
A Supplementary Appendix (Not For Publication)

This Supplementary Appendix contains (i) proofs that are omitted from the main text, and (ii) state-

ments and proofs of additional results that are described informally in the main text (Section A.2).

A.1 Omitted Proofs

Proof of Theorem 1 on p. 14 continued. Here, we prove that in the finite horizon (t̄ < 1),

the first proposer captures the entire surplus in every SPE. We denote by ht as the full history of

proposers, realized state, proposals, and voting decisions prior to the realization of uncertainty in

period t. The argument proceeds by backward induction:

Base Case: At t = t̄: for every realization of uncertainty, st̄, the proposer P (st̄) keeps the entire

dollar in every SPE.

Inductive Step: Suppose in period t + 1, for every realization of uncertainty, st+1, the proposer

P (st+1) keeps the entire dollar in every SPE. We argue that in period t, for every state st, the

proposer P (st) must keep the entire dollar in every SPE. Observe that if the proposer P (st) o↵ers ✏

to every other player, any player in L(st) has a strict incentive to accept this proposal. Therefore,

for every ✏ > 0, the proposer’s SPE payo↵ is bounded below by 1� (n� 1)✏, which establishes that

in equilibrium, the proposer P (st) obtains the entire dollar.

Proof of Theorem 2 on p. 19. We begin by describing the system of equations used to solve

for w and w. Consider continuation values in the beginning of period t, prior to recognition and

information revelation, and player i such that player i expects to not be recognized in period t. It

follows from a recursive calculation that
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the probability {i, P (s)} ⇢ N\L(s) and the period-t proposer includes i in the wining coalition.

Combining this equation with

dw + (n� d)w = 1 (3)

32



yields the solutions in the text. Finally, the first proposer’s expected share can be written as
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where the first line follows from the first proposer being a member of L1(s0) with probability d

n

; the

second line uses (3); the third line simplifies the expression; and the fourth line uses (3) again. The

derivative of the proposer’s share with respect to d is

�(n� 1)(n� q)(n� �q � (1� �))

((n� 1)n� d(�(n� q) + (n� 1)))2
> 0

which implies that the first proposer’s share is strictly increasing in d for d < q.

Proof of Theorem 3 on p. 19. If ↵
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, then it follows that for su�ciently large n, d
n
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in which case Theorem 1 implies that the first proposer captures the entire surplus. Suppose that
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Taking limits as n ! 1, q
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, we obtain
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Proof of Theorem 4 on p. 21. We first describe the function that we use as a lower bound on

the amount a proposer must share with at least one other party. Consider the function f : < ! <
defined by f(y) ⌘ y��̂(✏+⇢)

�̂(1�✏�⇢) . Observe that f has a unique fixed point, namely ŷ = �̂(✏+⇢)

1��̂(1�✏�⇢) . The

function f is both strictly increasing and expansive: for each y > ŷ, an induction argument establishes
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that

fk(y)� ŷ =

 
1

�̂(1� ✏� ⇢)

!
k

(y � ŷ).

Since �̂(1� ✏� ⇢) < 1, it follows that for each y > ŷ, there exists a finite k such that for every k > k,

fk(y) > 1. We use this observation to prove this result.

Let the structural state in Stage 1 of period 0 be s0 and consider x(s0), the highest equilibrium

share that the proposer P (s0) o↵ers to any player other than herself. Suppose towards a contradiction

that x(s0) > ŷ. Because s0 2 P0
q,✏

, an argument identical to that of Theorem 1 implies that there

exist a player i in H(s0)
T

L
✏

(s0). Player i’s continuation value V
i

(s0) emerges from three events:

(i) he is recognized: the rents that he captures are bounded above by 1, and the probability of

this event is bounded above by ✏;

(ii) the realized structural state in period 1 is not in P
q,✏

: his payo↵s are bounded above by 1 and

the probability of this event is bounded above by ⇢;

(iii) the realized structural state in period 1 is in P
q,✏

, and player i is not recognized: this event

occurs with probability at least 1� ✏� ⇢, and his payo↵ is bounded above by the most that he

receives in any structural state, s1 in P
q,✏

, denoted by x̃
i

(s1).

Combining the above implies that V
i

(s0)  ✏ + ⇢ + (1 � ✏ � ⇢)x̃
i

(s1). Because the greatest share

o↵ered to any non-proposer, x(s1) must exceed x̃
i

(s1), and player i’s discounted continuation value

in state s0 weakly exceeds x(s0), it follows that

x(s0)

�̂
 V

i

(s0)  ✏+ ⇢+ (1� ✏� ⇢)x(s1)

or upon re-arranging that x(s1) � f (x(s0)). Since f is strictly increasing and expansive, we are

guaranteed that f (x(s0)) > x(s0), which is greater than ŷ. Therefore, the same argument applies in

state s1 2 P
q,✏

. Accordingly, there exists a sequence of states {st}
t2T such that for each t, we have

x(st) � f t (x(s0)), and x(s0) > ŷ. Our earlier observation implies that if t = 1, a proposer eventually

o↵ers a share exceeding 1 to another player in some state, or if t < 1, a proposer in the final period

o↵ers a strictly positive share to another player. In both cases, we reach a contradiction.

A Continuous-Time Version: The key recursive equation, translated from above, is

x̄(st)  e�r�
�
1� e�( +�)� + e�( +�)�x̄(st+�)

�
.
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Taking di↵erences and limits, and using L’Hopital’s Rule,

ẋ(st) = lim
�!0

x(st+�)� x(st)

�
� lim

�!0

x̄(st+�)(1� e�(r+ +�)�)� e�r�(1� e�( +�)�)

�

= (r +  + �)x̄(st)� ( + �).

