Goal. This section presents examples of graphs of trigonometric functions, inverse trigonometric functions, exponential functions, and logarithmic functions.
7.7.1 Trigonometric Functions
Note. The following two examples provide an opportunity to apply basic trigonometric ideas. In particular, we will use the double angle identities:
\(\sin 2x = 2\sin x \cos x, \;\;\; \cos 2x = \cos^2 x – \sin^2 x = 2\cos^2 x -1 = 1-2\sin^2x. \)
Example 1
Given the function \(f\) together with its first and second derivatives,
\[f(x) = \frac{1}{2}\sin 2x + \sin x ,\;\;\; f'(x) = \cos 2x + \cos x , \;\;\; f”(x) = -2\sin 2x – \sin x, \]
sketch its graph by completing steps (I)–(VI).
(I) Domain and Intercepts
Clearly, \(D_f= \mathbb{R} \). Using the double-angle identity for sine, we have
\[ f(x)=0 \Longleftrightarrow \frac{1}{2}\sin 2x + \sin x= 0 \Longleftrightarrow
\sin x (\cos x + 1) = 0 \Longleftrightarrow
\left [\renewcommand{\arraystretch}{1.2}\begin{array}{l}
\sin x = 0\\ \cos x = -1
\end{array}\right .
\Longleftrightarrow \]
\[ \Longleftrightarrow
\left [\renewcommand{\arraystretch}{1.2}\begin{array}{l}
\displaystyle x= \pi k, \; k \in \mathbb{Z}\\ x= \pi + 2\pi k, \; k \in \mathbb{Z}
\end{array}\right .
\Longleftrightarrow
x\in \left \{x= \pi k \, : \, k \in \mathbb{Z}\right \}. \Longrightarrow x\text{-intercepts: }\, \left \{(\pi k ,0) \, : \, k \in \mathbb{Z}\right \}.
\]
\[f(0) = 0 \Longrightarrow y\text{-intercept: }\, (0,0). \]
(II) Symmetry
Since \(f(x+2\pi) = f(x)\), \(f\) is periodic with period \(2\pi\). Furthermore, since \(y = \sin x\) is odd, \(f\) is also odd. Thus, the graph is symmetric with respect to the origin.
A consequence of the symmetry and the periodicity is that we only need to draw the graph on the interval \([0, \pi]\), by symmetry, reflect the graph with respect to the origin, and then translate the resulting graph by \(2\pi\) in both directions to obtain the graph of \(f\). This is precisely what we will do next.
(III) Asymptotic Behavior
The graph has neither vertical nor horizontal asymptotes, nor slant asymptotes.
(IV) Monotonicity and Local Extrema
Given that \(\displaystyle f'(x) = \cos 2x + \cos x = 2\cos^2x+\cos x -1 = (2\cos x -1) (\cos x + 1)\), and since we are interested on the critical numbers on \(x \in [0, \pi]\), we have
\(
\left \{\renewcommand{\arraystretch}{1.5}
\begin{array}{l}
(2\cos x -1) (\cos x + 1) = 0 \\x\in [0, \pi]
\end{array}\right .
\Longleftrightarrow
\left \{\renewcommand{\arraystretch}{1.5}
\begin{array}{l}
\left [\renewcommand{\arraystretch}{1.5}
\begin{array}{l}
\displaystyle \cos x = \frac{1}{2}\\\cos x =-1
\end{array}\right .\\x\in [0, \pi]
\end{array}\right .
\Longleftrightarrow
x = \frac{\pi}{3}.
\)
In addition, since \(\cos x + 1 \geq 0\), it follows that the signs of \(f’\) match the signs of \(2\cos x + 1\) on \([0, \pi]\). It follows that \(f\) is increasing on \(\displaystyle \left [0, \frac{\pi}{3}\right ) \) and decreasing on \(\displaystyle \left ( \frac{\pi}{3}, \pi\right ]\).
Hence, on the interval \([0, \pi]\), \(f\) has a local maximum value \(\displaystyle f\left (\frac{\pi}{3}\right )=\frac{3\sqrt{3}}{4}\) and local minimum values \(\displaystyle f\left ( 0\right ) = 0\) and \(\displaystyle f\left (\pi\right ) = 0\).
(V) Concavity and Inflection Points
Since \(\displaystyle f”(x) = – \sin x – 4\sin x \cos x = -\sin x (1 + 4\cos x)\), we have
\(
\left \{\renewcommand{\arraystretch}{1.5}
\begin{array}{l}
-\sin x (1 + 4\cos x) = 0 \\x\in [0, \pi]
\end{array}\right .
\Longleftrightarrow
\left \{\renewcommand{\arraystretch}{1.5}
\begin{array}{l}
\left [\renewcommand{\arraystretch}{2}\begin{array}{l}
\sin x = 0 \\ \displaystyle \cos x = -\frac{1}{4}
\end{array}\right . \\x\in [0, \pi]
\end{array}\right .
\Longleftrightarrow
x \in \left \{ 0, \arccos\left (-\frac{1}{4} \right ), \pi\right \}.
\)
Since \(-\sin x \leq 0\) for \(x \in [0,\pi]\), to determine the concavity of \(f\) on this interval, we only need to analyze the sign on the factor \(1+4\cos x\) on this interval. The following can be immediately verified: on the interval \([0, \pi]\),
\(f\) is concave upward on \(\displaystyle \left ( \arccos\left (-\frac{1}{4} \right ),\pi\right )\), and concave downward on \(\displaystyle \left (0, \arccos\left (-\frac{1}{4} \right )\right )\).
It follows that \(f\) has an inflection point on the interval \([0, \pi]\) at \(\displaystyle x= \arccos\left (-\frac{1}{4} \right )\), with
\(\displaystyle \left (\arccos\left (-\frac{1}{4} \right ), f\left (\arccos\left (-\frac{1}{4} \right )\right )\right ) = \left (\arccos\left (-\frac{1}{4} \right ),\frac{3\sqrt{15}}{16}\right ). \)
subsubsection(VI) Graph
Based on all the above information, the graph of \(f\) on the interval \([0, \pi]\) is as shown in Figure 7.33(a)
Using the fact that \(f\) is odd, the graph of\(f\) can be extended to the interval \([-\pi, 0]\), by reflecting the graph of \(f\) about the origin. The corresponding graph is show in Figure 7.33(b).
