Canonical Correlation Analysis (CCA)

Lecture \#13
BIOE 597, Spring 2017,
Penn State University
By Xiao Liu

Agenda

- Review
- CCA Basics
- CCA Solution
- Hypothesis Testing
- Examples
- Final Project
- Midterm Review

Independent Component Analysis (Review)

- What is ICA
"Independent component analysis (ICA) is a method for finding underlying factors or components from multivariate (multidimensional) statistical data. What distinguishes ICA from other methods is that it looks for components that are both statistically independent, and nonGaussian."

Independent Component Analysis (Review)

- Blind Signal Separation
- Blind signal separation (BSS), also known as blind source separation, is the separation of a set of source signals from a set of mixed signals, without the aid of information (or with very little information) about the source signals or the mixing process.

Independent Component Analysis (Review)

- Mathematical Description

$$
\begin{gathered}
x_{i}=a_{i 1} s_{1}+a i_{2} s_{2}+\ldots+a_{i m} s_{m}, \text { for all } i=1, \ldots, m \\
\boldsymbol{X}_{n \times r}=\boldsymbol{S}_{n \times m} \boldsymbol{A}_{m \times r}
\end{gathered}
$$

- Giving:
observation " X "
- Find:

Original independent components " S "

$$
\boldsymbol{S}_{n \times m}=\boldsymbol{X}_{n \times r} \boldsymbol{W}_{r \times m}
$$

Independent Component Analysis (Review)

- Identifiability
- s_{i} are statistically independent
- At most one of the sources s_{i} is Gaussian
- The number of observed mixtures, r, must be at least as large as the number of estimated components $m: r \geq m$

Independent Component Analysis (Review)

- PCA versus ICA
- PCA: Finds directions of maximal variance in gaussian data

- ICA: Finds directions of maximal independence in nongaussian data

Independent Component Analysis (Review)

- ICA Steps: Whitening
- Whitenning/Sphering, i.e., PCA

$$
\begin{array}{cc}
Z=X W & C_{Z}=W^{T} C_{X} W=\operatorname{diag}\left(\lambda_{i}\right) \\
Y=X W_{N} & C_{Y}=W_{N}^{T} C_{X} W_{N}=I
\end{array}
$$

SVD

$$
X V=U \Sigma
$$

$$
X V \Sigma^{-1}=U
$$

$$
\Sigma=\operatorname{diag}\left(\sigma_{i}\right)
$$

$$
X W=Z \quad X W_{N}=Y
$$

$$
\Sigma^{-1}=\operatorname{diag}\left(1 / \sigma_{i}\right)
$$

Independent Component Analysis (Review)

- ICA Steps: Whitening
- Why do we do "whitening/sphering"?

$$
Y=X W_{N} \quad C_{Y}=I
$$

for any orthogonal rotation R

$$
\begin{gathered}
S=Y R \\
C_{S}=R^{T} C_{Y} R=R^{T} C_{Y} R=I
\end{gathered}
$$

- No matter how we rotate the whitened data, the resulting columns will be "uncorrelated"

Independent Component Analysis (Review)

- ICA Steps: Rotation
- Maximize the statistical independence of the estimated components
- Maximize non-Gaussianity
- Minimize mutual information
- Measures of non-Gaussianity and independence
- Kurtosis: $\quad \operatorname{kurt}(y)=E\left\{y^{4}\right\}-3\left(E\left\{y^{2}\right\}\right)^{2}$
- Entropy: $\quad H(y)=-\int f(y) \log f(y) d y$
- Negentropy: $J(y)=H\left(y_{\text {gauss }}\right)-H(y)$
- Kullback-Leibler divergence (relative entropy)

○ ...

Independent Component Analysis (Review)
 - ICA Steps: Rotation

Separated signals after 1 step of FastICA

Separated signals after 3 steps of FastICA

Separated signals after 2 steps of FastICA

Separated signals after 4 steps of FastICA

Independent Component Analysis (Review)

- Examples
- Original Signals

Independent Component Analysis (Review)

- Examples

- Clearing up MEG (Magnetoencephalography) data

Introduction

- When we have univariate data there are times when we would like to measure the linear relationship between things
- Simple Linear Regression: we have 2 variables and all we are interested in is measuring their linear relationship.
- Multiple linear regression: we have several independent variables and one dependent variable.

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{1} x_{i 2}+\cdots+\beta_{1} x_{i k}+e_{i} \quad e_{i} \sim N\left(0, \sigma^{2}\right)
$$

Introduction

- When we have univariate data there are times when we would like to measure the linear relationship between things
- Simple Linear Regression: we have 2 variables and all we are interested in is measuring their linear relationship.
- Multiple linear regression: we have several independent variables and one dependent variable.

