Select Page

Chapter 3 Section 7

3.7 Definite Integral of the Exponential Function

 

Preliminary Results

 

We will use the following results.

  • The Laws of Exponents. Particularly, \(a^ha^k=a^{h+k}\), and \((a^h)^k= a^{hk}\) for \(a >0 \).
  •  

  • Continuity of the exponential function
  •  

  • The limit of the difference quotient of \(e^x\):
    \begin{equation}\label{ch03-07-eq01}
    \lim_{x\to 0}\frac{e^x-1}{x} = 1\tag{3.11}.
    \end{equation}
  •  

  • The factorization formula
    \[a^n – b^n = (a – b)\left(a^{n-1} + a^{n-2}b + a^{n-3} b^2+ \cdots + a^2b^{n-3}+ab^{n-2}+b^{n-1}\right).\]

    Actually, we will need this formula for the case \(a=1\) and \(b\neq 1\), in the following form:
    \begin{equation}\label{ch03-07-eq02}
    b\frac{b^n-1 }{b-1} =b + b^2 + b^3+ \cdots + b^{n-2}+b^{n-1}+b^n =\sum _{i=1}^nb^i\tag{3.12}.
    \end{equation}
    Such a sum is called a \textbf{geometric sum}.

 

3.7.1 Definite Integral of the Exponential Function

 

Proposition 1. Given \(a,\, b \in \mathbb{R}\) with \(a < b\), then \begin{equation}\label{ch03-07-eq03} \int_a^be^x\,dx = e^b-e^a\tag{3.13}. \end{equation}

 

Proof.

Step 1. Partition of the interval.
\[\Delta x= \frac{b-a}{n}, \;\; x_i=a+i \Delta x=a+\frac{(b-a)i}{n}, \;\; I_i=[x_{i-1},x_i].\]
 

Step 2. Height and area of the rectangular regions.
\[h_i=e^{x_i}=e^{a+i\Delta x} = e^a e^{i\Delta x}
= e^a \left(e^{\Delta x}\right)^i, \;\;\;A_i = e^{x_i}\Delta x =e^a \left(e^{\Delta x}\right)^i\Delta x.\]
 

Step 3. Computation of \(R(e^x,n)\).
Here we are going to use (\ref{ch03-07-eq02}) with \(b=\left(e^{\Delta x}\right)\).
\begin{align*}
R(e^x,n)&=\sum _{i=1}^n e^{x_i}\Delta x
=\sum _{i=1}^n e^a \left(e^{\Delta x}\right)^i \Delta x
=e^a\Delta x\sum _{i=1}^n \left(e^{\Delta x}\right)^i
\underset{(1)}{=}
e^a\Delta x e^{\Delta x}\frac{\left(e^{\Delta x}\right)^n-1}{e^{\Delta x}-1} =\\
&\underset{(?)}{=}e^a\Delta x \frac{e^{\Delta x}}{e^{\Delta x}-1}
\left(\left(e^{\Delta x}\right)^n-1\right)
\underset{(2)}{=}e^a\Delta x \frac{e^{\Delta x}}{e^{\Delta x}-1}\left(e^{(b-a)}-1\right)
\underset{(3)}{=} e^{\Delta x}\frac{\Delta x}{e^{\Delta x}-1}(e^b-e^a)
.
\end{align*}
(1) Here is where we used (\ref{ch03-07-eq02}). (2) Replace \(\left(e^{\Delta x}\right)^n = \left(e^{\frac{b-a}{n}}\right)^n=e^{b-a}\). (3) Distribute the factor \(e^a\).

 

Step 4. Evaluation of the limit of \(\displaystyle \lim_{n\to \infty} R(e^x,n)\).

Given that \(\displaystyle \Delta x =\frac{b-a}{n}\), with \(b-a\) fixed, then
\[\Delta x \to 0 \Longleftrightarrow n\to \infty,\]
that is, increasing the number of intervals in the partition is equivalent to letting \(\Delta x \to 0\). Thus
\[\lim_{n\to \infty}\sum _{i=1}^n e^{x_i}\Delta x
=\lim_{\Delta x \to 0} e^{\Delta x}\frac{\Delta x}{e^{\Delta x}-1}(e^b-e^a)
\underset{(\ref{ch03-07-eq01})}{=} e^0(1)(e^b-e^a) = e^b-e^a.\]

 

3.7.2 Exercises

 

Your learning task is to develops the ability to state and prove the above proposition. You should be able to do so without seeing the above statements and proofs. Only then, you will be certain that you have learned this material. Here are some points that you should be able to develop with great detail.

  1. Computation of \(R(e^x,n)\).

    (a) Express \(R(e^x,n)\) in a way to make explicit the presence of the difference quotient of \(e^x\) at zero.
    (b) Show how the formula to factor \(a^n-b^n\) is used to rewrite \(R(e^x,n)\).
    (c) Compute \(\lim_{n \to \infty}R(e^x,n)\). Justify your answer.

  2.  

  3. Show that if \(k\neq 0\) then \(\displaystyle \int_a^b e^{k x}\,dx =\frac{1}{k}\left(e^{kb}-e^{ka}\right)\).