Using the fact that the period of \(f\) is \(2\pi\) the graph can be further extended by translations along the \(x\)-axis as shown in Figure 7.34.
Example 2
Given the function \(f\) together with its first and second derivatives,
\(f(x) = \cos 2x + 2\sin x ,\;\;\; f'(x) = -2\sin 2x + 2\cos x , \;\;\; f”(x) = -4\cos 2x -2\sin x, \)
sketch its graph by completing steps (I)–(VI).
(I) Domain and Intercepts
Clearly \(D_f= \mathbb{R}\). Using the double-angle identity for sine, we have
\(
f(x)=0 \Longleftrightarrow \cos 2x + 2\sin x= 0 \Longleftrightarrow
1-2\sin^2x+ 2\sin x = 0 \Longleftrightarrow
-2\sin^2x+ 2\sin x +1 = 0 \Longleftrightarrow \)
\(
\sin x = \frac{-2\pm \sqrt{12}}{-4} = \frac{1\pm \sqrt{3}}{2}
\Longleftrightarrow
\left [\renewcommand{\arraystretch}{1.2}\begin{array}{l}
\displaystyle \sin x = \frac{1+ \sqrt{3}}{2}\\
\displaystyle \sin x = \frac{1- \sqrt{3}}{2}
\end{array}\right .
\Longleftrightarrow
\sin x = \frac{1- \sqrt{3}}{2}
\)
(note here that \(\displaystyle \sin x = \frac{1+ \sqrt{3}}{2} > 1\) is impossible). Thus, using the unit circle,
\(
\left [\renewcommand{\arraystretch}{1.2}\begin{array}{l}
\displaystyle x= \arcsin\left ( \frac{1- \sqrt{3}}{2} \right ) + 2\pi k, \; k \in \mathbb{Z}\\ \
\displaystyle x= \pi – \arcsin\left ( \frac{1- \sqrt{3}}{2} \right ) + 2\pi k, \; k \in \mathbb{Z}
\end{array}\right .
\)
It follows that the \(x\)-interceptsare given by
\(\left \{\left ( \arcsin\left ( \frac{1- \sqrt{3}}{2} \right ) + 2\pi k ,0\right )\;\; \text{ or }\;\; \left (\pi – \arcsin\left ( \frac{1- \sqrt{3}}{2} \right ) + 2\pi k ,0\right ) \, : \, k \in \mathbb{Z}\right \}.
\)
And since \(f(0) = 1 \), the \(y\)-intercept is \( (0,1)\).
(II) Symmetry
Since \(f(x+2\pi) = f(x)\), \(f\) is periodic with period \(2\pi\). However, since \(f\) is neither even nor odd, the graph is not symmetric with respect to the \(y\) or the origin.
A consequence of the periodicity is that we only need to draw the graph on the interval \([0, 2\pi]\), and then translate the resulting graph by \(2\pi\) in both directions to obtain the graph of \(f\). This is precisely what we will do next.
(III) Asymptotic Behavior
The graph has neither vertical nor horizontal asymptotes, nor slant asymptotes.
(IV) Monotonicity and Local Extrema
Given that \(\displaystyle f'(x) = -2\sin 2x + 2\cos x = -4\sin x \cos x -2\cos x = -2\cos x (2\sin x -1)\), and since we are interested on the critical numbers on \(x \in [0, 2\pi]\), we have
\(
\left \{\renewcommand{\arraystretch}{1.5}
\begin{array}{l}
-2\cos x (2\sin x -1)= 0 \\x\in [0, 2\pi]
\end{array}\right .
\Longleftrightarrow
\left \{\renewcommand{\arraystretch}{1.5}
\begin{array}{l}
\left [\renewcommand{\arraystretch}{1.5}
\begin{array}{l}
\displaystyle \cos x = 0\\
\displaystyle \sin x =\frac{1}{2}
\end{array}\right .\\x\in [0, 2\pi]
\end{array}\right .
\Longleftrightarrow
x \in \left \{ \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}\right \}.
\)
In order to determine the sign of \(f'(x) = -2\cos x (2\sin x -1)\), we sketch the graphs of the two factors \(y=-2\cos x\) and \( y = 2\sin x -1\) (see Figure 7.35(a)). From the graphs, it is easy to determine the signs of the factors, and, hence, the signs of \(f’\) (see Figure 7.35(b)). A similar procedure was used in Example~\ref{ch07-04-01-ex03} in \ref{ch07-04-01}.
Hence, on the interval \([0, 2\pi]\), \(f\) is increasing on \(\displaystyle \left (0,\frac{\pi}{6}\right )\cup \left ( \frac{\pi}{2}, \frac{5\pi}{6}\right )\cup \left (\frac{3\pi}{2}, 2\pi\right )\), and decreasing on \(\displaystyle \left ( \frac{\pi}{6},\frac{\pi}{2}\right )\cup \left (\frac{5\pi}{6},\frac{3\pi}{2}\right )\).
\(f\) has local maximum values \(\displaystyle f\left (\frac{\pi}{6}\right )=\frac{3}{2}= f\left (\frac{5\pi}{6}\right )\), and
\(f\) has
local minimum values \(\displaystyle f\left ( \frac{\pi}{2}\right ) = 1\) and \(\displaystyle f\left ( \frac{3\pi}{2}\right ) = -3\).
(V) Concavity and Inflection Points
Since \(\displaystyle f”(x) = -4\cos 2x -2\sin x = -2\left (2\left (1-2\sin^2x\right ) +\sin x\right )\), we have
\(f”(x) = 0 \;\; \Longleftrightarrow \;\; -4\sin^2x +\sin x+2 = 0 \;\; \Longleftrightarrow \;\; \sin x = \frac{-1\pm\sqrt{1-4(-4)(2)}}{2(-4)}= \frac{-1\pm \sqrt{33}}{-8}. \)
We now restrict the equation to the interval \([0, 2\pi]\).