Therefore, if x̄(s0) >  +�
r+ +� , then ẋ(s0) > ✏ for some ✏ > 0. Since the above is true for ẋ(st) at every

t, eventually x̄(st) crosses 1, a contradiction.

Proof of Theorem 5 on p. 23. We redefine the cost of a coalition, W
C

(s): for a state st and

coalition C ✓ N , let W
C

(s) ⌘ P
i2C u�1

i
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i

V
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and u
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is strictly increasing and continuous, we know that W
C
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C[{P (s)}2D

W
C

(s),

be the cost of the cheapest decisive coalitions for proposer P (s), which are in the set

C(s) ⌘ {C ✓ N\{P (s)} : C [ {P (s)} 2 D and W
C

(s) = W (s)} .

The proposals that involve creating such coalitions are

X (s) ⌘ �
x 2 X : 9C 2 C(s) such that u

i
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i
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i

V
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P (s) = 1�W (s)

 
.

In an equilibrium, let a(s) denote the (undiscounted) average of policies that are selected in the

continuation after rejection of the proposal in state s. Because u
i

is concave for each i and �
i

<

1, we necessarily have u
i

(a
i

(s)) > �
i

V
i

(s) for all i. Consequently, for any coalition C, we have

W
C

(s) <
P

i2C a
i

(s)  1. It follows that 1�W (s) > 0, and hence that X (s) is non-empty.

No Delay: We first extend Lemma 1. Suppose there is a structural state s in S such that an

equilibrium proposal o↵ered with strictly positive probability, x0, is rejected with strictly positive

probability. Select some x 2 X (s) and let C 2 C(s) be the associated minimal winning coalition

(excluding the proposer). Define a proposal x✏ for small ✏ � 0 in which u
i

(x✏
i

) = u
i

(x
i

+ ✏) for every

i 2 C, x✏
i

= 0 for every i /2 C [ {P (s)}, and the proposer keeps 1 � W (s) � (q � 1)✏ for himself

(which is feasible in light of the the fact that 1 � W (s) > 0). In the equilibrium, the proposal x✏

must be accepted by all members of C with probability 1 if ✏ > 0. Because
P

i2N u�1
i

(�
i

V
i

(s)) <
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Therefore, for su�ciently small ✏ > 0, we have

x✏
P (s) = 1�W (s)� (q � 1)✏ > u�1

�
�
P (s)VP (s) (s)

�
.

Thus, conditional on x0 being rejected, the proposer is discretely better o↵ deviating to x✏ for su�-

ciently small ✏ > 0. Conditional on x0 being accepted, the proposer’s share can be no greater than

she obtains when o↵ering x. Since proposal x0 is rejected with strictly positive probability, she is

strictly better o↵ o↵ering x✏ for su�ciently small ✏ > 0. Therefore, no equilibrium o↵er x0 can be

rejected with strictly positive probability. ⇤

Minimal Winning Coalition: Lemma 2 extends to this setting: if the proposer P (s) chooses a

policy outside X (s), then she can profitably deviate to such a policy (plus tiny additional payments

to members of the minimal winning coalition) to obtain immediate agreement at a strictly lower cost.

An Additional Lemma: Recall that ⇠i
P

(s) is the equilibrium mixed action selected by proposer

P (s) at state s: for a proposal x in X , let ⇠i
P

(s)(x) denote the equilibrium probability with which

proposer P (s) makes that proposal in state s. We prove an additional lemma for this setting bounding

the continuation value for the coalition of losers.

Lemma 3. Consider a time period t < t and a structural state s. The following relates costs of

coalitions across periods:

W
L(s)(s)  �̂

Z

S
W (s0)dµ (s0 | s) .

Proof. Observe that

W
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(4)
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where the equality follows from the definition of W
C

(s), the first inequality follows from �
i

 �̂, and

the second inequality follows from u�1
i

(·) being a convex function and u�1
i

(0) = 0.

Consider a player i in L(s). This player is recognized with probability 0 tomorrow. In other

words, given s, for each feasible continuation structural state tomorrow, player i is distinct from

tomorrow’s proposer. Therefore, player i can only expect to obtain strictly positive payo↵s tomorrow

in a structural state s0 in which the proposer P (s0) makes an o↵er that o↵ers a strictly positive share

to player i. In that contingency, he obtains a utility that equals his discounted continuation value,

namely �
i

V
i

(s0). Therefore, for every player i in L(s),
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Substituting (5) into (4) yields
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in which the first line is the substitution, the second line uses the convexity of u�1
i

(·) and u�1
i

(0) = 0,

the third line interchanges the sum and integral and applies Jensen’s Inequality, the fourth line uses

the fact that if s0 is a feasible continuation from s, L(s) is a subset of N\P (s0), the fifth line re-

arranges terms by interchanging summation and applies the convexity of u�1
i

(·), the sixth line uses

that by definition, for each x in X (s0),
P

i2N\P (s0) 1xi>0�iVi

(s0) = W (s0), and the seventh line uses

the generalized Lemma 2 to note that
P

x2X (s0) ⇠
i

P

(s0)(x) = 1.

