{6}+4\frac{n(n+1)}{2}+n.
\end{align*}
It follows that
\[
(n+1)^4-1^4=4S+6\frac{n(n+1)(2n+1)}{6}+4\frac{n(n+1)}{2}+n
\Longleftrightarrow \]
\[\Longleftrightarrow n^4+4n^3+6n^2+4n+1-1=4S+n(n+1)(2n+1)+2n(n+1)+n\Longleftrightarrow\]
\[\Longleftrightarrow n^4+4n^3+6n^2+4n=4S+n(2n^2+3n+1+2n+3)\Longleftrightarrow\]
\[\Longleftrightarrow n(n^3+4n^2+6n+4-2n^2-5n-4)=4S
\Longleftrightarrow n(n^3+2n^2+n)=4S\Longleftrightarrow\]
\[\Longleftrightarrow n(n(n+1)^2)=4S\Longleftrightarrow S=\frac{n^2(n+1)^2}{4}=\left(\frac{n(n+1)}{2}\right)^2.\]
□
Note. Make sure that you are able to perform the steps of the above proofs on your own.
Example 2. Use the summation formulas in Proposition 3 to evaluate the sums.
(a) \(\displaystyle \sum_{i=1}^{10}(3i^2-4i+7)\); nbsp; (b) \(\displaystyle \sum_{i=1}^{n}(7i^3-5i^2-3i+2)\).
Solution.
(a)
\begin{align*}\sum_{i=1}^{10}(3i^2-4i+7) &
\underset{\;\;(3.1)\;\;}{=} \sum_{i=1}^{10}3i^2-\sum_{i=1}^{10}4i+\sum_{i=1}^{10}7
\underset{(3.2)}{=}3\sum_{i=1}^{10}i^2-4\sum_{i=1}^{10}i+7\sum_{i=1}^{10}1=\\
&\underset{\text{Prop.}3}{=}
3\frac{10(10+1)(2(10)+1)}{6} -4\frac{10(10+1)}{2} + 7(10) =\\
&\underset{\hphantom{\text{Prop.}\ref{ch03-02-prop03}}}{=} (55)(21) -220 + 70 = 1155-150 =1005.
\end{align*}
(b)
\begin{align*}
\sum_{i=1}^{n}(7i^3-5i^2-3i+2)
&\underset{\;\;(3.1)\;\;}{=}
\sum_{i=1}^{n}7i^3-\sum_{i=1}^{n}5i^2-\sum_{i=1}^{n}3i+\sum_{i=1}^{n}2=\\
&\underset{\;\;(3.2)\;\;}{=}
7\sum_{i=1}^{n}i^3-5\sum_{i=1}^{n}i^2-3\sum_{i=1}^{n}i + 2\sum_{i=1}^{n}1=\\
&\underset{\text{Prop.}3}{=}
7\left(\frac{n(n+1)}{2}\right)^2-5\frac{n(n+1)(2n+1)}{6}-3\frac{n(n+1)}{2} + 2n =\\
&\underset{\hphantom{\text{Prop.}3}}{=}
\frac{7}{4} n^2(n+1)^2-\frac{5}{6}n(n+1)(2n+1)-\frac{3}{2}n(n+1) + 2n.
\end{align*}
Remark. In part (b) we have not combined the different sums, nor have expanded the products. It really is not necessary to do so, and in future computations, we will see the value of having the answers in factored form. Thus, in the exercises, leave your answers in a similar form.
3.2.3 Exercises
- Find the numerical value of the following sums:
(a) \(\displaystyle \sum _{i=2}^5 (3i-2)\); (b) \(\displaystyle \sum _{j=1}^5 \left.(j^2-j\right)\); (c) \(\displaystyle \sum _{n=1}^3 \frac{1}{n(n+1)}\); (d) \(\displaystyle \sum _{m=1}^3 \frac{m}{2m-1}\).
- Rewrite the sums using sigma notation:
(a) \(\displaystyle 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\);
(b) \(\displaystyle 1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+\frac{5}{3^4}+\frac{6}{3^5}\);
(c) \(\displaystyle f\left(x_1\right)\Delta x+f\left(x_2\right)\Delta x+f\left(x_3\right)\Delta x+f\left(x_4\right)\Delta x\);
(d) \(\displaystyle \frac{1}{2}-\frac{3}{4}+\frac{5}{6}-\frac{7}{8}\).
- Compute \(\displaystyle \sum _{i=1}^k 2^i\) for \(k=1,2,3,4\), and conjecture a general formula for any \(k \in \mathbb{N}\).
- (a) Verify the validity of the following equations, and rewrite them using sigma notation.
\[
\renewcommand{\arraystretch}{1.8}
\begin{array}{ccccccccccc}
& & & & & & 1 & = & 2 & – & 1 \\
& & & & 1 & + &\displaystyle \frac{1}{2} & = & 2 & – &\displaystyle \frac{1}{2} \\
& & 1 & + &\displaystyle \frac{1}{2} & + &\displaystyle \frac{1}{4} & = & 2 & – & \displaystyle \frac{1}{4} \\
1 & + &\displaystyle \frac{1}{2} & + &\displaystyle \frac{1}{4} & + &\displaystyle \frac{1}{8} & = & 2 & – &\displaystyle \frac{1}{8} \\
\end{array}\]
(b) Conjecture a general formula for the \(n\)-th row, and write it using sigma notation. - (a) Verify the validity of the following equations, and rewrite them using sigma notation.
\[
\renewcommand{\arraystretch}{1.2}
\begin{array}{rcl}
1 & = & 1 \\
1+2+1 & = & 4\\
1+2+3+2+1 & = & 9\\
1+2+3+4+3+2+1 & = & 16\\
\end{array}\]
(b) Conjecture a general formula for the \(n\)-th row, write it using sigma notation, and prove it. - Prove (3.2).
