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Independent Component Analysis (Review)

• What is ICA

“Independent component analysis (ICA) is a 
method for finding underlying factors or 
components from multivariate (multi-
dimensional) statistical data. What distinguishes 
ICA from other methods is that it looks for 
components that are both statistically 
independent, and nonGaussian.”



Independent Component Analysis (Review)

• Blind Signal Separation

• Blind signal separation (BSS), also known as blind source 
separation, is the separation of a set of source signals from a 
set of mixed signals, without the aid of information (or with 
very little information) about the source signals or the mixing 
process.



Independent Component Analysis (Review)

• Mathematical Description

𝑥𝑖	 = 	
𝑎𝑖1𝑠1	 + 	𝑎𝑖2𝑠2	 +	…	+ 	𝑎𝑖𝑚𝑠𝑚,	for	all	𝑖	 = 	1, … ,𝑚

• Giving: 
observation “𝑿” 

• Find: 
Original independent components “𝑺”

𝑿/×1 = 𝑺/×2𝑨2×1

𝑺/×2 = 𝑿/×1𝑾1×2



Independent Component Analysis (Review)

• Identifiability

• At most one of the sources 𝑠5 is Gaussian

• The number of observed mixtures, 𝑟, must be at least as 
large as the number of estimated components 𝑚: 𝑟 ≥ 𝑚

• 𝑠5 are statistically independent



Independent Component Analysis (Review)

• PCA versus ICA
• PCA: Finds directions 

of maximal variance in 
gaussian data

• ICA: Finds directions of 
maximal independence in 
nongaussian data



Independent Component Analysis (Review)
• ICA Steps: Whitening
• Whitenning/Sphering, i.e., PCA  

𝐶𝑍 = 𝑊<𝐶𝑋𝑊 = diag(λ𝑖)𝑍 = 𝑋𝑊

𝐶𝑌 = 𝑊F
<𝐶𝑋𝑊F = 𝐼𝑌 = 𝑋𝑊F

SVD: 𝑋𝑉 = 𝑈Σ
𝑋𝑊 = 𝑍

𝑋𝑉ΣKL = 𝑈
𝑋𝑊F = 𝑌 ΣKL = 𝑑𝑖𝑎𝑔(1/𝜎5)

Σ = 𝑑𝑖𝑎𝑔(𝜎5)

rotation scaling



Independent Component Analysis (Review)
• ICA Steps: Whitening

• Why do we do ”whitening/sphering”?

𝑌 = 𝑋𝑊F 𝐶𝑌 = 𝐼

𝑆 = 𝑌𝑅
for any orthogonal rotation 𝑅

𝐶𝑆 = 𝑅<𝐶𝑌𝑅 = 𝑅<𝐶𝑌𝑅 = 𝐼
• No matter how we rotate the whitened data, the resulting 

columns will be ”uncorrelated” 



Independent Component Analysis (Review)
• ICA Steps: Rotation

• Maximize the statistical independence of the estimated 
components
o Maximize non-Gaussianity

o Minimize mutual information

o Kurtosis: 
o Entropy:
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• Measures of non-Gaussianity and independence 

o Negentropy: )()()( yHyHyJ gauss -=

o Kullback–Leibler divergence (relative entropy)

o …



Independent Component Analysis (Review)
• ICA Steps: Rotation



Independent Component Analysis (Review)
• Examples

• Original Signals • Independent Components

Mother’s	Heart	Beating

Baby’s	Heart	Beating

Respiration

Noise



Independent Component Analysis (Review)
• Examples

• Clearing up MEG (Magnetoencephalography) data



Introduction

o Simple Linear Regression: we have 2 variables and all we are 
interested in is measuring their linear relationship.

o Multiple linear regression: we have several independent 
variables and one dependent variable. 

• When we have univariate data there are times when we would 
like to measure the linear relationship between things

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽1𝑥𝑖2 + ⋯+ 𝛽1𝑥𝑖𝑘 + 𝑒𝑖 𝑒𝑖	~𝑁(0, 𝜎
2)



Introduction

o Simple Linear Regression: we have 2 variables and all we are 
interested in is measuring their linear relationship.

o Multiple linear regression: we have several independent 
variables and one dependent variable. 

• When we have univariate data there are times when we would 
like to measure the linear relationship between things

• What if we have several dependent variables and several 
independent variables?

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽1𝑥𝑖2 + ⋯+ 𝛽1𝑥𝑖𝑘 + 𝑒𝑖 𝑒𝑖	~𝑁(0, 𝜎
2)

o Multivariate Regression
o Canonical Correlation Analysis



Introduction

• Canonical correlation analysis (CCA) is a way of measuring 
the linear relationship between two groups of multidimensional 
variables. 



Introduction

• Canonical correlation analysis (CCA) is a way of measuring 
the linear relationship between two groups of multidimensional 
variables. 

• Finding two sets of basis vectors such that the correlation 
between the projections of the variables onto these basis 
vectors is maximized



Introduction

• Canonical correlation analysis (CCA) is a way of measuring 
the linear relationship between two groups of multidimensional 
variables. 