We now prove the theorem by contradiction. Suppose the state in Stage 1 of period 0 is s0,

and that a policy proposed with positive probability in which the proposer P (s0) o↵ers a strictly
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positive amount, x, to another player, in which case W (s0) � x . Since the bargaining process

exhibits one-period decisive predictability, there exists a set of coalition partners C that excludes

P (s0) such that C
S{P (s0)} is in D, and C is a subset of L1(s0). By definition, W (s0)  W

C

(s0)

and by monotonicity, W
C

(s0)  W
L(s0)(s0). Therefore, WL(s0)(s0) must be no less than x. Lemma 3

implies that there must exist a structural state s1 such that W (s1) � x/�̂. Since W (s1) is defined

to be the cost of the cheapest decisive coalition partners for proposer P (s1), the same argument as

above implies that W
L(s1)(s1) must also be no less than x/�̂. Therefore, by induction, there exists a

sequence of states {st}
t2T such that for each t, s 2 S, and W (st) � x

�̂

t . If t = 1, �̂ < 1 implies that

W (st) eventually exceeds
P

i2N u
i

(1), which is beyond the range of feasible payo↵s; if t < 1, the

same argument implies that the proposer at t does not appropriate the entire surplus in some state

st. In both cases, we have reached a contradiction.

Proof of Theorem 6 on p. 23. Observe that if k = q, Theorem 6 follows from Lemma 2: any

proposal in which a proposer o↵ers a strictly positive amount to a non-veto player is not in X̃ t(st).

Now suppose that k < q < n: it must be that there are at least two non-veto players. Ob-

serve that for every state st, there exists x̃t(st) such that for every o↵er x 2 X t(st), x̃t(st) =

max
i/2({P (s)}[{1,...,k}) xi

. Our claim is that for every s0 2 S0, x̃0(s0) = 0. Suppose towards a contra-

diction that x̃0(s0) > 0. Consider the set of non-veto players whose support cannot be secured for

shares less than x̃0(s0):

H̃0(s0) ⌘ �
i 2 {k + 1, . . . , n}\{P (s0)} : �

i

V 1
i

(s0) � x̃0(s0)
 
.

H̃0(s0) must have a cardinality of at least n � (q � 1) because otherwise proposer P (s0) would be

able to form a coalition of veto and non-veto players without having to o↵er x̃0(s0) to any player.

Therefore, H̃0(s0)
T

L1(s0) is non-empty. Therefore, there must exist some state s1 such that player

i is o↵ered at least x̃0(s0)/�
i

, which implies that x̃1(s1) � x̃0(s0)/�̂. By induction (as before), there

must then exist a state in which a proposer shares more than the entire surplus (if t = 1) or o↵ers

a strictly positive share in t (if t < 1), both of which are contradictions.

Proof of Theorem 7 on p. 24. Because one-period predictability is perfect (of degree n � 1),

players today know the identity of tomorrow’s proposer. We denote the identity of tomorrow’s

proposer anticipated today in state s by P 1(s), distinguishing it from the identity of today’s proposer,

P (s). At t, the proposer P (st) forms a minimal winning coalition with the (n � 1)/2 other players

who obtain the lowest amount from the default option: because majority improvements are possible,

xD

P (st)
< 1� min

C✓N\{P (st)},
|C|=(n�1)/2

X

j2C

xD

j

.

Therefore, proposer P (st) is strictly better o↵ from the acceptance of this proposal than her dis-

agreement payo↵, and all players in C are indi↵erent between accepting and rejecting this proposal
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(and in equilibrium, they vote to accept it). Observe that regardless of the identity of P (st), that

proposer never includes any player from (n + 3)/2, . . . , n in her minimal winning coalition. So if an

agreement has not been reached previously, the continuation payo↵ at the beginning of period t for

any player i /2 {1, . . . , n+1
2 } [ {P (st)} is 0.

Consider negotiations in the penultimate period, t� 1. There are two cases to consider:

1. P 1(st�1) > (n�1)/2: If there is disagreement today, the next period proposer forms a minimal

winning coalition with players {1, . . . , (n� 1)/2}. Therefore, all players in {(n+1)/2, . . . , n}\
L(st�1) expects 0 payo↵s in the event of disagreement today. There are (n�1)/2 players in this

set. If P (st�1)  (n�1)/2 or P (st�1) = P 1(st�1), then she can guarantee passage of a proposal

in which she o↵ers ✏ to each player in this set, and therefore, in equilibrium, she captures the

entire surplus. Otherwise, proposer P (st�1) > (n � 1)/2, in which case, she can obtain the

agreement of (n� 3)/2 other players at no cost. She then includes player 1 and obtains 1�xD

1 .

2. P 1(st�1)  (n�1)/2: If there is disagreement today, the next period proposer forms a minimal

winning coalition with other players in {1, . . . , (n + 1)/2}. Therefore, all players in {(n +

3)/2, . . . , n} expect 0 payo↵s in the event of disagreement today. There are (n�1)/2 players in

this set. If P (st�1)  (n+ 1)/2, then she obtains the entire surplus in equilibrium. Otherwise,

she can obtain the agreement of (n�3)/2 other players at no cost. If 1 6= P 1(st�1), the proposer

o↵ers a share of xD

1 to player 1 and otherwise, she o↵ers xD

2 to player 2.

Consider negotiations in period t � 2. All players anticipate, in equilibrium, that if there is

disagreement today, the only players who may expect a strictly positive surplus are in {P 1(st�2), 1, 2},
and the remaining n� 3 players expect zero surplus. Proposer P (st�2) captures the entire surplus if

n� 3 � n+1
2 , which is equivalent to n � 7. Therefore, the proposer in period t� 2 captures the entire

surplus. By induction, the first proposer captures the entire surplus in every SPE.

An infinite horizon Game: Consider an infinite horizon game with a random deadline. The

state ! encodes the deadline: the final period is t(!) < 1, which is an F -measurable function. We

assume that for all ! in ⌦, t(!) � 2, so it is common knowledge that negotiations proceed for at least

three periods. Players receive information about the deadline through the signal received in period

t, �t(!), and based on this information, they form a partition over the states of nature.

Definition 4. The deadline is one-period predictable if in each period t, and for all ! such that

t(!) = t + 1 and !0 such that t(!0) > t + 1, there does not exist a member of the partition St that

contains both ! and !0.

