

Effect of NaOH Treatment on Bamboo Biocomposites

Jacob W. English¹, Charles E. Bakis², and Amir Barakati¹

¹Division of Engineering, Penn State University at Berks ² Department of Engineering Science and Mechanics, Penn State University, University Park

INTRODUCTION

Biocomposites are gaining popularity in the composite industry due to there renewability and environmental impact. Due to bamboo's fast growth cycle and compact space requirements, it would be a great candidate for different applications.

Figure 1. Bicycle model with a frame made of bamboo composite (Soben Advanced Bamboo Composites, 2019)

OBJECTIVE

The objective of this study is to evaluate the effect of sodium hydroxide (NaOH) solution and water conditioning on bamboo-reinforced biocomposites with quasistatic tensile testing.

MATERIALS

Two laminates were made and conditioned using:

- Bamboo woven fabric
- ONE/ONF bio-resin
- 0.25M NaOH solution
- ASTM type II deionized (DI) water.

METHODOLOGY

Using the vacuum assisted resin transfer molding (VARTM), shown in Figure 2, two laminates were made: one with unwashed bamboo fabric and one with washed bamboo fabric soaked in NaOH for 1 h and dried for 5 days at room temperature.

Figure 2. The VARTM setup.

To condition the specimen, 10-11 specimens from each material were soaked in deionized water at 150 °F for 24 hours before performing tensile testing. The specimens were weighed before and after the soak to determine the water absorption amount.

<u></u> 1	2 3 -4 -5	Tollan 6	NTLON Z STATE	8 9	(中) (个)
+	As Rec'd Bamboo	1		T	
12	Bamboo + DI	1			
4	Bamboo/NaOH			1	
12	Bamboo/NaOH + DI	I		12	

Figure 3. Broken specimens after tensile test.

RESULTS

Figure 4. Representative tensile test of different specimen types.

Table 1. Modulus, UTS, and yield strength results (average \pm std. dev.).

Sample	Condition	E (GPa)	σ _{ut} (MPa)	σ_y (MPa)
Bamb/NaOH	As Rec'd	3.99±0.30	48.5±2.38	31.0±1.89
Bamboo	As Rec'd	3.83±0.23	38.5±1.09	30.1±1.15
Bamb/NaOH	DI Water	1.24±0.18	22.6±1.21	13.4±1.56
Bamboo	DI Water	1.16±0.09	21.4±1.04	11.9±1.50

CONCLUSIONS

- Washing bamboo fabric with NaOH improves the modulus (4-6%), UTS (21%), and yield strength (3%).
- DI water soak has a heavy detrimental impact on the mechanical properties of bamboo composites (up to 69% reduction in modulus).
- Specimens with either fabric gained about 13% water.