• Finding two sets of basis vectors such that the correlation 
between the projections of the variables onto these basis 
vectors is maximized

• Determine correlation coefficients



Jargon

• Variables: two sets of variables 𝑋 and 𝑌
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Jargon

• Variables: two sets of variables 𝑋 and 𝑌

• Canonical Variates --- Linear combinations of variables

• Canonical Variates Pair --- Two Canonical Variates with each 
from one set showing non-zero correlations

• Canonical Correlations--- Correlation between Canonical 
Variate Pairs



CCA Definition

𝒙𝒊 =

𝑥5L
𝑥5]
𝑥5^
…
𝑥5/

where 𝒚𝒊 =

𝑦 L
𝑦 ]
𝑦 ^
…
𝑦 /

• Two groups of multidimensional variables 𝑋 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒑
and	𝑌 = [𝒚𝟏, 𝒚𝟐, … , 𝒚𝒒]



CCA Definition

• Purpose of CCA: find coefficient vectors 𝒂𝟏 = 𝑎11, 𝑎21, … , 𝑎𝑝1 𝑇 ，
and	𝒃𝟏 = 𝑏11, 𝑏21, … , 𝑏𝑞1 𝑇 to maximize the correlation 𝜌 =
𝑐𝑜𝑟𝑟(𝑋𝒂𝟏, 𝑌𝒃𝟏)
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• Purpose of CCA: find coefficient vectors 𝒂𝟏 = 𝑎11, 𝑎21, … , 𝑎𝑝1 𝑇 ，
and	𝒃𝟏 = 𝑏11, 𝑏21, … , 𝑏𝑞1 𝑇 to maximize the correlation 𝜌 =
𝑐𝑜𝑟𝑟(𝑋𝒂𝟏, 𝑌𝒃𝟏)
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𝑥5^
…
𝑥5/

where 𝒚𝒊 =
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…
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• Two groups of multidimensional variables 𝑋 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒑
and	𝑌 = [𝒚𝟏, 𝒚𝟐, … , 𝒚𝒒]

• 𝑈1 = 𝑋𝒂𝟏 and	𝑉1 = 𝑌𝒃𝟏,	i.e.,	linear	combinations	of	𝑋 and	𝑌
respectively,	are	the	first	pair	of	canonical	variates.	



CCA Definition
• Then,	the	second	pair	of	canonical	variates	can	be	found	in	the	same	

way	subject	to	the	constraint	that	they	are	uncorrelated	with	the	
first	pair	of	variables.			
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CCA Definition

• 𝑟 = min 𝑝, 𝑞 pairs	of	canonical	variate	pairs	can	be	found	by	
repeating	this	procedure	

• Then,	the	second	pair	of	canonical	variates	can	be	found	in	the	same	
way	subject	to	the	constraint	that	they	are	uncorrelated	with	the	
first	pair	of	variables.			

• We	will	finally	get	two	matrices	𝐴 = 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒓 and	𝐵 =
𝒃𝟏, 𝒃𝟐, … , 𝒃𝒓 to	transfer	the	𝑋 and	𝑌 to	canonical	variates	U	and	
V.	

𝑈/×1 = 𝑋/×u𝐴u×1

𝑉/×1 = 𝑌/×v𝐵v×1



Geometric Interpretation



PCA versus CCA

• PCA looks for patterns with a single multivariate dataset that 
represent maximum amounts of the variation in the data

• In CCA, the patterns are chosen such that the projected data 
onto these patterns exhibit maximum correlation – while 
being uncorrelated with the projections onto any other 
pattern 

• In other words: CCA identifies new variables that maximize 
the inter-relationships between two data sets, in contrast to 
the patterns describing the internal variability within a single 
dataset from PCA.



Mathematical Description
• IF	X and	Y are	both	centered,	we	can	concatenate	them	and	

calculate	the	covariance	matrix

𝐶 = 𝐶𝑜𝑣 𝑋	𝑌 =
1

𝑛 − 1 𝑋	𝑌 𝑇[𝑋	𝑌] =
𝐶zz 𝐶z{
𝐶{z 𝐶{{

where 𝐶zz and	𝐶zz are	within-set	covariance	matrices,	and	𝐶z{ = 𝐶{z𝑇
	are	

between-set	covariance	matrices	

• The	first	canonical	variates	𝒂𝟏 and	𝒃𝟏	maximizes

𝜌1 =
𝒂𝟏𝑇𝐶z{𝒃𝟏

𝒂𝟏𝑇𝐶zz𝑎𝟏
� 𝒃𝟏𝑇𝐶{{𝑏𝟏�



Mathematical Description
• The	subsequent	pairs	of	canonical	variates	𝒂𝒊 and	𝒃𝒊 (𝑖 ≥ 2)

maximizes
𝜌𝑖 =

𝒂𝑖𝑇𝐶z{𝒃𝒊
𝒂𝑖𝑇𝐶zz𝒂𝒊

� 𝒃𝒊𝑇𝐶{{𝒃𝒊�

subject	to	the	constraint

𝒂𝑖𝑇𝐶zz𝒂𝒋 = 0							𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗 < 𝑖

𝒃𝑖𝑇𝐶{{𝒃𝒋 = 0							𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗 < 𝑖



Solution
• The	solution	for	this	problem

�
𝐶zzKL𝐶z{𝐶{{KL𝐶{z𝒂𝒊 = 𝜌𝑖2𝒂𝒊
𝐶{{KL𝐶{z𝐶zzKL𝐶z{𝒃𝒊 = 𝜌𝑖2𝒃𝒊

• So,	the	𝒂𝒊 are	eigenvectors of	𝐶zzKL𝐶z{𝐶{{KL𝐶{z corresponding	to	
eigenvalues of	𝜌𝑖2