One-period predictability of the deadline guarantees that players know, one-period in advance, as

to whether the next period of negotiations is the final period. We view this as a modest requirement,

ruling out settings in which players cannot anticipate a deadline even in the preceding period.
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Theorem 10. If the deadline is one-period predictable, there exists a pure strategy SSPE in which

the first proposer captures the entire surplus.

Proof. We construct a pure strategy SSPE. Suppose that the state is st.

1. For all ! 2 st, t(!) 2 {t, t+1}: the proposer P (s) and other players follow the strategy profile

outlined in Theorem 7 for the final and penultimate periods.

2. For all ! 2 st, t(!) > t + 1: the proposer P (s) o↵ers 0 to each player. Each player votes in

favor of any proposal that assures her at least her continuation value, and otherwise rejects. In

equilibrium, all players L(s) \ {P 1(st), 1, 2} vote to accept the proposal.

Observe that no player has any incentive to deviate in the proposing or voting stages.

Proof of Theorem 8 on p. 26. Define a policy x proposed by player p to be movable in period t

if x
j

� �

1+�k for each j in At(p). We write M t(p) for the set of movable policies by player p in period

t. Consider a strategy profile in which:

1. In every period t for which there is no proposal on the table, the proposer pt o↵ers �

1+�k to each

amender and 0 to all others.

2. When voting on a proposal in period t that has been moved by each amender in At, each player

votes to accept the proposal unconditionally unless he is either the proposer pt+1 or an amender

in At+1(pt+1). The proposer in period t+1 votes to accept the proposal if and only if he obtains

at least �

1+�k , and the amender votes to accept if and only if he obtains at least �

2

1+�k . Define a

proposal to be passable if it satisfies these conditions.

3. In period t, if the proposal on the table is movable, then each amender moves the proposal. If

it is neither movable nor passable, then assuming previous amenders have moved the proposal,

each at
i

o↵ers an amendment to keep 1
1+�k for himself and share �

1+�k with each amender in the

set At+1(at
i

). In the case where the proposal is passable but not movable, let i0 denote the last

amender for whom the amount o↵ered is strictly less than �

1+�k . For all i  i0, at
i

o↵ers the

same amendment just described. For all i > i0 (if any), at
i

moves the proposal.

4. When voting in period t between a proposal x proposed by player p and an amendment x0 by

player p0, each player i votes for x if and only if

• x 2 M t+1(p) and x0 2 M t+1(p0), and x
i

> x0
i

,

• or x 2 M t+1(p) and x0 /2 M t+1(p0),

• or x /2 M t+1(p), x0 /2 M t+1(p0), and i is in At+1(p).

First, as a preliminary observation, we note that all movable proposals are passable. If k � n�1
2 ,

then pt [ At(pt) has cardinality of at least n+1
2 , so the current proposer and amenders can pass a
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proposal with no other support. According to the strategies, all members of that group will vote in

favor of a movable proposal, so it is passable. If k < n�1
2 , the set of players not in pt+1 [ At+1(pt+1)

has cardinality of at least n+1
2 , and can pass a proposal with no other support. According to the

strategies, all members of that group will vote in favor of a movable proposal, so it is passable.

We prove that, for this strategy profile, no player has a profitable deviation for any history by

considering each of the three roles separately: proposer, amender, and voter.

• Proposer: Suppose there is no o↵er on the table, so the proposer pt must make an o↵er: any

proposal that o↵ers less than �

1+�k to a player j in At is amended by that player and defeated.

Since no proposal accepted in equilibrium in the continuation game o↵ers a higher discounted

expected payo↵ to the proposer pt than 1
1+� , he has no incentive to deviate to any proposal

that o↵ers less to amender j than �

1+�k . Of the proposals that are accepted in equilibrium, the

equilibrium proposal maximizes the proposer’s payo↵.

• Amender: Suppose first that the current proposal on the table in period t is movable. The

proposal is also passable, so moving it leads to its implementation (given continuation strate-

gies), yielding a payo↵ of at least �

1+�k for the amender. Amending the proposal cannot generate

a strictly higher payo↵ for the amender given prescribed behavior in the continuation game.

Next suppose the current proposal is neither movable nor passable. Moving the proposal results

in implementation of some other policy one period hence, with an expected discounted payo↵

no greater than �

1+�k (given continuation strategies). By proposing the amendment prescribed

by the equilibrium strategies, the amender can achieve a discounted payo↵ of �

1+�k , which is

(weakly) greater.

Finally suppose the current proposal is passable but not movable. Amender at
i

0 (where i0 is

defined in part 3 of the description of the equilibrium strategies) plainly has a strict incentive

to amend the proposal by o↵ering to keep 1
1+�k for himself and share �

1+�k with each amender in

the set At+1(at
i

0) (given that this proposal will be implemented one period hence, and that no

proposal more favorable to i0 would be implemented). Anticipating this successful amendment,

each amender i playing prior to i0 has a strict incentive (by induction) to o↵er an analogous

amendment. For i > i0, at
i

can obtain an immediate payo↵ not less than �

1+�k by moving the

proposal (because subsequent amenders will move it and it is passable), and cannot obtain a

greater discounted payo↵ by o↵ering an amendment.

• Voting Decisions: By construction, players cast votes in favor of the alternative that yields

their highest continuation payo↵.

We now argue uniqueness of these SSPE payo↵s. Using the argument in Proposition 4 of Baron

and Ferejohn (1989), it follows that each evaluator and proposer have identical continuation values.