\(
\left \{\renewcommand{\arraystretch}{1.5}
\begin{array}{l}
\left [\renewcommand{\arraystretch}{2}\begin{array}{l}
\displaystyle \sin x = \frac{1+ \sqrt{33}}{8} \\
\displaystyle \sin x = \frac{1- \sqrt{33}}{8}
\end{array}\right . \\
x\in [0, 2\pi]
\end{array}\right .
\Longleftrightarrow
\left [\renewcommand{\arraystretch}{2}\begin{array}{l}
\displaystyle x \in \left \{ \arcsin\left (\frac{1+ \sqrt{33}}{8}\right ), \pi- \arcsin\left (\frac{1+ \sqrt{33}}{8}\right )\right \} \\
\displaystyle x \in \left \{ \pi – \arcsin\left (\frac{1- \sqrt{33}}{8}\right ), 2\pi + \arcsin\left (\frac{1- \sqrt{33}}{8}\right ) \right \}.
\end{array}\right .
\)
These four solutions can be visualized using the unit circle, and noticing that \(\displaystyle \frac{1- \sqrt{33}}{8} < 0\).
To determine the signs of \(f”\), note that
\(f”(x) = -2\left (-4\sin^2x +\sin x+2\right ) = -2
\left (\sin x – \frac{1- \sqrt{33}}{8}\right )
\left (\sin x – \frac{1+ \sqrt{33}}{8}\right )
\)
(explain why). Thus, once again, we need to determine the signs of the factors. And, once again, we use a graphical argument.
\(\displaystyle \sin x – \frac{1- \sqrt{33}}{8} > 0 \Longleftrightarrow \) the graph of \(y = \sin x \) lies above the line \(\displaystyle y = \sin x – \frac{1- \sqrt{33}}{8}\);
\(\displaystyle \sin x – \frac{1+ \sqrt{33}}{8} > 0 \Longleftrightarrow \) the graph of \(y = \sin x \) lies above the line \(\displaystyle y = \sin x – \frac{1+ \sqrt{33}}{8}\);
Thus, we draw the graph of sine and the two lines as in Figure 7.36(a), where we use the following notation:
\(x_1= \sin^{-1}\left (\frac{1+\sqrt{33}}{8}\right ), \;\;\; x_2=\pi – \sin^{-1}\left (\frac{1+\sqrt{33}}{8}\right ),
\) \(
x_3= \pi – \sin^{-1}\left (\frac{1-\sqrt{33}}{8}\right ), \;\;\; x_4= 2\pi +\sin^{-1}\left (\frac{1-\sqrt{33}}{8}\right ). \)
Verify that the signs of \(f”\) as indicated in Figure 7.36(b).
\(f\) is concave upward on \(\displaystyle \left (x_1, x_2 \right )\cup \left (x_3, x_4\right )\), and concave downward on \(\displaystyle \left (0, x_1\right )\cup \left (x_2, x_3\right )\cup \left (x_4, 2\pi \right )\).
It follows that \(f\) has an inflection point on the interval \([0, 2\pi]\) at \(\displaystyle x\in \left \{x_1, x_2, x_3, x_4 \right \}\).
(VI) Graph
Based on all the above information, the graph of \(f\) on the interval \([0, 2\pi]\) is as shown in Figure 7.37. In addition, using the fact that the period of \(f\) is \(2\pi\) the graph can be further extended by translations along the \(x\)-axis as shown in Figure 7.37.
7.7.2 Inverse Trigonomic Functions
Example 1
Given the function \(f\) together with its first and second derivatives,
\[f(x) =\arcsin \left ( \frac{1-x^2}{1+ x^2}\right ),\;\;\; f'(x) = – \frac{2x}{|x|(x^2+1)}, \;\;\; f”(x)=\frac{4x^2}{|x|(x^2+1)^2}, \]
sketch its graph by completing steps (I)–(VI).
(I) Domain and Intercepts
\(D_f=(-\infty, \infty)\). \(y\)-intercept: \(\displaystyle \left (0,f(0)\right ) = \left (0,\frac{\pi}{2}\right )\).
\(x\)-intercepts: \(\displaystyle f(x) = 0 \Longleftrightarrow \frac{1-x^2}{1+ x^2} = 0 \Longleftrightarrow x=\pm 1. \Longrightarrow \{(\pm 1, 0)\}\).
(II) Symmetry
The function is even, since \(f(-x)=f(x)\) (explain why). Thus, the graph is symmetric with respect to the \(y\)-axis.
(III) Asymptotic Behavior
The graph has no vertical asymptotes.
Horizontal asymptotes. By continuity of \(y=\arcsin x\), we have in \((*)\)
\(\lim_{x\to \pm \infty} \arcsin \left ( \frac{1-x^2}{1+ x^2}\right ) \underset{(*)}{=} \arcsin\lim_{x\to \pm \infty}\frac{1-x^2}{1+x^2} = \arcsin (-1) = -\frac{\pi}{2}. \)
Hence, the graph has a horizontal asymptote given by \(\displaystyle y=-\frac{\pi}{2}\).
(IV) Monotonicity and Local Extrema
Since
\( f'(x) = – \frac{2x}{|x|(x^2+1)} = \left [\renewcommand{\arraystretch}{2}\begin{array}{ll}
\displaystyle – \frac{2 }{ x^2+1} & \;\text{if } \; x > 0\\
\displaystyle \frac{2 }{ x^2+1} & \;\text{if } \; x < 0
\end{array}\right .,
\)
\(f’\) is undefined at \(x=0\) and vanishes nowhere. This,\(\displaystyle \left \{0\right \}\) is its only critical number.
It is clear that \(f'(x) < 0 \) if \(x > 0\) and \(f'(x) > 0 \) if \(x < 0 \).
Thus, \(f\) is increasing on \((-\infty, 0)\), and decreasing on \((0, \infty)\).
It follows that \(f\) has a local maximum value \(\displaystyle f(0)=\frac{\pi}{2}\) and no local minimum values.