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{1} x_{i 2}+\cdots+\beta_{1} x_{i k}+e_{i} \quad e_{i} \sim N\left(0, \sigma^{2}\right)
$$

- What if we have several dependent variables and several independent variables?
- Multivariate Regression
- Canonical Correlation Analysis

Introduction

- Canonical correlation analysis (CCA) is a way of measuring the linear relationship between two groups of multidimensional variables.

Introduction

- Canonical correlation analysis (CCA) is a way of measuring the linear relationship between two groups of multidimensional variables.
- Finding two sets of basis vectors such that the correlation between the projections of the variables onto these basis vectors is maximized

Introduction

- Canonical correlation analysis (CCA) is a way of measuring the linear relationship between two groups of multidimensional variables.
- Finding two sets of basis vectors such that the correlation between the projections of the variables onto these basis vectors is maximized
- Determine correlation coefficients

Jargon

- Variables: two sets of variables X and Y

Jargon

- Variables: two sets of variables X and Y
- Canonical Variates --- Linear combinations of variables

Jargon

- Variables: two sets of variables X and Y
- Canonical Variates --- Linear combinations of variables
- Canonical Variates Pair --- Two Canonical Variates with each from one set showing non-zero correlations

Jargon

- Variables: two sets of variables X and Y
- Canonical Variates --- Linear combinations of variables
- Canonical Variates Pair --- Two Canonical Variates with each from one set showing non-zero correlations
- Canonical Correlations--- Correlation between Canonical Variate Pairs

CCA Definition

- Two groups of multidimensional variables $X=\left[x_{1}, x_{2}, \ldots, x_{p}\right]$ and $Y=\left[\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{\boldsymbol{q}}\right]$

$$
\text { where } \quad \boldsymbol{x}_{\boldsymbol{i}}=\left[\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
x_{i 3} \\
\ldots \\
x_{i n}
\end{array}\right] \quad \boldsymbol{y}_{\boldsymbol{i}}=\left[\begin{array}{c}
y_{j 1} \\
y_{j 2} \\
y_{j 3} \\
\ldots \\
y_{j n}
\end{array}\right]
$$

CCA Definition

- Two groups of multidimensional variables $X=\left[x_{1}, x_{2}, \ldots, x_{p}\right]$ and $Y=\left[\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{\boldsymbol{q}}\right]$

$$
\text { where } \quad \boldsymbol{x}_{\boldsymbol{i}}=\left[\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
x_{i 3} \\
\ldots \\
x_{i n}
\end{array}\right] \quad \boldsymbol{y}_{\boldsymbol{i}}=\left[\begin{array}{c}
y_{j 1} \\
y_{j 2} \\
y_{j 3} \\
\ldots \\
y_{j n}
\end{array}\right]
$$

- Purpose of CCA: find coefficient vectors $\boldsymbol{a}_{\mathbf{1}}=\left(a_{11}, a_{21}, \ldots, a p_{1}\right)^{T}$, and $\boldsymbol{b}_{\mathbf{1}}=\left(b_{11}, b_{21}, \ldots, b_{q 1}\right)^{T}$ to maximize the correlation $\rho=$ $\operatorname{corr}\left(X \boldsymbol{a}_{\mathbf{1}}, Y \boldsymbol{b}_{\mathbf{1}}\right)$

CCA Definition

- Two groups of multidimensional variables $X=\left[x_{1}, x_{2}, \ldots, x_{p}\right]$ and $Y=\left[\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{\boldsymbol{q}}\right]$

$$
\text { where } \quad \boldsymbol{x}_{\boldsymbol{i}}=\left[\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
x_{i 3} \\
\ldots \\
x_{i n}
\end{array}\right] \quad \boldsymbol{y}_{\boldsymbol{i}}=\left[\begin{array}{c}
y_{j 1} \\
y_{j 2} \\
y_{j 3} \\
\ldots \\
y_{j n}
\end{array}\right]
$$

- Purpose of CCA: find coefficient vectors $\boldsymbol{a}_{\mathbf{1}}=\left(a_{11}, a_{21}, \ldots, a p_{1}\right)^{T}$, and $\boldsymbol{b}_{\mathbf{1}}=\left(b_{11}, b_{21}, \ldots, b_{q 1}\right)^{T}$ to maximize the correlation $\rho=$ $\operatorname{corr}\left(X \boldsymbol{a}_{\mathbf{1}}, Y \boldsymbol{b}_{\mathbf{1}}\right)$
- $U_{1}=X \boldsymbol{a}_{1}$ and $V_{1}=Y \boldsymbol{b}_{1}$, i.e., linear combinations of X and Y respectively, are the first pair of canonical variates.

