4.7 Derivatives of Inverse Trigonometric Functions
Goals
The goal of this section is twofold: on one hand, to quickly review the definitions of the inverse trigonometric functions, and, on the other hand, to apply the Chain Rule to compute their derivatives. In fact, the process to compute the derivatives is similar for all of them, and consists of four basic steps.
4.7.1 Derivative of arcsine
Basic Properties of arcsinine
Recall that in order to define \(y =\arcsin x\), it is necessary to restrict the domain of \(y = \sin x\) to an interval where it is one-to-one. This interval is usually chosen to be \(\left [-\frac{\pi}{2}, \frac{\pi}{2}\right ]\) (see Figure 4.10(a)). Thus, the domain and range of \(y=\arcsin x\) are, respectively,
\[D_{\arcsin}=[-1,1] \;\;\; R_{\arcsin}=\left [-\frac{\pi}{2}, \frac{\pi}{2}\right ].\]
Furthermore,
\[\sin(\arcsin x)=x \;\; \text{for all} \; x\in D_{\arcsin},\;\;\; \arcsin(\sin x)=x \;\; \text{for all} \; x \in\left [-\frac{\pi}{2}, \frac{\pi}{2}\right ].\]
Derivative of arcsine
Proposition 1. Let \(y=\arcsin x\), then
\begin{equation}\label{ch04-07-eq01}
\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}, \;\;\; \forall x\in (-1, 1).\tag{4.5}
\end{equation}
Proof.
Step 1. Let \(x\in (-1,1)\). Then
\[y = \arcsin x \Longleftrightarrow \sin y = x \text{ and } y\in\left (-\frac{\pi}{2}, \frac{\pi}{2}\right ).\]
Step 2. Applying the Chain Rule
\[\frac{d}{dx}\sin y = \frac{dx }{dx}\;\;\Longrightarrow \;\; \cos y\, y’=1 \;\;\Longleftrightarrow\;\; y’=\frac{1}{\sin y}.\]
Step 3. Applying the Pythagorean identity, and using the fact that \(\cos y > 0\) for all \(y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\)
\[\sin y = x \Longrightarrow \cos^2 y = 1-\sin^2 y = 1-x^2\;\; \Longrightarrow \;\; \cos y = \sqrt{1-x^2}.\]
Step 4. Conclusion
\[y’=\frac{1}{\cos y} = \frac{1}{\sqrt{1-x^2}}.\]
Example 1.
Find the domain and the derivative of the function (a) \(y = \arcsin ax\), \(a \in \mathbb{R}\) nonzero constant;
(b) \(y = \arcsin^3\sqrt{x}\); (c) \(y = \cot (\arcsin \sqrt{x-1})\).
Solution. (a) \(D=\left [-\frac{1}{a},\frac{1}{a}\right ] \). Letting \(f(x)= \arcsin x\) and \(g(x) = ax\), we have
\[y = (f\circ g)(x) \;\; \Longrightarrow \;\; y’ = f'(g(x))g'(x) = \frac{1}{\sqrt{1-(g(x))^2}}\cdot a= \frac{a}{\sqrt{1-a^2x^2}}.\]
(b) \(x\in D \Longleftrightarrow \sqrt{x} \leq 1 \Longleftrightarrow x\in [0,1]\). To compute \(y’\) apply the Chain Rule twice, first with \(f(x)= x^3\) and \(g(x) = \arcsin \sqrt x\), and then again to \(g(x) = \arcsin \sqrt x\)
\[y’ = 3\left (\arcsin \sqrt{x}\right )^2g'(x) = 3 \arcsin^2 \sqrt{x} \cdot \left (\frac{1}{\sqrt{1-\left (\sqrt{x}\,\right )^2}}\right )\cdot\frac{1}{2\sqrt{x}} =
\frac{3 \arcsin^2 \sqrt{x}}{2 \sqrt{x-x^2}}.\]
(c) Verify that \(D= (1,2)\). Applying the Chain Rule twice
\[
y’= -\csc^2\arcsin\sqrt{x-1}\cdot \left (\frac{1}{\sqrt{1-\left (\sqrt{x-1}\,\right)^2}}\right )\cdot\frac{1}{2\sqrt{x-1}}
= -\frac{\csc^2\arcsin\sqrt{x-1}}{2\sqrt{(2-x)(x-1)}}.\]
The expression \(\csc^2\arcsin\sqrt{x-1}\) can be simplified as follows:
\[\csc^2\arcsin\sqrt{x-1} = \frac{1}{\left (\sin(\arcsin \sqrt{x-1}\,)\right )^2} = \frac{1}{x-1}.\]
Thus
\[y’ = -\frac{1}{2(x-1)\sqrt{(2-x)(x-1)}}.\]
Example 2.