(V) Concavity and Inflection Points
Since
\( f”(x) =\frac{4x^2}{|x|(x^2+1)^2} = \left [\renewcommand{\arraystretch}{2}\begin{array}{ll}
\displaystyle \frac{4x }{ x^2+1} & \;\text{if } \; x > 0\\
\displaystyle -\frac{4x }{ x^2+1} & \;\text{if } \; x < 0
\end{array}\right .,
\)
clearly, \(f”(x) > 0 \) if \(x < 0\) and \(f”(x) < 0 \) if \(x > 0 \).
Thus, \(f\) is concave upward on \((-\infty, 0)\), and concave downward on \((0, \infty)\), and has no inflection points.
(VI) Graph
Based on all the above information, the graph is as shown in Figure 7.38.
Example 2
Given the function \(f\) together with its first and second derivatives,
\(f(x) =\arctan \left (e^{-2x}-1\right ) ,\;\;\; f'(x) = – \frac{2e^{-2x}}{ \left (e^{-2x}-1\right )^2+1}, \;\;\; f”(x)=-\frac{4 e^{-2 x} \left (e^{-4 x}-2\right )}{\left ( \left (e^{-2x}-1\right )^2+1\right )^2}, \)
sketch its graph by completing steps (I)–(VI).
(I) Domain and Intercepts
\(D_f=(-\infty, \infty)\). \(y\)-intercept: \(\displaystyle \left (0,f(0)\right ) = \left (0,0\right )\).
\(x\)-intercepts: \(\displaystyle f(x) = 0 \Longleftrightarrow e^{-2x}-1= 0 \Longleftrightarrow x=0. \Longrightarrow \{(0, 0)\}\).
(II) Symmetry
No symmetry since \(f\) is neither even nor odd (explain).
(III) Asymptotic Behavior
The graph has no vertical asymptotes.
Horizontal asymptotes. By continuity of \(y=\arctan x\), we have in \((*)\)
\(\lim_{x\to \infty} \arctan\left (e^{-2x}-1\right )\underset{(*)}{=} \arctan\left (\lim_{x\to \infty}\left (e^{-2x}-1\right )\right ) = \arctan (-1) = -\frac{\pi}{4}. \)
\(\lim_{x\to – \infty} \arctan\left (e^{-2x}-1\right )\underset{(*)}{=} \arctan\left (\lim_{x\to – \infty}\left (e^{-2x}-1\right )\right ) = -\frac{\pi}{2}. \)
Hence, the graph has a horizontal asymptotes \(\displaystyle y=-\frac{\pi}{4}\) and \(\displaystyle y=\frac{\pi}{2}\).
(IV) Monotonicity and Local Extrema
Since
\(\displaystyle f'(x) = – \frac{2e^{-2x}}{ \left (e^{-2x}-1\right )^2+1}\), \(f'(x) < 0 \) for all \(x\in \mathbb{R}\). Thus, \(f\) is decreasing on \(\mathbb{R}\). Hence, it has no local maximum values and no local minimum values.
(V) Concavity and Inflection Points
\( f”(x) =0 \Longleftrightarrow -\frac{4 e^{-2 x} \left (e^{-4 x}-2\right )}{\left ( \left (e^{-2x}-1\right )^2+1\right )^2} = 0 \Longleftrightarrow e^{-4 x}-2=0 \Longleftrightarrow x= -\frac{1}{4}\ln 2. \)
Given that the denominator of \(f”\) and the factor \(4 e^{-2 x}\) in the numerator
are strictly positive, it follows that
\(f”(x) > 0 \Longleftrightarrow -\left (e^{-4 x}-2\right ) > 0 \Longleftrightarrow e^{-4 x}< 2 \Longleftrightarrow x > -\frac{1}{4}\ln 2 \)
Thus, \(f\) is concave upward on \(\displaystyle \left ( -\frac{1}{4}\ln 2 , \infty\right )\), and concave downward on \(\displaystyle \left (-\infty, -\frac{1}{4}\ln 2 \right )\).
\(f\) has an inflection point at \(\displaystyle \left ( -\frac{1}{4}\ln 2, f\left ( -\frac{1}{4}\ln 2\right )\right ) = \left ( -\frac{1}{4}\ln 2, \arctan\left (\sqrt{2}-1\right )\right )\) (explain).
(VI) Graph
Based on all the above information, the graph is as shown in Figure 7.39.
7.7.3 Exponential Functions
Example 1
Given the function \(f\) together with its first and second derivatives,
\[f(x) =\frac{e^x}{1+e^{2x}},\;\;\; f'(x) = \frac{e^x – e^{3x}}{(1+e^{2x})^2}, \;\;\; f”(x) = \frac{e^x -6 e^{3x} + e^{5x}}{(1+e^{2x})^3}, \]
sketch its graph by completing steps (I)–(VI).
(I) Domain and Intercepts
\(D_f=(-\infty,\infty)\). \(x\)-intercepts: none; \(y\)-intercept: \(\displaystyle \left (0, \frac{1}{2}\right )\).
(II) Symmetry
The function is even
\[f(-x) = \frac{e^{-x}}{1+e^{-2x}} = \frac{e^{-x}}{1+e^{-2x}}\cdot \frac{e^{2x}}{e^{2x}} = \frac{e^{x}}{1+e^{2x}} = f(x).\]
Thus, the graph is symmetric with respect to the \(y\)-axis.
(III) Asymptotic Behavior
No vertical asymptotes.
Horizontal asymptotes:
\[\lim_{x\to \infty} \frac{e^{x}}{1+e^{2x}}\;\; \underset{\text{l’H}}{=}\;\;\lim_{x\to \infty} \frac{e^{x}}{2e^{2x}}=\lim_{x\to \infty} \frac{1}{2e^{x}}= 0, \]
and, by symmetry, \(\displaystyle \lim_{x\to -\infty} \frac{e^{x}}{1+e^{2x}} =0\).
Thus, the graph has a horizontal asymptotes: \(y = 0\).
(IV) Monotonicity and Local Extrema
Since \(\displaystyle f'(x) = \frac{e^x – e^{3x}}{(1+e^{2x})^2} = \frac{e^x(1 – e^{x})(1+e^x)}{(1+e^{2x})^2}\), \(f\) has only one critical number: \(\displaystyle \left \{0\right \}\).