Analogous to Theorem 1, all players who are not evaluators today must obtain 0 in an SSPE. Thus,

in an SSPE, the proposer’s share, v, must solve v = 1 � �kv, which generates the payo↵s described

in Theorem 8.
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Proof of Theorem 9 on p. 27. We exhibit the role that germaneness restrictions play by con-

sidering a particular extensive-form:

• If player p0 is the first proposer, all n� 1 others must move the proposal for it to be put to a

vote.

• If any non-proposer amends it, then all vote between the amendment and the original proposal,

and all other than p0 must move it.

• If all move the proposal, then it is put to a vote. If rejected, then a new proposer is selected in

period 1 without any germaneness restriction. If accepted, the proposal is accepted.

For this problem, we consider the following system of equations: for z in the unit simplex, and

an original proposer i, let w
k

(z, i) satisfy for k 6= i:

z
k

+ w
k

= �

0

@z
k

+
✏

2
�

X

l /2{i,k}

w
l

1

A

It can be verified that this system of equations admits a unique solution. Consider z0 such that z0
k

= 0

for all k 6= i, then for every k,

w
k

(z0, i) =
�✏

2(1 + �(n� 2))
for every k 6= i

We construct an equilibrium in which each proposer proposes to keep the entire dollar, the first

amender j amends that proposal to give 1� ✏

2 to the proposer, give w
k

for every k /2 {i, j}, and keep

the remainder for herself. On path, after the amendment, each amender moves the proposal, it’s put

to a vote, and is accepted.

Define a proposal x to be passable if

|
⇢
j : j 6= pt+1 and x

j

� �✏

2(1 + �(n� 2))

�
| � n+ 1

2
.

Define an amendment x in period t to be movable if it is passable, and x
j

� z
j

+ w
j

(z, i) for every

j 6= pt, and who hasn’t moved the proposal already.

We describe the strategy profile in greater detail as follows:

1. Each proposer proposes to keep the entire surplus for herself.

2. When the proposer pt proposes z, and this is the proposal on the table, an amender j amends

it to o↵er w
k

(z, pt) to players k /2 {j, pt}, o↵ers z
p

t � ✏

2 to the proposer, and keeps the rest for

herself.
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3. An amender moves an amendment on the table i↵ it is movable. If the amendment is not

movable, then she amends it to o↵er w
l

(z0, pt) for every l /2 {k, pt}, o↵ers 1� ✏

2 to pt, and keeps

the rest to herself.

4. At the final voting stage, all players other than tomorrow’s proposer who obtain at least
�✏

2(1+�(n�2)) vote in favor of the proposal.

5. At the voting stage between an amendment and the proposal on the table,

• if both are movable: then a voter votes for whichever o↵ers her a higher discounted

continuation payo↵, breaking ties in favor of the proposal on the table.

• if the amendment is not movable, then a voter votes for the proposal on the table.

Below, we verify incentives at each of these stages.

Proposer: Since the proposer expects to lose ✏

2 for any proposal that she makes, a proposer has

no gain from deviating.

First Amender: By following equilibrium strategies, the first amender j obtains a payo↵ of

�(z
j

+
✏

2
�

X

l /2{j,pt}

w
l

) > �(z
j

+ w
j

),

where the RHS is how much she obtains if she proposes something that is not movable. Any other

deviation generates a lower surplus.

Future Amenders: Note that by amending, each amender k expects to obtain �(z
k

+ ✏

2�
P

l /2{k,pt} wl

)

and thus, is willing to move any proposal that o↵ers her at least that much.

Voting: By construction, players cast votes in favor of the alternative that yields the highest

continuation payo↵.

A.2 Additional Results

A.2.1 A Durable Version of Imperfect Predictability (Section 5.3)

Here, we return to the alternative view of bargaining power to which our results on imperfect pre-

dictability apply. In the main text, we highlighted how in the model of Section 5.3, bargaining power

is highly variable, and in that case, we derived a lower bound on how much the proposer captures

when d players in each period may be excluded. This section shows that durability amplifies our

results, and so transience o↵ers a lower bound on the impact of predictability.
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Particularly, following Simsek and Yildiz (2016), we consider a sequence of bargaining games in

which the period between o↵ers, �, converges to 0. At any point in time, each of n� d players have

strictly positive bargaining power, and share it equally, and d players have no bargaining power at all.

The set of players who have bargaining power changes with the arrival of a Poisson shock whose rate

is ⇣. When that Poisson shock arrives, a new set of n � d players is drawn independently from the

past. In the time between shocks, the set of players with bargaining power remains unchanged.29 Let

w� be the expected payo↵ for a player who has no chance of proposing today and w� be the expected

payo↵ for a player who has a chance of proposing today. It follows from a recursive calculation that

w� equals

e�⇣�(e�r�w�) + (1� e�⇣�)

✓
d

n
e�r�w� +

n� d

n

✓
d(q � d)

(n� 1)(n� d)
+

(n� d� 1)(q � 1� d)

(n� 1)(n� d� 1)

◆
e�r�w�

◆
,

where the first term corresponds to payo↵s in the absence of a Poisson shock, and the second term

corresponds to the payo↵s after a Poisson shock, derived exactly as in the proof of Theorem 2.

Substituting K = d(q�d)
(n�1)(n�d) +

(n�d�1)(q�1�d)
(n�1)(n�d�1) < 1, one obtains

w� = e�⇣�(e�r�w�) + (1� e�⇣�)

✓
d

n
e�r�w� +

n� d

n
Ke�r�w�

◆

= e�(⇣+r)�w� + (1� e�⇣�)

✓
d

n
e�r�w� +

Ke�r�

n
(1� dw�)

◆

=
(1� e�⇣�)Ke�r�

n(1� e�(⇣+r)� � d

n

e�r�(1� e�⇣�)(1�K))
,

where the first equality uses the definition of K, the second equality uses (n� d)w� + dw� = 1, and

the third equality simplifies the expression. Notice that both the numerator and denominator involve

terms that are vanishing to 0 as � ! 0, and so L’Hopital’s Rule yields

w0 =
⇣K

n(⇣ + r � d

n

⇣(1�K))

=
K

n(1 + r

⇣

� d

n

(1�K))
.