• So,	the	𝒃𝒊 are	eigenvectors of	𝐶{{KL𝐶{z𝐶zzKL𝐶z{ corresponding	to	
eigenvalues of	𝜌𝑖2

• They	are	related	to	each	other	by	

�
𝐶z{𝒃𝒊 = 𝜌𝑖𝜆z𝐶zz𝒂𝒊
𝐶{z𝒂𝒊 = 𝜌𝑖𝜆{𝐶{{𝒃𝒊

where 𝜆z =
1
𝜆{
=

𝒃𝒊𝑇𝐶{{𝒃𝒊
𝒂𝒊𝑇𝐶zz𝒂𝒊

�



Steps via Eigendecomposition

• Compute	the	matrix	𝐶zzKL𝐶z{𝐶{{KL𝐶{z,	and	then	eigendecompose it	
to	get		the	square	root	of	its	eigenvalues	= 𝜌L, 𝜌], … , 𝜌1 and	
eigenvectors	𝐴 = 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒓

• Compute	the	matrix	𝐶{{KL𝐶{z𝐶zzKL𝐶z{,	and	then	eigendecompose it	
to	get		the	square	root	of	its	eigenvalues	= 𝜌L, 𝜌], … , 𝜌1 and	
eigenvectors	𝐵 = 𝒃𝟏, 𝒃𝟐, … , 𝒃𝒓

• The	eigenvalues	for	both	equations	are	equal	and	between	zero	and	
one.	Their	square	root	is	the	canonical	correlation.	

• The	eigenvectors	are	weights	for	constructing	the	linear	combinations	
of	original	data,	i.e.,	canonical	variates	



Hypothesis Testing

• We	can	also	test	whether	the	canonical	correlations	are	significant	
different	from	zero

• The	test	statistic	is	called	Wilks’s	Lambda

Λ𝑘 = � 1− 𝜌𝑖2
���	(u,v)

5��

− 𝑛 − 1 − L
]
𝑝 + 𝑞 + 1 ln	(Λ𝑘)	is	asymptotically	distribute	as	a	

chi-squared	with	(𝑝 − 𝑘 + 1)(𝑝 − 𝑘 + 1) degree	of	freedom



CCA Properties

• Canonical correlations are invariant.
o scale changes (such as standardizing) will not change the 

correlation
o Actually, they are invariant after nonsingular linear 

transformations on 𝑋 and 𝑌. 

• The first canonical correlation is the best we can do with 
associations.
o it is larger than any of the simple correlations or any multiple 

correlation with the variables under study



Matlab Function

• [A, B, r, U, V, stat ] = canoncorr(x, y)
o x, y : set of variables in the form of matrices

§ Each row is an observation
§ Each column is an attribute/feature

o A, B: Matrices containing the correlation coefficient

o r : Column matrix containing the canonical correlations 
(Successively decreasing)

o U, V: Canonical variates/basis vectors for A,B respectively

o stat: statistics for hypothesis testing



Example

• Suppose we have two sets of variables 𝑋 and 𝑌



Example

• Suppose we have two sets of variables 𝑋 and 𝑌

• Note: the third column of Y is a linear combination of X:
𝑌 : , 3 = 	0.4 ∗ 𝑋 : , 1 + 0.6 ∗ 𝑋 : , 2 − 0.48� ∗ 𝑋(: , 3)



Example

[A, B, r, U, V, stat] = canoncorr(X, Y);
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[A, B, r, U, V, stat] = canoncorr(X, Y);

The third pair of 
canonical variates



Example

[A, B, r, U, V, stat] = canoncorr(X, Y);

The third pair of 
canonical variates



Example

[A, B, r, U, V, stat] = canoncorr(X, Y);



About Final Project
• You will be asked to present a paper that uses one of 

methods talked in the class

• Start from April 11th

• 20% Grade!

• Be clear about
o What is the major goal of the paper?
o How did it use the method we talked about to achieve its 

goal?

• The presentation will be 10 minutes, followed by a 2-minute 
question session. You’re expected to prepare some PPT slides 
for the presentation! 



About Final Project
• Let me know before next Tuesday (3/21) if you want to find a 

paper by yourself that is more relevant to your area of 
research 

• Otherwise, I will randomly assign a paper to you next Tuesday, 
as well as the time of your presentation.



CCA: Examples