Verify that the following is true: \(f\) is increasing on \((-\infty,0) \), and decreasing on \((0, \infty)\).
It follows that \(f\) has a local maxumum value \(\displaystyle f(0)=\frac{1}{2}\) and no local minimum values.
(V) Concavity and Inflection Points
Since
\[f”(x) = \frac{e^x -6 e^{3x} + e^{5x}}{(1+e^{2x})^3}= \frac{e^x \left ( e^{4x} -6e^{2x} +1\right )}{(1+e^{2x})^3},\]
\[
f”(x) = 0 \Longleftrightarrow
e^x \left ( e^{4x} -6e^{2x} +1\right ) =0 \Longleftrightarrow
\left [\renewcommand{\arraystretch}{1.2}\begin{array}{l}
u = e^{2x}\\
u^2-6u+1=0
\end{array}\right .
\Longleftrightarrow
\left [\renewcommand{\arraystretch}{1.2}\begin{array}{l}
u = e^{2x}\\
u = 3\pm 2\sqrt{2}
\end{array}\right . \Longleftrightarrow
\]
\[\Longleftrightarrow
e^{2x} = 3\pm 2\sqrt{2} \Longleftrightarrow 2x= \ln\left (3\pm 2\sqrt{2} \right )
\Longleftrightarrow x= \frac{1}{2}\ln\left (3\pm 2\sqrt{2} \right ).
\]
Given that
\[f”(x) = \frac{e^x \left ( e^{4x} -6e^{2x} +1\right )}{(1+e^{2x})^3} = \frac{e^x }{(1+e^{2x})^3}\cdot\left ( e^{4x} -6e^{2x} +1\right ), \;\; \text{ with } \;\; \frac{e^x }{(1+e^{2x})^3} > 0, \]
to determine the sign of \(f”\) it is only necessary to determine the sign of the factor
\[ e^{4x} -6e^{2x} +1 = \left ( e^{2x} -\left (3- 2\sqrt{2}\right )\right ) \left ( e^{2x} – \left (3+ 2\sqrt{2}\right )\right ).\]
Since \(y=e^{2x}\) is increasing, it follows that
(i) \(f”(x) > 0\), if \(\displaystyle x > \frac{1}{2}\ln\left (3 + 2\sqrt{2}\right )\) (both factors are positive);
(ii) \(f”(x) < 0\), if \(\displaystyle \frac{1}{2}\ln\left (3 + 2\sqrt{2}\right ) > x > \frac{1}{2}\ln\left (3 – 2\sqrt{2}\right ) \) (one factor positive the other negative);
(iii) \(f”(x) > 0\), if \(\displaystyle x < \frac{1}{2}\ln\left (3 – 2\sqrt{2}\right )\) (both factors are negative).
\(f\) is concave upward on \(\displaystyle \left (-\infty, \frac{1}{2}\ln\left (3 – 2\sqrt{2}\right )\right )\cup \left( \frac{1}{2}\ln\left (3 + 2\sqrt{2}\right ), \infty\right)\), and downward on \(\displaystyle \left ( \frac{1}{2}\ln\left (3 – 2\sqrt{2}\right ), \frac{1}{2}\ln\left (3 + 2\sqrt{2}\right )\right )\).
The inflection points are located at \(\displaystyle x = \frac{1}{2}\ln\left (3 \pm 2\sqrt{2}\right )\).
(VI) Graph
Based on all the above information, the graph is as shown in Figure~\ref{ch07-07-f08}.
Trigonometry Review
The following example makes use of a basic procedure to rewrite the sum
\(
\hphantom{\hspace{.5in}(*)}
a\sin x +b\cos x = \sqrt{a^2+b^2}\,\sin (x + \theta),\;\; \;\; a^2+b^2 \neq 0,\; a,b\in \mathbb{R},\hspace{.5in}(*)
\)
where \(\theta\) satisfies
\(\cos \theta = \frac{a}{\displaystyle \sqrt{a^2+b^2}}, \; \; \sin \theta = \frac{b}{\displaystyle \sqrt{a^2+b^2}}. \)
To see that this is valid, note that
(i) the point \(\displaystyle \left (\frac{a}{\sqrt{a^2+b^2}}, \frac{b}{\sqrt{a^2+b^2}}\right )\) belongs to the unit circle (explain why), hence such a \(\theta\) exists;
(ii) by the addition formula for \(\sin (x + \theta)\), we have
\begin{align*}
a\sin x +b\cos x &= \sqrt{a^2+b^2}\left (\frac{a}{ \sqrt{a^2+b^2}}\sin x + \frac{b}{ \sqrt{a^2+b^2}}\cos x\right )=
\vphantom{\frac{A}{\frac{A}{A}}}\\
& = \sqrt{a^2+b^2}\left (\cos \theta \sin x + \sin \theta\sin x \right ) = \sqrt{a^2+b^2}\,\sin (x+\theta).
\end{align*}
Note that \(\theta\) is not unique,
\(a\sin x +b\cos x = \sqrt{a^2+b^2}\,\sin (x+\theta + 2\pi k), \; \forall k \in \mathbb{Z}. \)
Thus, there is the option to look for a value of \(\theta\) for which it may be simpler to work with. The following example shows how to use this to find critical numbers and inflection points.
Example 2. Given the function \(f\) together with its first and second derivatives,
\[f(x) =e^{x/3}\sin 2x ,\;\;\; f'(x) = \frac{1}{3}e^{x/3}\left (\sin 2x + 6 \cos 2x\right ), \;\;\; f”(x) = \frac{1}{9}e^{x/3}\left (-35\sin 2x + 12 \cos 2x\right ), \]
sketch its graph by completing steps (I)–(VI).