Observe that r

⇣

measures the e↵ective durability of bargaining power, when one interprets player i’s

bargaining power as the probability of her being the proposer right before the proposer is selected.

Taking the durability rate, r

⇣

, to equal 0 corresponds to our model studied in Section 5.3 in which

power is highly transient (and the expression is identical once one imposes � = 1). By contrast, the

limit as r

⇣

diverges to 1 corresponds to a setting where the current set of players with bargaining

power persists forever.

29To be clear on the timing: first, a proposer is recognized, then the Poisson shock strikes specifying the set of n�d

players who share bargaining power until the next Poisson shock, then the proposer makes a proposal, and then all
vote on that proposal.
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Because w0 is decreasing in r

⇣

, and therefore w0 is increasing in that same term, our results

highlight how durable bargaining power amplifies the gap between strong players who have bargaining

power and weak players who do not.

A.2.2 Inequity Aversion (Section 6.4)

In each period, each player has a 1/n probability of being the proposer, independently of the past,

and the period-(t + 1) proposer is revealed in period t. Consider a SSPE of this environment: it is

straightforward to establish that agreement is immediate and o↵ers are made to a minimal winning

coalition. Suppose that in equilibrium the proposer pt o↵ers y to each member of his coalition, and

includes player i 6= pt+1 in his coalition. Player i’s payo↵ from accepting the equilibrium proposal is

U = y � ↵

n� 1
(1� qy)� �

n� 1
(n� q)y, (6)

in which the first term is player i’s selfish payo↵, the second term is her loss from disadvantageous

inequality with respect to the proposer, and the third is her loss from advantageous inequality. By

contrast, her payo↵ from rejecting the equilibrium proposal is

�


1

n
(� ↵

n� 1
) +

n� 1

n

⇢
q � 1

n� 1
U +

✓
n� q

n� 1

◆✓
� ↵

n� 1

◆��
. (7)

The first term represents the payo↵ from being excluded from the coalition in the event that she

is identified in period t + 1 as the period-(t + 2) proposer (which occurs with probability 1/n).30

The second term represents the complementary event: with probability (q � 1)/(n � 1), proposer

pt+1 includes player i in her coalition and o↵ers her U , and with probability (n � q)/(n � 1), she is

excluded, in which case she obtains the exclusion payo↵. Because player i must be just indi↵erent

between accepting and rejecting a proposal, equating (6)-(7) implies that

U = � n� q + 1

n� �(q � 1)


�↵

n� 1

�

y =
↵n(1� �)

((n� 1) + ↵q � �(n� 1)) (n� �(q � 1))

The above computations imply the following corollary.

Corollary 1. As � ! 1, the first proposer captures the entire surplus in every MPE.

A.2.3 Political Maneuvers

Our results extend seamlessly to environments in which players can maneuver for bargaining power

or otherwise influence the selection of future proposers. We model a setting in which in each period t,

30Observe that with inequity averse preferences, the payo↵ from receiving a share of 0, independently of how others
divide the surplus, is � ↵

n�1 .
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prior to the arrival of information and the selection of a proposer, each player i (potentially including

a Chair, denoted i = 0, in addition to the negotiators) chooses a (potentially) costly maneuver mt

i

from some set M
i

, and that the entire history of maneuvers up to that point (in addition to past

random shocks and proposers) influences recognition in period t. These maneuvers may represent

payments made to the Chair, or the Chair deciding the order of proposers (or taking actions so as

to influence the recognition process).

Suppose that each legislator i = 1, . . . , n and the Chair, i = 0, can choose (potentially) costly

maneuvers m
i

in each period from some set M
i

that has persistent e↵ects on recognition. We describe

in order the timing of maneuvers, the recognition rule, the payo↵ relevant state, the appropriate

predictability conditions and our formal results.

Timing: At the beginning of period t, players engage in political maneuvers. Each player i simul-

taneously chooses an action variable mt

i

from the feasible set of maneuvers, M
i

, a non-empty and

compact subset of a Euclidean space. We writeM ⌘ M0⇥. . .⇥M
n

. The selected vector of maneuvers

in period t is mt = (mt

0, ...,m
t

n

), which is observed by all players. We let ht

m

= (m0, . . . ,mt) denote

the full history of maneuvers up to and including that of period t.

After the maneuvers are selected, players proceed to the Information and Recognition stage

described in Section 4. We let H t

m

denote the set of possible histories of maneuvers up to and

including those of time t, and H
m

=
S

t2T H t

m

denote the set of all possible histories of maneuvers.

The period t recognition rule is represented by a deterministic function eP t : H t

m

⇥H t�1
P

⇥⌦ ! N in

which H t�1
P

is the set of possible proposer histories, and ⌦ is the state space. Because the state of

nature and the history of maneuvers recursively determine the entire sequence of proposers, we can

write the recognition rule more compactly as P t : H t

m

⇥⌦ ! N . After the revelation of information

and recognition, the proposer pt proposes a policy in X and others vote in a fixed sequential order.

The proposal is implemented if and only at least q players (including the proposer) vote in favor.

Payo↵s: We augment each legislator’s payo↵ in Section 4 with that from maneuvers; substantively

we assume that no legislator has any interest in prolonging negotiations because he intrinsically enjoys

the process of political maneuvering. For a history ht

m

2 H
m

, let v
i

: H
m

! < represent player i’s

costs from that history incurred at time t. If o↵er x is accepted at time t, legislator i’s payo↵ is

u
i

�
x, t, ht

m

�
= �tx

i

�
tX

⌧=0

�⌧
i

v
i

(h⌧
m

) .

