5.4.1 Previously Studied Techniques
We begin this section by quickly reviewing the integration techniques that we have used so far.
The three most basic techniques to compute antiderivatives
- Thorough knowledge of the derivatives of elementary functions.
- Rewrite and simplify, which includes
- adjust by a constant factor;
- algebraic manipulations;
- use of trigonometric identities;
- use of basic properties of exponential and logarithmic functions.
- Identify \(f\), \(g\), and \(g’\) to see the presence of the chain rule, \((f\circ g)'(x) = f'(g(x)) g'(x)\).
Example 1. (Basic knowledge of derivatives of elementary functions. ) Evaluate
(a) \(\displaystyle \int_1^8 \sqrt[3]{x^2}\,dx\); (b) \(\displaystyle \int_{-\pi/6}^{\pi/4}\cos 2x\,dx\); (c) \(\displaystyle \int_{-1}^{\sqrt{3}}\frac{1}{1+t^2}\,dt\).
Solution. (a) Since \(f(x)= \sqrt[3]{x^2}\) is continuous everywhere, and since \(\displaystyle F(x)= \frac{3}{5}x^{5/3}\) is an antiderivative of \(f\) on \(\mathbb{R}\), it follows that we can apply TFTCP2 to obtain
\[\int_1^8 \sqrt[3]{x^2}\,dx = \frac{3}{5}x^{5/3}\Big|_1^8 = \frac{3}{5}\cdot 8^{5/3}-\frac{3}{5}\cdot 1^{5/3}= \frac{3}{5}(2^5-1).\]
(b) Here \(\displaystyle F(x) = \frac{1}{2}\sin 2x\) is an antiderivative of \(f(x) =\cos 2x\). Thus
\[\int_{-\pi/6}^{\pi/4}\cos 2x\,dx = \frac{1}{2}\sin 2x \Big|_{-\pi/6}^{\pi/4} =
\frac{1}{2}\sin \left [2\left (-\frac{\pi}{6}\right )\right ] –
\frac{1}{2}\sin \left [2\left (\frac{\pi}{4}\right )\right ] = \frac{1}{4}\left (2 +\sqrt{3}\right).\]
(c)
\[ \int_{-1}^{\sqrt{3}}\frac{1}{1+t^2}\,dt = \arctan t\Big|_{-1}^{\sqrt{3}} = \frac{\pi}{3}-\left (-\frac{\pi}{4}\right ) = \frac{7\pi}{12}.\]
Example 2. (Rewrite and simplify.) Evaluate the indefinite integral.
- \(\displaystyle \int\frac{5+x^2}{1+x^2}\,dx\);
- \(\displaystyle \int\tan^2 3x\,dx\);
- \(\displaystyle \int\frac{e^{4x}-e^{-4x}}{e^{2x}+e^{-2x}}\,dx\);
- \(\displaystyle \int \frac{\sin \pi x}{\cos^2\pi x}\,dx\);
- \(\displaystyle \int\frac{\sin 6x}{\sin^3 3x}\,dx\);
- \(\displaystyle \int\frac{(x+\sqrt{x})^2}{\sqrt[3]{x^2}}\,dx\).
Solution.
(a) \(\displaystyle \int\frac{5+x^2}{1+x^2}=\int\frac{4+1+x^2}{1+x^2}\,dx
=\int\left(\frac{4}{1+x^2}+ 1\right)\,dx = 4\arctan x+x+C\).
(b) \(\displaystyle \int\tan^2 3x\,dx = \int\left(\sec^2 3x – 1\right)\,dx
= \frac{1}{3}\tan 3x – x + C\).
(c)
\begin{align*}
\int\frac{e^{4x}-e^{-4x}}{e^{2x}+e^{-2x}}\,dx
&=\int\frac{(e^{ 2x})^2-(e^{-2x})^2}{e^{2x}+e^{-2x}}\,dx
=\int\frac{(e^{ 2x}-e^{ 2x})(e^{ 2x}+e^{ -2x})}{e^{2x}+e^{-2x}}\,dx =\\
&=\int (e^{2x} – e^{-2x} )\,dx \underset{?}{=} \frac{1}{2}(e^{2x}+e^{-2x}) + C.
\end{align*}
(d) \(\displaystyle \int \frac{\sin \pi x}{\cos^2\pi x}\,dx
=\int \frac{\sin \pi x}{\cos\pi x}\frac{1}{\cos \pi x}\,dx
=\int \tan \pi x \sec \pi x\,dx = \frac{1}{\pi}\sec \pi x +C\).
(e)
\begin{align*}
\int\frac{\sin 6x}{\sin^3 3x}\,dx
&=\int\frac{\sin (2\cdot 3x)}{\sin^3 4x }\,dx
=\int\frac{2\sin 3x \cos 3x}{\sin^3 3x}\,dx =\int\frac{2\cos 3x }{\sin^2 3x}\,dx = \\
&=\int 2\csc 3x \cot 3x \,dx =- \frac{2}{3}\csc 3x + C.