CCA Definition

- Then, the second pair of canonical variates can be found in the same way subject to the constraint that they are uncorrelated with the first pair of variables.

CCA Definition

- Then, the second pair of canonical variates can be found in the same way subject to the constraint that they are uncorrelated with the first pair of variables.
- $r=\min \{p, q\}$ pairs of canonical variate pairs can be found by repeating this procedure

CCA Definition

- Then, the second pair of canonical variates can be found in the same way subject to the constraint that they are uncorrelated with the first pair of variables.
- $r=\min \{p, q\}$ pairs of canonical variate pairs can be found by repeating this procedure
- We will finally get two matrices $A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{r}}\right]$ and $B=$ $\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{r}\right.$] to transfer the X and Y to canonical variates U and V.

$$
\begin{aligned}
U_{n \times r} & =X_{n \times p} A_{p \times r} \\
V_{n \times r} & =Y_{n \times q} B_{q \times r}
\end{aligned}
$$

Geometric Interpretation

PCA versus CCA

- PCA looks for patterns with a single multivariate dataset that represent maximum amounts of the variation in the data
- In CCA, the patterns are chosen such that the projected data onto these patterns exhibit maximum correlation - while being uncorrelated with the projections onto any other pattern
- In other words: CCA identifies new variables that maximize the inter-relationships between two data sets, in contrast to the patterns describing the internal variability within a single dataset from PCA.

Mathematical Description

- IF X and Y are both centered, we can concatenate them and calculate the covariance matrix

$$
C=\operatorname{Cov}([X Y])=\frac{1}{n-1}[X Y]^{T}[X Y]=\left[\begin{array}{ll}
C_{x x} & C_{x y} \\
C_{y x} & C_{y y}
\end{array}\right]
$$

where $C_{x x}$ and $C_{x x}$ are within-set covariance matrices, and $C_{x y}=C_{y x}{ }^{T}$ are between-set covariance matrices

- The first canonical variates $\boldsymbol{a}_{\mathbf{1}}$ and $\boldsymbol{b}_{\mathbf{1}}$ maximizes

$$
\rho_{1}=\frac{\boldsymbol{a}_{\mathbf{1}}{ }^{T} C_{x y} \boldsymbol{b}_{\mathbf{1}}}{\sqrt{\boldsymbol{a}_{\mathbf{1}}{ }^{T} C_{x x} a_{\mathbf{1}}} \sqrt{\boldsymbol{b}_{\mathbf{1}}{ }^{T} C_{y y} b_{\mathbf{1}}}}
$$

Mathematical Description

- The subsequent pairs of canonical variates $\boldsymbol{a}_{\boldsymbol{i}}$ and $\boldsymbol{b}_{\boldsymbol{i}}(i \geq 2)$ maximizes

$$
\rho_{i}=\frac{\boldsymbol{a}_{i}^{T} C_{x y} \boldsymbol{b}_{\boldsymbol{i}}}{\sqrt{\boldsymbol{a}_{i}^{T} C_{x x} \boldsymbol{a}_{\boldsymbol{i}}} \sqrt{\boldsymbol{b}_{\boldsymbol{i}}^{T} C_{y y} \boldsymbol{b}_{\boldsymbol{i}}}}
$$

subject to the constraint

$$
\begin{array}{ll}
\boldsymbol{a}_{i}^{T} C_{x x} \boldsymbol{a}_{\boldsymbol{j}}=0 & \text { for all } j<i \\
\boldsymbol{b}_{i}^{T} C_{y y} \boldsymbol{b}_{\boldsymbol{j}}=0 & \text { for all } j<i
\end{array}
$$

Solution

- The solution for this problem

$$
\left\{\begin{array}{l}
C_{x x}^{-1} C_{x y} C_{y y}^{-1} C_{y x} \boldsymbol{a}_{\boldsymbol{i}}=\rho_{i}^{2} \boldsymbol{a}_{\boldsymbol{i}} \\
C_{y y}^{-1} C_{y x} C_{x x}^{-1} C_{x y} \boldsymbol{b}_{\boldsymbol{i}}=\rho_{i}^{2} \boldsymbol{b}_{\boldsymbol{i}}
\end{array}\right.
$$