(I) Domain and Intercepts
\(D_f=(-\infty,\infty)\). \(y\)-intercept: \(\displaystyle \left (0, 0\right )\);
\(x\)-intercepts:
\begin{align*}
f(x) = 0 &\;\; \Longleftrightarrow \;\; e^{x/3}\sin 2x = 0 \;\; \Longleftrightarrow \;\; \sin 2x = 0 \;\; \Longleftrightarrow \;\; 2x = \pi k, \; k\in \mathbb{Z} \;\; \Longleftrightarrow \\
&\;\; \Longleftrightarrow \;\; x = \frac{\pi}{2} k, \; k\in \mathbb{Z}. \;\; \Longrightarrow\;\; \left \{\left (\frac{\pi}{2} k, 0\right )\,: \, k\in \mathbb{Z}\right \}.
\end{align*}
(II) Symmetry
None.
(III) Asymptotic Behavior
No vertical nor slant asymptotes.
Horizontal asymptotes.
\(\lim_{x\to \infty} e^{x/3}\sin 2x \; \text{ DNE}\;\;\; \text{ and } \;\;\; \lim_{x\to -\infty} e^{x/3}\sin 2x = 0 \)
for the second limit, apply the Squeeze Theorem to
\(-e^{x/3} \leq e^{x/3}\sin 2x \leq e^{x/3}. \)
Thus, the graph has horizontal asymptote \( y = 0\).
(IV) Monotonicity and Local Extrema
Critical numbers:
\begin{align*}
f'(x) =0 &\;\; \Longleftrightarrow \;\; \frac{1}{3}e^{x/3}\left (\sin 2x + 6 \cos 2x\right ) =0 \;\; \Longleftrightarrow \;\; \sin 2x + 6 \cos 2x =0 \;\; \Longleftrightarrow \\
& \;\; \underset{(*)}{\Longleftrightarrow} \;\; \sqrt{37}\sin\left (2x + \theta\right ) = 0 \;\; \Longleftrightarrow \;\; 2x + \theta = \pi k, \; k\in \mathbb{Z} \;\; \Longleftrightarrow x=-\frac{\theta}{2}+ \frac{\pi}{2} k, \; k\in \mathbb{Z}.
\end{align*}
Here, we can choose \(\theta\) as follows:
\(\left (\cos \theta , \sin \theta \right )= \left (\frac{1}{\sqrt{37}},\frac{6}{\sqrt{37}}\right ) \Longrightarrow
\left [\renewcommand{\arraystretch}{2}\begin{array}{l}
\displaystyle \theta = \arccos \frac{1}{\sqrt{37}}\\
\displaystyle \theta = \arcsin \frac{6}{\sqrt{37}}
\end{array}\right . \)
Note that since \(\displaystyle \left (\frac{1}{\sqrt{37}},\frac{6}{\sqrt{37}}\right )\) is in the first quadrant, both expressions for \(\theta\) are equivalent. It follows that the critical numbers are give by either one of the following two options:
\(
\left [\renewcommand{\arraystretch}{2}\begin{array}{l}
\displaystyle x = -\frac{1}{2}\arccos \frac{1}{\sqrt{37}}+ \frac{\pi}{2} k, \; k\in \mathbb{Z}\\
\displaystyle x = -\frac{1}{2}\arcsin \frac{6}{\sqrt{37}}+ \frac{\pi}{2} k, \; k\in \mathbb{Z}
\end{array}\right .
\)
To determine the intervals where \(f\) is increasing and where \(f\) is decreasing is now immediate as the graph of \(y=\sin\left (2x + \theta\right )\) is obtained by shifting the graph of \(y=\sin 2x\) to the left \(\theta\) units. Thus
\begin{align*}
f'(x) > 0 &\Longleftrightarrow \sin\left (2x + \theta\right ) > 0 \Longleftrightarrow 2\pi k < 2x + \theta < \pi + 2\pi k, \; k \in \mathbb{Z} \Longleftrightarrow \\
&\Longleftrightarrow -\frac{1}{2}\theta +\pi k < x < -\frac{1}{2}\theta+ \frac{1}{2}\pi + \pi k, \; k \in \mathbb{Z}
\end{align*}
\begin{align*}
f'(x) < 0 &\Longleftrightarrow \sin\left (2x + \theta\right ) < 0 \Longleftrightarrow \pi + 2\pi k < 2x + \theta < 2\pi + 2\pi k, \; k \in \mathbb{Z} \Longleftrightarrow \\
&\Longleftrightarrow -\frac{1}{2}\theta +\frac{1}{2}\pi +\pi k < x < -\frac{1}{2}\theta+\pi + \frac{1}{2}\pi + \pi k, \; k \in \mathbb{Z}
\end{align*}
It follows that each critical number of \(f\) yields either a local maximum value or a local minimum value (see Figure~\ref{ch07-07-f09}) and, in fact, we can explicitly identify the critical numbers that yield local maxima and those that yield local minima as follows:
local maxima at \(\displaystyle x= -\frac{1}{2}\arccos \frac{1}{\sqrt{37}} +\frac{1}{2}\pi +\pi k, \; k \in \mathbb{Z}\) (at these points \(f\) starts decreasing);
local minima at \(\displaystyle x= -\frac{1}{2}\arccos \frac{1}{\sqrt{37}} +\pi k, \; k \in \mathbb{Z}\) (at these points \(f\) starts increasing);
(V) Concavity and Inflection Points
We follow a similar procedure to the one used in (IV).
\begin{align*}
f”(x) =0 &\;\; \Longleftrightarrow \;\; \frac{1}{9}e^{x/3}\left (-35\sin 2x + 12 \cos 2x\right ) =0 \;\; \Longleftrightarrow \;\; -35\sin 2x + 12 \cos 2x =0 \;\; \Longleftrightarrow \\
& \;\; \underset{(*)}{\Longleftrightarrow} \;\; 37 \sin\left (2x + \phi\right ) = 0 \;\; \Longleftrightarrow \;\; 2x + \phi = \pi k, \; k\in \mathbb{Z} \;\; \Longleftrightarrow x=-\frac{\phi}{2}+ \frac{\pi}{2} k, \; k\in \mathbb{Z}.