Given \(\displaystyle h(x) =\arcsin \frac{x+1}{x-1}\), (a) find \(D_h\); (b) find and simplify \(h’\); (c) show that if the \(x\)-coordinate of the point on the graph of \(h\) is \(x=-4\), then the its tangent line is parallel to the line \(10x+y = 7\).
Solution. (a) Let \(f(x) = \arcsin x\) and \(\displaystyle g(x) = \frac{x+1}{x-1}\).
\[x\in D_h \Longleftrightarrow x\in D_g \;\; \text{and} \;\; g(x)\in D_f \Longleftrightarrow -1\leq \frac{x+1}{x-1} \leq 1.\]
Thus, the following two inequalities must be satisfied simultaneously.
\[-1\leq \frac{x+1}{x-1} \Longleftrightarrow 0 \leq 1 + \frac{x+1}{x-1} \Longleftrightarrow 0 \leq \frac{2x}{x-1} \underset{?}{\Longleftrightarrow} x\in (-\infty, 0]\cup (1, \infty),\]
and
\[\frac{x+1}{x-1} \leq 1 \Longleftrightarrow \frac{x+1}{x-1}-1 \leq 0 \Longleftrightarrow \frac{2}{x-1} \leq 0 \Longleftrightarrow x\in (-\infty, 1).\]
Hence
\[ D_h = \left ( (-\infty, 0]\cup (1, \infty)\right )\cap (-\infty, 1) \Longleftrightarrow D_h= (-\infty, 0].\]
(b) Let, \(x\in D_h\), then, by the Chain Rule
\begin{align*}
h'(x) &= f'(g(x))g'(x) \underset{?}{=} \frac{1}{\sqrt{1-\left (\frac{x+1}{x-1}\right )^2}}\cdot \frac{-2}{( x-1)^2}
= -\frac{1}{\sqrt{ \frac{(x-1)^2-(x+1)^2}{(x-1)^2}}}\cdot \frac{2}{( x-1)^2} =\\
&= -\frac{\sqrt{(x-1)^2}}{\sqrt{ -4x}}\cdot \frac{2}{( x-1)^2}
\underset{?}{=} \frac{1}{\sqrt{-x}(x-1)}, \;\; x\in D_h, \;\; x\neq 0.
\end{align*}
(c) Since the line \(10x+y = 7\) has slope \(\displaystyle m =- \frac{1}{10}\), for a parallel tangent line
\[h'(x) = -\frac{1}{10}\;\; \Longleftrightarrow \;\; \frac{1}{\sqrt{-x}(x-1)}= -\frac{1}{10} \;\; \Longleftrightarrow \;\; \sqrt{-x}(1-x) = 10.\]
Substituting \(x=-4\), \(\sqrt{-(-4)}(1-(-4)) = 2\cdot 5 = 10\).
4.7.2 Derivative of Arccosine
Basic Properties of Arccosine
Recall that in order to define \(y =\arccos x\), it is necessary to restrict the domain of \(y = \cos x\) to an interval where it is one-to-one. This interval is usually chosen to be \([0, \pi]\) (see Figure 4.11). Thus, the domain and range of \(y=\arccos x\) are, respectively,
\[D_{\arccos}=[-1,1] \;\;\; R_{\arccos}=[0,\pi].\]
Furthermore,
\[\cos(\arccos x)=x \;\; \text{for all} \; x\in D_{\arccos},\;\;\; \arccos(\cos x)=x \;\; \text{for all} \; x \in [0,\pi].\]
Derivative of Arccosine
Proposition 2. Let \(y=\arccos x\), then
\begin{equation}\label{ch04-07-eq02}
\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}}, \;\;\; \forall x\in (-1, 1).\tag{4.6}
\end{equation}
On Your Own 6.
Prove Proposition 2.