- Explain why the following are not valid:
(a) \(\displaystyle \sum_{k=1}^3 a_k^2= \left(\sum_{k=1}^3 a_k \right)^2\);
(b) \(\displaystyle \sum_{k=1}^3 \left(a_k b_k\right)=\left(\sum_{k=1}^3 a_k\right)\left(\sum _{k=1}^3 b_k\right)\);
(c) \(\displaystyle \sum_{k=1}^3 \frac{a_k}{b_k}=\frac{\displaystyle \sum_{k=1}^3 a_k}{\displaystyle \sum _{k=1}^3 b_k}\), with \(b_k>0\) for all \(k\);\\
(d) \(\displaystyle \sum_{k=1}^3 (a_k + b_k)^2= \sum_{k=1}^3 a_k^2+\sum_{k=1}^3 b_k^2\).
- (a) Perform the indicated sums and write them using sigma notation.
\(
\renewcommand{\arraystretch}{2}
\begin{array}{cccccccc}
& & & & & &\displaystyle \frac{1}{1\cdot 2} & = \\
& & & &\displaystyle \frac{1}{1\cdot 2} & + &\displaystyle \frac{1}{2\cdot 3} & = \\
& &\displaystyle \frac{1}{1\cdot 2} & + &\displaystyle \frac{1}{2\cdot 3} & + &\displaystyle \frac{1}{3\cdot 4} & = \\
\displaystyle \frac{1}{1\cdot 2} & + &\displaystyle \frac{1}{2\cdot 3} & + &\displaystyle \frac{1}{3\cdot 4} & + &\displaystyle \frac{1}{4\cdot 5} & = \\
\end{array}\)(b) Conjecture a general formula for the \(n\)-th row and write it in sigma notation.
(c) Find numbers \(A\) and \(B\) such that \(\displaystyle \frac{1}{k(k+1)}=\frac{A}{k}+\frac{B}{k+1}\).
(d) Use your result in (c) to show that the sum in (b) is telescoping, and use this to prove your conjecture.
- \(\displaystyle \sum_{i=1}^{10}\left(2+\frac{3i}{10}\right)\).
- \(\displaystyle \sum_{i=1}^{10}(2i^2-3i+2)\).
- \(\displaystyle \sum_{i=1}^{4}(4 i^3 – 6 i^2 + 4 i – 2)\).
- \(\displaystyle \sum_{i=1}^{n}(i^3+2i^2-3)\).
- \(\displaystyle \sum_{i=1}^{n}(3i+1)^3\).
- \(\displaystyle \sum_{i=1}^{n}\left(1+\frac{2i}{n}\right)^2\).
- Complete the right-hand-side of each equation, and challenge yourself to prove, without seeing the proofs, the validity of each formula.
(a) \(\displaystyle \sum _{i=1}^n i= \underline{\hspace{.75in}\vphantom{\frac{A^{A^A}}{A^{A^A}}}}\); (b) \(\displaystyle \sum _{i=1}^n i^2=\underline{\hspace{.75in}\vphantom{\frac{A^{A^A}}{A^{A^A}}}}\); (c) \(\displaystyle \sum _{i=1}^n i^3=\underline{\hspace{.75in}\vphantom{\frac{A^{A^A}}{A^{A^A}}}}\).
- Consider the following sequence of fractions:
\[\frac{1}{3}, \;\; \frac{1+3}{5+7}, \;\; \frac{1+3+5}{7+9+11}, \;\; \frac{1+3+5+7}{9+11+13+15}, \dots .\](a) Compute the quotients and rewrite them using sigma notation.
(b) Draw a general conjecture, and write it using sigma notation.
(c) Prove your conjecture.
- Here is an interesting pattern:
\[
\renewcommand{\arraystretch}{1.25}
\begin{array}{rcl}
1 & = & 0 + 1\\
2+3+4 & = & 1+8 \\
5+6+7+8+9& = &8 + 27\\
10 + 11+12+13+14+15+16 & = & 27+64
\end{array}\](a) Write the next row and verify the validity of each equality.
(b) Write each row using sigma notation.
(c) Conjecture what the 10-th row should be and verify your conjecture. Then write the row using sigma notation.
(d) Write a general conjecture. Use sigma notation.
(e) Prove your conjecture.
- Compute, as in the proofs for (3) and (4) in Proposition 3, the sum \(\displaystyle \sum _{i=1}^n \left((i+1)^5-i^5\right)\) in two different ways to obtain a formula for \(\displaystyle \sum _{i=1}^n i^4\).
Hint: use \((i+1)^5=i^5+5i^4+10i^3+10i^2+5i+1\), and the fact that the final answer should be in the form \(\displaystyle \frac{1}{30} n (n+1) (2 n+1) \left(Q(n)\right)\), with \(Q\) a quadratic polynomial. Find \(Q\) explicitly.
In problems 9-14, use the properties in Proposition 1, and the summation formulas in Proposition 3 to evaluate each sum as in Example 2 in 3.2.2.
Answers to On Your Own
On Your Own 2. A good idea is to factor the numerical value of each sum:
\[\sum _{i=1}^1 2i=2=2\cdot 1,\;\;\;\;\sum _{i=1}^2 2i =2+4=6=2\cdot 3,\]
\[ \sum _{i=1}^3 2i =2+4+6=12=3\cdot 4\;\;\;\;\sum _{i=1}^4 2i =2+4+6+8=20=4\cdot 5 \Longrightarrow\]
\[\Longrightarrow \sum _{i=1}^k 2i=k(k+1).\]