\end{align*}
Here, \( \phi \) satisfies \(\displaystyle \left (\cos \phi , \sin \phi \right )= \left (-\frac{35}{37},\frac{12}{37}\right )\). Note that this point is in the second quadrant, thus
\(
\left [\renewcommand{\arraystretch}{2}\begin{array}{l}
\displaystyle \phi = \arccos\left (-\frac{35}{37} \right )\\
\displaystyle \phi = \pi-\arcsin \frac{12}{37}
\end{array}\right .. \)
The first option is immediate because the range of \(y=\arccos x\) is \([0, \pi]\) (first and second quadrants), but the range for \(y = \arcsin x\) is \(\displaystyle \left [-\frac{\pi}{2}, \frac{\pi}{2}\right ]\) (first and fourth quadrants). Thus, \(\displaystyle \arcsin \frac{12}{37}\) is in the first quadrant, and it needs to be adjusted to be in the second quadrant (use the unit circle). It follows that
\(f”(x) = 0 \Longleftrightarrow
\left [\renewcommand{\arraystretch}{2}\begin{array}{l}
\displaystyle x = -\frac{1}{2} \arccos\left (-\frac{35}{37} \right )+ \frac{\pi}{2} k, \; k\in \mathbb{Z}\\
\displaystyle x = -\frac{1}{2}\left (\pi-\arcsin \frac{12}{37} \right )+ \frac{\pi}{2} k, \; k\in \mathbb{Z}
\end{array}\right .
\)
These expressions for the zeroes of the second derivative are equivalent and, as we shall see, yield the inflection points of \(f\).
To determine the intervals where \(f\) is concave upward and where it is concave downward, we proceed as before (in (IV)). Note that the graph of \(y = \sin\left (2x + \phi\right )\) is obtained by shifting the graph of \(y = \sin 2x\) to the left \(\phi\) units.
\begin{align*}
f”(x) > 0 &\Longleftrightarrow \sin\left (2x + \phi\right ) > 0 \Longleftrightarrow 2\pi k < 2x + \phi < \pi + 2\pi k, \; k \in \mathbb{Z} \Longleftrightarrow \\
&\Longleftrightarrow -\frac{1}{2}\phi +\pi k < x < -\frac{1}{2}\phi+ \frac{1}{2}\pi + \pi k, \; k \in \mathbb{Z}
\end{align*}
\begin{align*}
f”(x) < 0 &\Longleftrightarrow \sin\left (2x + \phi\right ) < 0 \Longleftrightarrow \pi + 2\pi k < 2x + \phi < 2\pi + 2\pi k, \; k \in \mathbb{Z} \Longleftrightarrow \\
&\Longleftrightarrow -\frac{1}{2}\phi +\frac{1}{2}\pi +\pi k < x < -\frac{1}{2}\phi+\pi + \frac{1}{2}\pi + \pi k, \; k \in \mathbb{Z}
\end{align*}
It follows that each zero of \(f”\) yields an inflection point. See Figure~\ref{ch07-07-f09}.
(VI) Graph
Based on all the above information, the graph is as shown in Figure~\ref{ch07-07-f09}.
Note, as pointed out above, that
\(-e^{x/3} \leq e^{x/3}\sin 2x \leq e^{x/3}, \)
as the graph clearly shows.
7.7.4 Logarithmic Functions
Example 1 Given the function \(f\) together with its first and second derivatives,
\[f(x) =\frac{\ln x^2}{x^2},\;\;\; f'(x) = -\frac{2\left (\ln x^2 – 1\right )}{x^3}, \;\;\; f”(x) = \frac{2\left (3\ln x^2 – 5\right )}{x^4}, \]
sketch its graph by completing steps (I)–(VI).
(I) Domain and Intercepts
\(D_f=(-\infty, 0)\cup(0,\infty)\). \(x\)-intercepts: \((\pm 1,0)\); \(y\)-intercept: none.
(II) Symmetry
The function is even (explain why). Thus, the graph is symmetry with respect to the \(y\)-axis.
(III) Asymptotic Behavior
Vertical Asymptotes
We have
\(\lim_{x\to 0} \ln x^2 = -\infty. \;\; \Longrightarrow \;\; \lim_{x\to 0} \frac{\ln x^2}{x^2}= -\infty, \;\; \Longrightarrow \;\; \text{ vertical asymptote: } x=0. \)
Horizontal Asymptotes
\(
\lim_{x\to \infty} \frac{\ln x^2}{x^2} = \lim_{x\to \infty} \frac{2\ln x}{x^2}
\;\;\underset{\text{l’H}}{=} \;\;
\lim_{x\to \infty} \frac{2}{2x^2} = 0, \)
and, because of symmetry, \(\displaystyle \lim_{x\to – \infty} \frac{\ln x^2}{x^2} = 0 \). Thus \( y = 0\) is the only horizontal asymptote.
(IV) Monotonicity and Local Extrema
Since
\(f'(x) = -\frac{2\left (\ln x^2 – 1\right )}{x^3}= 0 \;\;\Longleftrightarrow \;\; \ln x^2 – 1=0 \;\;\Longleftrightarrow \;\; x^2 = e \;\;\Longleftrightarrow \;\; x =\pm \sqrt{e}, \)
\(f\) has critical numbers: \(\displaystyle \left \{\pm \sqrt{e}\right \}\).
To determine the sign of \(f’\), we are going to restrict our attention to the case where \(x > 0 \). Then
\(f'(x) = -\frac{2\left (\ln x^2 – 1\right )}{x^3} = -\frac{2\left (2\ln x – 1\right )}{x^3} > 0 \;\;\Longleftrightarrow\;\; 2\ln x – 1 < 0 \;\;\Longleftrightarrow\;\; 0 < x < \sqrt{e}. \)
\(f\) is increasing on \(\left (0, \sqrt{e}\right )\), and decreasing on \(\left (\sqrt{e}, \infty\right )\).
It follows that \(f\) has a local maxim value \(\displaystyle f\left (\sqrt{e}\right )=\frac{1}{e}\) and no local maximum values on \((0, \infty)\).