- So, the $\boldsymbol{a}_{\boldsymbol{i}}$ are eigenvectors of $C_{x x}^{-1} C_{x y} C_{y y}^{-1} C_{y x}$ corresponding to eigenvalues of $\rho_{i}{ }^{2}$
- So, the $\boldsymbol{b}_{\boldsymbol{i}}$ are eigenvectors of $C_{y y}^{-1} C_{y x} C_{x x}^{-1} C_{x y}$ corresponding to eigenvalues of $\rho_{i}{ }^{2}$
- They are related to each other by

$$
\left\{\begin{array}{l}
C_{x y} \boldsymbol{b}_{\boldsymbol{i}}=\rho_{i} \lambda_{x} C_{x x} \boldsymbol{a}_{\boldsymbol{i}} \\
C_{y x} \boldsymbol{a}_{\boldsymbol{i}}=\rho_{i} \lambda_{y} C_{y y} \boldsymbol{b}_{\boldsymbol{i}}
\end{array} \quad \text { where } \quad \lambda_{x}=\frac{1}{\lambda_{y}}=\sqrt{\frac{\boldsymbol{b}_{\boldsymbol{i}}{ }^{T} C_{y y} \boldsymbol{b}_{\boldsymbol{i}}}{\boldsymbol{a}_{\boldsymbol{i}}^{T} C_{x x} \boldsymbol{a}_{\boldsymbol{i}}}}\right.
$$

Steps via Eigendecomposition

- Compute the matrix $C_{x x}^{-1} C_{x y} C_{y y}^{-1} C_{y x}$, and then eigendecompose it to get the square root of its eigenvalues $=\left[\rho_{1}, \rho_{2}, \ldots, \rho_{r}\right]$ and eigenvectors $A=\left[a_{1}, a_{2}, \ldots, a_{r}\right]$
- Compute the matrix $C_{y y}^{-1} C_{y x} C_{x x}^{-1} C_{x y}$, and then eigendecompose it to get the square root of its eigenvalues $=\left[\rho_{1}, \rho_{2}, \ldots, \rho_{r}\right]$ and eigenvectors $B=\left[\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \ldots, \boldsymbol{b}_{\boldsymbol{r}}\right]$
- The eigenvalues for both equations are equal and between zero and one. Their square root is the canonical correlation.
- The eigenvectors are weights for constructing the linear combinations of original data, i.e., canonical variates

Hypothesis Testing

- We can also test whether the canonical correlations are significant different from zero
- The test statistic is called Wilks's Lambda

$$
\Lambda_{k}=\prod_{i=k}^{\min (p, q)}\left(1-\rho_{i}^{2}\right)
$$

$-\left(n-1-\frac{1}{2}(p+q+1)\right) \ln \left(\Lambda_{k}\right)$ is asymptotically distribute as a chi-squared with $(p-k+1)(p-k+1)$ degree of freedom

CCA Properties

- Canonical correlations are invariant.
- scale changes (such as standardizing) will not change the correlation
- Actually, they are invariant after nonsingular linear transformations on X and Y.
- The first canonical correlation is the best we can do with associations.
- it is larger than any of the simple correlations or any multiple correlation with the variables under study

Matlab Function

- [A, B, r, U, V, stat] = canoncorr(x, y)
$\circ x, y$: set of variables in the form of matrices
- Each row is an observation
- Each column is an attribute/feature
- A, B: Matrices containing the correlation coefficient
or: Column matrix containing the canonical correlations (Successively decreasing)
\circ U, V: Canonical variates/basis vectors for A,B respectively
o stat: statistics for hypothesis testing

Example

- Suppose we have two sets of variables X and Y

$$
\mathbf{X}=\left(\begin{array}{lll}
1 & 1 & 3 \\
2 & 3 & 2 \\
1 & 1 & 1 \\
1 & 1 & 2 \\
2 & 2 & 3 \\
3 & 3 & 2 \\
1 & 3 & 2 \\
4 & 3 & 5 \\
5 & 5 & 5
\end{array}\right), \quad \mathbf{Y}=\left(\begin{array}{rrr}
4 & 4 & -1.07846 \\
3 & 3 & 1.214359 \\
2 & 2 & 0.307180 \\
2 & 3 & -0.385641 \\
2 & 1 & -0.078461 \\
1 & 1 & 1.61436 \\
1 & 2 & 0.814359 \\
2 & 1 & -0.0641016 \\
1 & 2 & 1.535900
\end{array}\right)
$$