4.7.3 Derivative of Arctangent
Basic Properties of Arctangent
To define \(y =\arctan x\), \(y = \tan x\) is usually restricted \( x\in \left (-\frac{\pi}{2}, \frac{\pi}{2}\right )\) (see Figure 4.12(a)). Thus, the domain and range of \(y=\arctan x\) are, respectively,
\[D_{\arctan}=(-\infty, \infty) \;\;\; R_{\arctan}=\left (-\frac{\pi}{2}, \frac{\pi}{2}\right ).\]
Furthermore,
\[\tan(\arctan x)=x \;\; \text{for all} \; x\in D_{\arctan},\;\;\; \arctan(\tan x)=x \;\; \text{for all} \; x \in\left (-\frac{\pi}{2}, \frac{\pi}{2}\right ).\]
Derivative of arctangent
Proposition 3.
Let \(y=\arctan x\), then
\begin{equation}\label{ch04-07-eq03}
\frac{dy}{dx} = \frac{1}{ 1+x^2}, \;\;\; \forall x\in (-\infty, \infty).\tag{4.7}
\end{equation}
Proof.
Step 1. Let \(x\in (-1,1)\). Then
\[y = \arctan x \Longleftrightarrow \tan y = x \text{ and } y\in\left (-\frac{\pi}{2}, \frac{\pi}{2}\right ).\]
Step 2. Applying the Chain Rule
\[\frac{d}{dx}\tan y = \frac{dx }{dx}\;\;\Longrightarrow \;\; \sec^2 y\, y’=1 \;\;\Longleftrightarrow\;\; y’=\frac{1}{\tan y}.\]
Step 3. Since \(\sec^2x= 1+\tan^2x\), we have
\[\tan y = x \Longrightarrow \sec^2 y = 1+\tan^2 y = 1+x^2.\]
Step 4. Conclusion
\[y’=\frac{1}{\sec^2 y} = \frac{1}{1+x^2}.\]
Example 1.
Find the derivative of the function \(F(x)=\arctan^3 \left(\cot 2x\right)\).}
Solution. Here \(u=g(x)=\arctan \left(\cot 2x\right)\) and \(y=f(u)=u^3\) \(\Longrightarrow \)
\[\begin{array}{ccccc}
x & \longmapsto & u=\arctan \left(\cot 2x\right) & \longmapsto & y=u^3 \\
& g'(x)=(*) & & f'(u)=3u^2 & \\
\end{array}, \]
to compute \((*)\) apply the chain rule with \(u = A(x)= \cot 2x \), and \(y = B(u) = \arctan u\Longrightarrow \)
\[\begin{array}{ccccc}
x & \longmapsto & u= \cot 2x & \longmapsto & y=\arctan u \\
& A(x)=-2\csc^22x & & B'(u)=\frac{1}{1+u^2} & \\
\end{array}, \]
Hence
\[ (B\circ A)'(x) = A'(x)B'(u) = -2\csc^22x \frac{1}{1+u^2} \Longrightarrow \]
\[\;\;\;\;\Longrightarrow (B\circ A)'(x)= B'(A(x)) A'(x)=-2\csc^22x \frac{1}{1+\cot^22x}.\;\;\;\; (*)\]
It follows that
\[F'(x) = -2\csc^22x \frac{1}{1+\cot^22x}\left (3\arctan^2 \left(\cot 2x\right)\right )= -6 \frac{\csc^22x }{1+\cot^22x} \arctan^2 \left(\cot 2x\right) . \]
4.7.4 Derivative of Arcsecant
Basic Properties of Arcsecant
To define \(y =\text{arcsec} \,x\), a restriction of \(y = \sec x\) is \( x \in \left [0,\frac{\pi}{2}\right )\cup \left (\frac{\pi}{2}, \pi\right ]\) (see Figure 4.13(a)). Thus, the domain and range of \(y=\text{arcsec} \, x\) are, respectively,
\[D_{\text{arcsec}}=(-\infty, -1]\cup [1, \infty) \;\;\; R_{\text{arcsec}}=\left [0,\frac{\pi}{2}\right )\cup \left (\frac{\pi}{2}, \pi\right ].\]
Furthermore,
\[\sec(\text{arcsec}\, x)=x \;\; \text{for all} \; x\in (-\infty, -1]\cup [1, \infty),\;\;\; \text{arcsec}(\sec x)=x \;\; \text{for all} \; x \in\left [0,\frac{\pi}{2}\right )\cup \left (\frac{\pi}{2}, \pi\right ].\]
Derivative of arctangent
Proposition 4. Let \(y={\rm{arcsec}}\, x\), then
\frac{dy}{dx} = \frac{1}{|x| \sqrt{x^2-1}}, \;\;\; \forall\, x\in (-\infty, -1) \cup (1, \infty), \;\; y \in\left (0,\frac{\pi}{2}\right )\cup \left (\frac{\pi}{2}, \pi\right)\tag{4.8}
\end{equation}
Proof.