\end{align*}
(f)
\begin{align*}
\int\frac{\sin 6x}{\sin^3 3x}\,dx
&=\int\frac{\sin (2\cdot 3x)}{\sin^3 4x }\,dx
=\int\frac{2\sin 3x \cos 3x}{\sin^3 3x}\,dx =\int\frac{2\cos 3x }{\sin^2 3x}\,dx = \\
&=\int 2\csc 3x \cot 3x \,dx =- \frac{2}{3}\csc 3x + C.
\end{align*}
Example 3. (Apply the chain rule.) Evaluate
- \(\displaystyle \int 3(x^2+2x)^2\,(x+1)\,dx \vphantom{\int_{\sqrt{e}}^{e^2} \frac{1}{x\ln^3 \sqrt[3]{x^2}}\,dx} \);
- \(\displaystyle \int \frac{1}{\sqrt{t}} e^{\sqrt{t}} \,dt\);
- \(\displaystyle \int_{\sqrt{e}}^{e^2} \frac{1}{x\ln^3 \sqrt[3]{x^2}}\,dx\);
- \(\displaystyle \int \frac{ 9\arcsin^3 x}{\sqrt{1-x^2}}\,dx\);
- \(\displaystyle \int \frac{3 + 5x}{\sqrt{1-x^2}}\,dx\vphantom{\int_{\sqrt{e}}^{e^2} \frac{1}{x\ln^3 \sqrt[3]{x^2}}\,dx}\);
- \(\displaystyle \int 2^{\sin^2x}\sin 2x \,dx \vphantom{ \int \frac{ 9\arcsin^3 x}{\sqrt{1-x^2}}\,dx}\).
Solution. (a) Here, \(g(x)= x^2+2x\), \( g'(x)= 2x+2 = 2(x+1)\), and \( f'(g(x))=3x^2\). Thus \(f(x)=x^3\), and
\begin{align*}
\int 3(x^2+2x)^2\,(x+1)\,dx&= \color{red}{\pmb{\frac{1}{2}}}\int 3(x^2+2x)^2\;\color{red}{\pmb{2}}\;(x+1)\,dx
=\frac{1}{2}(x^2+2x)^3 +C.
\end{align*}
(b) Let \(\displaystyle g(t)= \sqrt{t} \), \(\displaystyle g'(t)= \frac{1}{2}\frac{1}{\sqrt{t}} \), and \(f'(t)=e^{t}\). Then \(f(t)=e^t+C\), and we have
\begin{align*}
\int \frac{1}{\sqrt{t}} e^{\sqrt{t}} \,dt
&= \color{red}{\pmb{2}}\int e^{\sqrt{t}}\,\cdot\color{red}{\pmb{\frac{1}{2}}}\;\frac{1}{\sqrt{t}} \,dt
= \color{red}{\pmb{2}} e^{\sqrt{t}} +C.
\end{align*}
(c) First, we rewrite the expression involving the natural logarithm:
\[\ln^3 \sqrt[3]{x^2} = \left (\ln x^{2/3}\right )^3 = \left (\frac{2}{3}\ln \,| x\,|\right )^3 = \frac{8}{27}\ln^3\,| x\,|.\]
Thus
\[\int \frac{1}{x\ln^3 \sqrt[3]{x^2}}\,dx
= \int \frac{1}{x\left (\frac{2}{3}\ln x\right )^3}\,dx
=\frac{27}{8} \int \left (\ln \,| x\,|\right )^{-3}\frac{1}{x}\,dx.\]
Thus
\[g(x) = \ln \,| x\,|, \Longrightarrow g'(x) = \frac{1}{x}; \;\;\; f'(x) = x^{-3}, \Longrightarrow f(x) = -\frac{1}{2}x^{-2}+C.\]
Then
\[\int \frac{1}{x\ln^3 \sqrt[3]{x^2}}\,dx
=\frac{27}{8} \int \left (\ln \,| x\,|\right )^{-3}\frac{1}{x}\,dx
=-\frac{27}{16}\ln^{-2}\,| x\,|+C.\]
And
\begin{align*}
\int_{\sqrt{e}}^{e^2} \frac{1}{x\ln^3 \sqrt[3]{x^2}}\,dx
&= -\frac{27}{16}\ln^{-2}x\, \Big|_{\sqrt{e}}^{e^2}
=-\frac{27}{16}\left (\ln^{-2}e^2 – \ln^{-2}e^{1/2}\right )
= -\frac{27}{16}\left (2^{-2} -\left (\frac{1}{2}\right )^{-2}\right ) = \\
&=\frac{27}{16}\cdot\frac{15}{4}.