Example

- Suppose we have two sets of variables X and Y

$$
\mathbf{X}=\left(\begin{array}{lll}
1 & 1 & 3 \\
2 & 3 & 2 \\
1 & 1 & 1 \\
1 & 1 & 2 \\
2 & 2 & 3 \\
3 & 3 & 2 \\
1 & 3 & 2 \\
4 & 3 & 5 \\
5 & 5 & 5
\end{array}\right), \quad \mathbf{Y}=\left(\begin{array}{rrr}
4 & 4 & -1.07846 \\
3 & 3 & 1.214359 \\
2 & 2 & 0.307180 \\
2 & 3 & -0.385641 \\
2 & 1 & -0.078461 \\
1 & 1 & 1.61436 \\
1 & 2 & 0.814359 \\
2 & 1 & -0.0641016 \\
1 & 2 & 1.535900
\end{array}\right)
$$

- Note: the third column of Y is a linear combination of X :

$$
Y(:, 3)=0.4 * X(:, 1)+0.6 * X(:, 2)-\sqrt{0.48} * X(:, 3)
$$

Example

[A, B, r, U, V, stat] = canoncorr(X, Y);

```
A =
    -0.4324 -1.4468 -0.8180
    -0.6485 1.0610 0.6070
    0.7489
>>B
B =
    -0.0000 -0.8487 -1.5200
    0.0000
    -1.0809 0.0216 -0.9702
```


Example

[A, B, r, U, V, stat] = canoncorr(X, Y);
$\mathrm{A}=$
$\begin{array}{rrr}-0.4324 & -1.4468 & -0.8180 \\ -0.6485 & 1.0610 & 0.6070 \\ 0.7489 & 0.2902 & 0.9838\end{array}$
$3>\mathrm{B}$
$B=$
$\begin{array}{rrr}-0.0000 & -0.8487 & -1.5200 \\ 0.0000 & 1.3346 & 0.2524 \\ -1.0809 & 0.0216 & -0.9702\end{array}$
$\mathrm{Al}=$

0.4000	0.7961	-0.5776
0.6000	-0.5838	0.4286
-0.6928	-0.1597	0.6947

$\gg \mathrm{Bl}$
$\mathrm{Bl}=$

0.0000	-0.8348	-0.5365
-0.0000	0.1386	0.8438
1.0000	-0.5329	0.0136

Example

[A, B, r, U, V, stat] = canoncorr(X, Y);
$A=$

-0.4324	-1.4468	-0.8180
-0.6485	1.0610	0.6070
0.7489	0.2902	0.9838

$\Rightarrow \mathrm{B}$

$\begin{array}{lrr}\mathrm{B}= \\ -0.0000 & -0.8487 & -1.5200 \\ 0.0000 & 1.3346 & 0.2524 \\ -1.0809 & 0.0216 & -0.9702\end{array}$

Example

[A, B, r, U, V, stat] = canoncorr(X, Y);
$r=$
$1.0000 \quad 0.5194 \quad 0.0910$

Example

[A, B, r, U, V, stat] = canoncorr(X, Y);

$$
r=
$$

$1.0000 \quad 0.5194 \quad 0.0910$

Example

[A, B, r, U, V, stat] = canoncorr(X, Y);
$r=$
$1.0000 \quad 0.5194 \quad 0.0910$

Example

[A, B, r, U, V, stat] = canoncorr(X, Y);
$r=$
$1.0000 \quad 0.5194 \quad 0.0910$

Example

$[\mathrm{A}, \mathrm{B}, \mathrm{r}, \mathrm{U}, \mathrm{V}$, stat $]=$ canoncorr (X, Y);
struct with fields:

```
Wilks:[2.0261e-13 0.7242 0.9917]
    df1:[94 1]
    df2:[7.4518 8 5]
            F:[1.3602e+05 0.3502 0.0418]
            pF:[1.5799e-18 0.8370 0.8461]
chisq:[131.5237 1.4522 0.0600]
pChisq:[5.7628e-24 0.8351 0.8065]
dfe:[94 l]
p:[5.7628e-24 0.8351 0.8065]
```


About Final Project

- You will be asked to present a paper that uses one of methods talked in the class
- 20\% Grade!
- Start from April 11th
- The presentation will be 10 minutes, followed by a 2-minute question session. You're expected to prepare some PPT slides for the presentation!
- Be clear about
- What is the major goal of the paper?
- How did it use the method we talked about to achieve its goal?

About Final Project

- Let me know before next Tuesday (3/21) if you want to find a paper by yourself that is more relevant to your area of research
- Otherwise, I will randomly assign a paper to you next Tuesday, as well as the time of your presentation.

CCA: Examples