We assume that for all t, and all ht

m

2 H
m

, v
i

(ht

m

) � 0. Thus, maneuvering is (potentially) costly,

and prolonging negotiations cannot be motivated by the desire for further maneuvering. For many

applications, it su�ces to consider a special case of v
i

in which the only dimension of the history of

maneuvers, ht

m

, that is costly at time t is the current individual maneuver, mt

i

. However, our results

also accommodate settings in which the cost of maneuvering is a↵ected by the maneuvers of others
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and one’s own past maneuvers.

For the Chair’s preferences, we write

u0

�
x, t, h(t)

m

�
= �t0W (x)�

tX

⌧=0

�⌧0v0 (h
⌧

m

) ,

in which W (x) represents her payo↵s from a policy x. We make no restrictions on v0.

Markov Perfect Equilibria: We augment our description of structural states and equilibria to ac-

count for the possibilities for maneuvering. In the maneuvering stage of period t, let s̃t
M

⌘ (ht�1
m

, st�1)

denote all past maneuvers and all that is known after period t�1 about future recognition. We write

s̃t
P

⌘ (ht

m

, st) as the state at the proposal stage, in which both the maneuvers and information re-

vealed at period t are included. Let St

M

denote the set of possible states for the maneuvering stage of

period t. We let St

P,i

denote the collection of all states for the proposal stage consistent with player

i being the proposer. An MPE is an SPE in which each player’s equilibrium strategy can be written

as a sequence of functions
�
⇠i,t
M

, ⇠i,t
P

, ⇠i,t
V

�
t2T such that ⇠i,t

M

: St

M

! �M
i

is player i’s randomization

over maneuvers in period t in structural state s̃t
M

, ⇠i,t
P

: St

P,i

! �X is player i’s randomization over

proposals when recognized in period t in structural state s̃t
P

, and ⇠i,t
V

: St

P

⇥X ! �{yes, no} is player

i’s randomization whether to vote in favor of the proposal in period t in structural state st
P

.

Predictability: Using the above notation, we can extend our notions of predictability to account

for political maneuvers. If the profile of maneuvers at t + 1 is mt+1, then the sequence of signals

identify that the member of the partition St that ! is in is st, then player i is recognized at t+ 1 if

and only if ! is in

⌦M

i

(ht

m

,mt+1, st) ⌘ �
! 2 st : P t+1

�
(ht

m

,mt+1),!
�
= i

 
,

which has probability rM
i

(ht

m

, st,mt+1) ⌘ µ(⌦M

i

(ht

m

,mt+1, st)|st). A player is a loser conditional on

mt+1 in structural state st
P

= (ht

m

, st) if in period t + 1, he is definitely not the proposer if the

period-t+ 1 profile of maneuvers is mt+1:

Lt+1
C

(st
P

,mt+1) ⌘ �
i 2 N : rM

i

(st
P

,mt+1) = 0
 
.

The player is an unconditional loser if he is not the proposer regardless of mt+1:

Lt+1
U

(st
P

) ⌘
\

m

t+12M

Lt+1
C

(st
P

,mt+1).

We o↵er two distinct notions of predictability.

Definition 5. The bargaining process exhibits one-period unconditional predictability of degree

d if
��Lt+1

U

(st
P

)
�� � d for all st

P

in St

P

and t in T .
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Definition 6. The bargaining process exhibits one-period conditional predictability of degree d

if
��Lt+1

C

(st
P

,mt+1)
�� � d for all st

P

in St

P

, mt+1 2 M , and t in T .

With conditional predictability, the players are able to rule out d legislators in period t when

they can predict the maneuvers in period t+1. Unconditional predictability is stronger (and implies

conditional predictability) as the players need not predict the maneuvers played in period t+1 to rule

out d legislators from being the proposer. The following describes the implications of each condition.

Theorem 11. If the bargaining process exhibits one-period unconditional (respectively conditional)

predictability of degree q, the proposer selected at t = 0 captures the entire surplus in every (respec-

tively every pure strategy) MPE.

Proof. For every state st
P

in St

P

, let V t+1
i

(st
P

) denote the expected continuation value of player i before

Stage 1 of the next period, after the rejection of an o↵er in state st
P

, and excluding maneuvering

costs that have already been incurred (at period t or before). Lemmas 1 and 2 extend to this setting

immediately, so in every MPE proposal is accepted with probability 1.

Case 1: Unconditional Predictability of Degree q: Constructing x(s0
P

) and H0(s0
P

) as in the proof of

Theorem 1, it follows thatH0(s0
P

)
T

L1
U

(s0
P

) is non-empty. Consider a generic player i inH(s0)
T

L1(s0).

For a generic player i in H0(s0
P

)
T

L1
U

(s0
P

), his continuation value is a combination of o↵ers that he

receives in states in S1
P

and maneuvering costs that he incurs in period 1. Since maneuvering can

be only costly, it must be that there exists some structural state s1
P

in S1
P

such that the associated

proposer o↵ers player i at least
x(s0P )
�i

� x(s0P )

�̂

, which implies that x1(s1
P

) � x(s0P )

�̂

. Induction (as before)

implies that there exists a state in which a proposer shares more than the entire surplus (if t = 1)

or o↵ers a strictly positive share in the final period (if t < 1), both of which are contradictions.