\end{align*}
(d) \(\displaystyle g(x) = \arcsin x, \Longrightarrow g'(x) =\frac{1}{\sqrt{1-x^2}}; \;\;\; f'(x) = x^3, \Longrightarrow f(x) =\frac{1}{4} x^{4} + C\). Hence
\[\int \frac{ 9\arcsin^3 x}{\sqrt{1-x^2}}\,dx = \frac{9}{4}\arcsin^4 x+ C.\]
(e) Since \(\displaystyle \int \frac{3 + 5x}{\sqrt{1-x^2}}\,dx =
3\int \frac{1 }{\sqrt{1-x^2}}\,dx + 5 \int \frac{ x }{\sqrt{1-x^2}}\,dx\), we evaluate each integral separately.
\[ 3\int \frac{1}{\sqrt{1-x^2}}\,dx = 3\arcsin x +C_0;\]
\[5 \int \frac{x}{\sqrt{1-x^2}}\,dx = 5 \int x (1-x^2)^{-1/2}\,dx\]
\[ g(x) = 1-x^2, \Longrightarrow g'(x) = -2x; \;\;\; f'(x) = x^{-1/2}, \Longrightarrow f(x) =\frac{2}{3} x^{3/2} + C_1. \Longrightarrow\]
\[\Longrightarrow \int \frac{ x }{\sqrt{1-x^2}}\,dx=
5\cdot \, \pmb{\left (\!-\frac{1}{2}\!\right )} \int \frac{ \pmb{-2} \, x }{\sqrt{1-x^2}}\,dx = -\frac{5}{2}\cdot\frac{2}{3}(1-x^2)^{3/2}+C_1 =
-\frac{5}{3}(1-x^2)\sqrt{1-x^2}+C_1. \]
Thus
\[\int \frac{3 + 5x}{\sqrt{1-x^2}}\,dx = 3\arcsin x -\frac{5}{3}(1-x^2)\sqrt{1-x^2}+C.\]
(f) Since \(\displaystyle \int 2^{\sin^2x}\sin 2x \,dx = \int 2^{\sin^2x}2\sin x\cos x \,dx\),
\[g(x) = \sin^2x, \Longrightarrow g'(x) = 2\sin x \cos x; \;\;\; f'(x) = 2^x = e^{\ln 2^x} = e^{x\ln 2}, \Longrightarrow f(x) = \frac{1}{\ln 2}e^{x\ln 2}+C.\]
Then
\[\int 2^{\sin^2x}\sin 2x \,dx = \int 2^{\sin^2x}2\sin x\cos x \,dx = \frac{1}{\ln 2}e^{ \sin^2x\cdot\ln 2}+C= \frac{1}{\ln 2}2^{\sin^2x}+C.\]
5.4.2 Exercises
In problems 1—12, evaluate the integral.
- \(\displaystyle \int x^3 (2 + x^4)^2\,dx \vphantom{ \int \frac{\cos^2\pi x}{\sin^4\pi x}\,dx}\).
- \(\displaystyle \int t^2\sec^2 (t^3)\,dt\).
- \(\displaystyle \int_{1/2}^{2/3} \cos \pi x \sin^3\pi x \,dx \vphantom{\int \left (\frac{2^{\sqrt{t}}}{\sqrt{t}}+ e^{e^t+t} \right )\,dt} \vphantom{\int_{-1}^{1/\sqrt{3}} \frac{\arctan^2 x}{1+x^2}\,dx}\).
- \(\displaystyle \int e^{2w} \cos e^{2w} \,dw \vphantom{\int \frac{2+ 3x + 4x^2}{1+x^2}\,dt}\).
- \(\displaystyle \int_{\sqrt{e}}^{e^2} \frac{1}{x\ln^3 x}\,dx \vphantom{ \int \frac{\cos^2\pi x}{\sin^4\pi x}\,dx}\).
- \(\displaystyle \int_{-\sqrt{3}/2}^{1/2} \frac{\arcsin x}{\sqrt{1-x^2}} \,dx \vphantom{\int \left (\frac{2^{\sqrt{t}}}{\sqrt{t}}+ e^{e^t+t} \right )\,dt}\).
- \(\displaystyle \int_{-1}^{1/\sqrt{3}} \frac{\arctan^2 x}{1+x^2}\,dx\);
- \(\displaystyle \int e^{\cos^2 \pi x}\sin 2\pi x \,dx \vphantom{\int \frac{2+ 3x + 4x^2}{1+x^2}\,dt}\).
- \(\displaystyle \int \frac{\cos^2\pi x}{\sin^4\pi x}\,dx\).
- \(\displaystyle \int \left (\frac{2^{\sqrt{t}}}{\sqrt{t}}+ e^{e^t+t} \right )\,dt\).
- \(\displaystyle \int \frac{\cos 2\pi x}{\cos \pi x – \sin \pi x} \, dx \vphantom{\int_{-1}^{1/\sqrt{3}} \frac{\arctan^2 x}{1+x^2}\,dx}\).
- \(\displaystyle \int \frac{2+ 3x + 4x^2}{1+x^2}\,dt\).
5.4.3 Substitution
Theorem 1. If \(u=g(x)\) is a differentiable function whose range is contained on the open interval \(I\), and \(f\) is continuous on \(I\), then
\begin{equation}\tag{5.6}
\int f(g(x))g'(x)\,dx = \int f(u)\,du.
\end{equation}
Proof.
Let \(F\) be an antiderivative of \(f\) on \(I\), then, by the chain rule,
\[\int f(g(x))g'(x)\,dx = F(g(x)) + C\;\;\; \text{and}\;\;\;\int f(u)\,du. = F(u) + C,\]
and the result follows.