Step 1. Let \(x\in D_{\text{arcsec}}\). Then
\[y = \text{arcsec}\, x \Longleftrightarrow \sec y = x \text{ and } y\in\left [0,\frac{\pi}{2}\right )\cup \left (\frac{\pi}{2}, \pi\right ].\]
Step 2. Applying the Chain Rule
\[\frac{d}{dx}\sec y = \frac{dx }{dx}\;\;\Longrightarrow \;\; \sec y \tan y \, y’=1 \;\;\Longleftrightarrow\;\; y’=\frac{1}{\sec y\tan y }.\]
Step 3.
\[\sec y = x \Longrightarrow \tan^2 y = \sec^2 y -1 = x^2-1 \Longrightarrow \tan y = \pm \sqrt{x^2-1}.\]
Step 4. Thus
\[y’=\frac{1}{\sec y\tan y }= \frac{1}{\pm x \sqrt{x^2-1}}.\]
However, note that if \(x \in (1,\infty)\), then \( y =\sec^{-1} x \in \left [0,\frac{\pi}{2}\right )\), then not only \(\sec y > 0\), but also \(tan y > 0\). Thus, the \((+)\)-sign applies.
If \(x \in (-\infty, -1)\), then \( y =\sec^{-1} x \in \left (\frac{\pi}{2}, \pi \right]\), then \(\sec y < 0\) and \(\tan y < 0\). Thus, the \((-)\)-sign applies. But, since \(x<0\), we can replace \(-x = |x|\), and we obtain \[y’=\frac{1}{\sec y\tan y }= \frac{1}{|x| \sqrt{x^2-1}}.\]
Example 1. Given the function \(F(x)=\sin^3 \left(\sec^{-1}( 2x)\right)\), (a) find its domain; (b) find and simplify its derivative. }
Solution. (a) Since \(D_{\sin}=\mathbb{R}\), \(\displaystyle x \in D_F \underset{?}{\Longleftrightarrow } x \in \left (-\infty, -\frac{1}{2}\right ] \cup \left [\frac{1}{2}, \infty \right ) \).
(b) Let \(G(x)= x^3\) and \(H(x) = \sin \left(\sec^{-1}( 2x)\right)\), then \(F= G\circ H\), and by the Chain Rule \[F'(x)= G'(H(x))H'(x) = 3(H(x))^2H'(x) = 3\sin^2 \left(\sec^{-1}( 2x)\right) H'(x).\] Let now \(g(x) = \sin x\) and \(h(x) = \text{arcsec}\, (2x)\), so that \(H= g\circ h\). Applying the Chain Rule again \[H'(x) = g'(h(x))h'(x) = \cos (h(x)h'(x) = \cos \left (\text{arcsec}\, (2x)\right ) h'(x).\] Finally, applying the Chain Rule to \(h\), we obtain (verify this) \[F'(x) = 3\sin^2 \left(\sec^{-1}( 2x)\right) \cos \left (\text{arcsec}\, (2x)\right ) \frac{1}{|x|\sqrt{4x^2-1}}.\] To simplify this last expression, note that \[ \cos \left (\text{arcsec}\, (2x)\right ) = \frac{1}{ \sec \left (\text{arcsec}\, (2x)\right )} = \frac{1}{2x},\] and \[\sin^2 \left(\sec^{-1}( 2x)\right) = 1- \cos^2 \left(\sec^{-1}( 2x)\right) \underset{?}{=} 1 – \frac{1}{4x^2} =\frac{4x^2 – 1}{4x^2} .\] Hence \[F'(x) = 3\frac{4x^2 – 1}{4x^2} \cdot \frac{1}{2x}\cdot \frac{1}{|x|\sqrt{4x^2-1}} \underset{?}{=} \frac{3\sqrt{4x^2-1}}{8x^3|x|}. \]
4.7.5 Exercises
In problems 1-10, (a) determine the domain of the function; (b) find and simplify its derivative.
- \(\displaystyle f(x) = \arctan \sqrt{x}\).
- \(\displaystyle g(x) = \frac{1}{\sec^{-1} \left ( x^2\right ) }\).