(V) Concavity and Inflection Points
Since \(\displaystyle f”(x) = \frac{2\left (3\ln x^2 – 5\right )}{x^4}\)
\(f”(x) = 0 \;\;\Longleftrightarrow\;\; 3\ln x^2 – 5 = 0 \;\;\Longleftrightarrow\;\; x^2 = e^{5/3}\;\;\Longleftrightarrow\;\; x = \pm e^{5/6}. \)
Proceeding in a similar fashion as in (IV), for \(x > 0 \) we have
\(
f”(x) = \frac{2\left (3\ln x^2 – 5\right )}{x^4} = \frac{2\left (6\ln x – 5\right )}{x^4} > 0 \;\;\Longleftrightarrow\;\; 6\ln x – 5 > 0 \;\;\Longleftrightarrow\;\; x > e^{5/6}. \)
Thus, on the interval \((0, \infty)\), \(f\) is concave upward on \(\displaystyle \left ( e^{5/6}, \infty\right )\), and downward on \(\displaystyle \left (0, e^{5/6} \right )\).
Hence \(f\) has an inflection point at \(x = e^{5/6}\).
(VI) Graph
Based on all the above information (recall that \(f\) is even), the graph is as shown in Figure Figure 7.42
7.7.5 Exercises
In problems 1–4, first rewrite \(f\) into a simpler form and then sketch its graph by completing steps (I)–(VI) as in the examples above.
- \(\displaystyle f(x) = \cos^2x-\frac{5}{2}\cos 2x -\frac{3}{2}\).
- \(\displaystyle f(x) = -\sin^2x + \cos 2x -\frac{1}{4}\).
- \(\displaystyle f(x) = 2\sin x-\cos x\). Hint: see \((*)\) in \ref{ch07-07-03}.
- \(\displaystyle f(x) = -3\sin x +2\cos x\).
In problems 5–20, given the function \(f\) together with its first and second derivatives, sketch its graph by completing steps (I)–(VI).
- \(\displaystyle f(x) =\frac{1}{2}\sin 2x+\cos x,\;\;\; f'(x) =\cos 2x – \sin x , \;\;\; f”(x) =-2\sin 2x -\cos x\).
- \(\displaystyle f(x) =\sin 2x – 2\sin x,\;\;\; f'(x) = 2\cos 2x -2 \cos x, \;\;\; f”(x) =-4\sin 2x + 2\sin x\).
- \(\displaystyle f(x) =\frac{1}{2}\cos 2x + \cos x,\;\;\; f'(x) = -\sin 2x -\sin x , \;\;\; f”(x) =-2\cos 2x – \cos x\).
- \(\displaystyle f(x) =\frac{1}{2}\cos 2x – \sin x,\;\;\; f'(x) = -\sin 2x -\cos x , \;\;\; f”(x) =-2\cos 2x + \sin x\).
- \(\displaystyle f(x) =\arcsin\left (\frac{x}{x+1}\right ),\;\;\; f'(x) = \frac{1}{(x+1)\sqrt{2x+1}}, \;\;\; f”(x) = -\frac{3 x+2}{(x+1)^2\sqrt{(2x+1)^3}}\).
- \(\displaystyle f(x) =\arccos\left (\frac{x-1}{x+1}\right ),\;\;\; f'(x) =- \frac{1}{(x+1)\,\sqrt{x}}, \;\;\; f”(x) = \frac{3x+1}{2(x+1)^2\sqrt{x^3}}\).
- \(\displaystyle f(x) =\arctan\left (x^2\right ),\;\;\; f'(x) = \frac{2x}{1+x^4}, \;\;\; f”(x) =\frac{2-6 x^4}{\left (1+x^4\right )^2}\).
- \(\displaystyle f(x) =\arctan \left (e^{x/2}-2\right ),\;\;
f'(x) =\frac{e^{x/2}}{2\left (1+\left (e^{x/2}-2\right )^2\right )} , \;\; f”(x) = -\frac{e^{x/2}\left (e^x-5\right )}{4\left (1+\left (e^{x/2}-2\right )^2\right )^2}\). - \(\displaystyle f(x) =2x e^{-2 x^2},\;\;\; f'(x) =2\left (1-4 x^2\right ) e^{-2 x^2}, \;\;\; f”(x) =8x\left (4 x^2-3\right ) e^{-2 x^2}\).
- \(\displaystyle f(x) =2x^2 e^{- x^2/4}+1,\;\;\; f'(x) = -x\left (x^2-4\right ) e^{- x^2/4}, \;\;\; f”(x) =\frac{1}{2}\left (x^4-10x^2+8\right ) e^{- x^2/4}\).
- \(\displaystyle f(x) =\frac{2e^x}{2-e^x} – 1,\;\;\; f'(x) = \frac{4e^x}{(2-e^x)^2} , \;\;\; f”(x) =\frac{4e^x(e^x+1)}{(2-e^x)^3}\).
- \(\displaystyle f(x) =\frac{4e^{-x/2}}{4-e^{x/2}} +2 ,\;\;\; f'(x) = \frac{4-8e^{-x/2}}{\left (4-e^{x/2}\right )^2} , \;\;\; f”(x) =\frac{4e^{-x/2}\left (e^x-3e^{x/2}+4\right )}{\left (4-e^{x/2}\right )^3} \).
- \(\displaystyle f(x) = e^{x/4}\cos x ,\;\;\; f'(x) = \frac{1}{4} e^{x/4}\left (-4\sin x + \cos x\right ), \;\;\; f”(x) =\frac{1}{16} e^{x/4}\left (8\sin x +15 \cos x\right )\).
- \(\displaystyle f(x) = e^{-x/7}\sin x ,\, f'(x) = \frac{e^{-x/7}}{7} \left (-\sin x + 7\cos x\right ), \, f”(x) =-\frac{2e^{-x/7}}{49} \left (24\sin x +7 \cos x\right )\).
- \(\displaystyle f(x) = x\ln x^2 ,\;\;\; f'(x) = \ln x^2 +2 , \;\;\; f”(x) = \frac{2}{x} \).
- \(\displaystyle f(x) = \frac{\ln x^2}{x} ,\;\;\; f'(x) =\frac{2-\ln x^2}{x^2} , \;\;\; f”(x) = \frac{2\left ( \ln x^2-3\right )}{x^3} \).