- \(\displaystyle f(x) = \sqrt{1-4x^2}\arccos (2x)\).
- \(\displaystyle C(x)=\frac{\arctan 2x}{1+4x^2}\).
- \(\displaystyle C(x)=\frac{\arcsin( x/2)}{\sqrt{4-x^2}}\).
- \(\displaystyle g(t) = \arcsin\frac{t}{t-1}\).
- \(\displaystyle g(t) = \arccos\frac{t}{t+1}\).
- \(h(t) =\tan \left ( \arcsin \sqrt{t-1}\right )\).
- \(h(s) =\sin^3 \left ( \arccos \sqrt{s+1}\right )\).
- \(\displaystyle f(x) = \tan^5\left (\arccos\frac{x+1}{x+2}\right )\).
- Find the \(x\)-coordinate of the points where the graph of the function \(y=\arctan \left(3x^4-4x^3\right)\) have a horizontal tangent line.
- Define \(y = \cot^{-1}x\) by restricting \(y = \cot x\) to \((0,\pi)\). (a) Determine the domain and range of \(y = \cot^{-1}x\); (b) find and simplify \(\displaystyle \frac{d}{dx} \cot^{-1}x\).
- Define \(y = \csc^{-1}x\) by restricting \(y = \csc x\) to \(\displaystyle \left (-\frac{\pi}{2},\frac{\pi}{2}\right )\). (a) Determine the domain and range of \(y = \csc^{-1}x\); (b) find and simplify \(\displaystyle \frac{d}{dx} \csc^{-1}x\).
- Define \(y = \text{Sec}^{-1}x\) by restricting \(y = \sec x\) to \(\displaystyle \left (0,\frac{\pi}{2}\right )\cup \left (\frac{3\pi}{2},\pi\right )\). (a) Determine the domain and range of \(y = \sec^{-1}x\); (b) find and simplify \(\displaystyle \frac{d}{dx} \text{Sec}^{-1}x\). How different is it from (4.8)?
- Given \(\displaystyle f(x) = \arccos\frac{x+1}{x+2}\), find the \(x\)-coordinate of the points on its graph whose tangent line is parallel to the line \(x+y =2\). Hint: after you get an equation, guess one possible value, and the use division to determine if there are more solutions.
In problems 16-19, (a) verify that the point is on the graph of the equation;
(b) find the slope-intercept equation of the line tangent to the graph at the given point.
- \(3\arcsin(1-xy)=2\pi x^2y^2\), \(\displaystyle \left (-\frac{1}{2}, -1\right )\).
- \(\arctan (8xy^2) = 4\pi x^2y^2 \), \(\displaystyle \left (\frac{1}{2}, -\frac{1}{2}\right )\).
- \(3\sec^{-1}(2y^2)=\pi x y^2 \), \(\displaystyle \left ( 1 , -1 \right )\).
- \( 3\arccos (xy-1) = 4\pi x^2+\pi y^2\), \(\displaystyle \left ( \frac{1}{2} , 1 \right )\).
- \(\displaystyle \arccos(\sin \pi (x^2+y^2) )= \pi x^2 +\frac{\pi}{2}y^2\), \(\displaystyle \left ( \frac{1}{2} , 1 \right )\).
- \(8\arctan \left (\sec \pi \sqrt{xy} \right )+\pi(x^2+y^2) \), \(\left (1 , 1 \right )\).
4.7.6 Solution to On Your Own 6
Step 1. Let \(x\in (-1,1)\). Then \(y = \arccos x \Longleftrightarrow \cos y = x \text{ and } y\in (0, \pi)\).
Step 2. Applying the Chain Rule \(\displaystyle \frac{d}{dx}\cos y = \frac{dx }{dx}\;\;\Longrightarrow \;\; -\sin y y’=1 \;\;\Longleftrightarrow\;\; y’=-\frac{1}{\sin y}\).
Step 3. Applying the Pythagorean identity, and using the fact that \(\sin y > 0\) for all \(y \in (0,\pi)\):
\(\displaystyle \cos y = x \Longrightarrow \sin^2 y = 1-\cos^2 y = 1-x^2\;\; \Longrightarrow \;\; \sin y = \sqrt{1-x^2}\).
Step 4. Conclusion
\(\displaystyle y’=-\frac{1}{\sin y} = -\frac{1}{\sqrt{1-x^2}}\).