Case 2: Conditional Predictability of Degree q: Construct x(s0
P

) and H0(s0
P

) as in the proof of

Theorem 1. The state for maneuvers in period 1, s1
M

= (h0
m

, s0
P

), which is identical to s0
P

. Since the

MPE is in pure strategies, there is a profile of maneuvers m1 that is chosen in s1
M

that is perfectly

predictable in state s0
P

. Since the bargaining process exhibits predictability of degree q, it follows that

|L1
C

(s0,m1)| � q. Since H0(s0
P

) must have a cardinality of at least n� (q � 1), H0(s0
P

)
T
LC(s0,m1)

is non-empty. It follows exactly as in the argument above that there exists some structural state s1
P

in S1
P

such that x1(s1
P

) � x(s0P )

�̂

. Induction, as before, implies a contradiction.

Finally, we note that the example that we discuss in which the Chair selects proposers is that

in which M0 = N , ✓t(!) = ✓ for all t and !, and P t(ht

m

, ✓t) = mt

0. This is a bargaining process

that satisfies conditional predictability of degree n� 1, and so in every pure strategy MPE, the first

proposer captures the entire surplus.

48



A.2.4 Private Learning

In opaque legislative institutions, a legislator may not know who else has or hasn’t been able to

access power brokers, but in many cases, she may know if she has been unable to do so. We show

that a qualitatively similar (but weaker) result applies when players privately learn about bargaining

power.

Consider a canonical probability space (⌦,F , µ) (where ⌦ is the state space, F is a �-algebra,

and µ is a probability measure) encompassing all uncertainty pertaining to the bargaining process,

and let ! 2 ⌦ denote the generic state of nature. For every t 2 T , define ht

P

⌘ (p⌧ )
⌧2T ,⌧t

as the

history of proposers, and let H t

P

denote the set of possible proposer histories. The recognition rule

is a sequence of functions eP t : H t�1
P

⇥ ⌦ ! N , where eP t governs the selection of pt, the proposer in

period t. Of course, for a process of that type, the state of nature recursively determines the entire

sequence of proposers. Hence we can rewrite the recognition rule more compactly as a stochastic

process (P t)
t2T , where each P t is F�measurable and maps ⌦ to N .

In stage 1 of period t, the players commonly observe a signal �t, where �t(!) is F -measurable. For

each t, we can represent the information structure induced by the stochastic processes (�⌧ , P ⌧ )
⌧2T ,⌧t

as a partition, St, of the state space ⌦. The partition identifies states of nature that generate exactly

the same signals and history of proposers through period t. Formally, St satisfies two requirements:

(i) it partitions ⌦ and therefore
S

s

t2St st = ⌦; and (ii) for each st 2 St, {!,!0} ⇢ st if and only if

�⌧ (!) = �⌧ (!0) and P ⌧ (!) = P ⌧ (!0) for every ⌧  t.

In addition to the public signal �t, each player i observes a private signal �t

i

. For each t, the

information structure generates a partition S̃t

i

for player i in which s̃t
i

2 S̃t

i

is a generic member

of player i’s partition. The information structure is common knowledge. Let a structural state be

s̃t = (s̃t1, . . . , s̃
t

n

), which encapsulates the information possessed by each player, and let S̃t be the set

of possible structural states. Being that players have private information and there are no proper sub-

games, we restrict attention to Perfect Bayesian Equilibria. We consider a similar solution-concept to

that before: proposal equilibrium strategies by player i condition on her information s̃t
i

, and voting

strategies by player i condition on information s̃t
i

and the proposal on the table. We call such an

equilibrium a Markov Perfect Equilibrium.

Let r̃t+1
i

(s̃t) ⌘ µ
⇣
b⌦t+1
i

(s̃t
i

) | s̃t
i

⌘
. The privately informed losers are those players who have 0

probability of being the proposer at t + 1 conditional on all that is known at the proposal stage in

period t: Lt+1(st) ⌘ �
i 2 N : r̃t+1

i

(s̃t) = 0
 
.

Definition 7. The bargaining process exhibits one-period private predictability of degree d if

|Lt+1(s̃t)| � d for all s̃t in S̃t and t in T .

One-period private predictability of degree d requires that each of at least d players privately

learns in period t as to whether she has a strictly positive probability of being the proposer in period

t + 1. Unlike one-period predictability of degree d, the identity of these d players is not commonly

known. For a non-unanimous q voting rule, it is straightforward to construct an MPE in which the
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first proposer captures the entire surplus: suppose that each proposer o↵ers to take all of the surplus,

and each privately informed loser votes in favor of each proposal. No player has any incentive to

deviate from this profile. Thus, the following result applies.

Corollary 2. If the bargaining process exhibits one-period private predictability of degree q, then

there exists an MPE where the proposer selected at t = 0 captures the entire surplus.

In fact, a stronger result applies for the finite horizon, with a restriction on o↵-path beliefs for

each player. We assume that a player who privately learns that she is a loser maintains those beliefs,

regardless of the proposal made by the proposer.31 Because the information that each player privately

learns about whether she is a loser is definitive, we call this PBE with this system of beliefs to be a

Definitive PBE.

Theorem 12. If t < 1, and the bargaining process exhibits one-period predictability of degree q,

then in every Definitive PBE, the proposer selected at t = 0 captures the entire surplus.

Proof. We proceed by backward induction. Observe that the final proposer captures the entire

surplus in every PBE. Suppose that in period t + 1, the next proposer keeps the entire surplus in

every Definitive PBE. Then if the proposer today o↵ers ✏ to every other player, every private loser

has a strict incentive to accept such an o↵er, and it necessarily passes. Therefore, a lower bound for

the proposer’s payo↵ is 1� (n� 1)✏, which establishes that in equilibrium, today’s proposer captures

the entire surplus.

31In principle, a player who privately learns that she is a loser may have di↵erent beliefs about her recognition
probability tomorrow in the event of a deviation by a proposer (since such deviations occur with 0 probability).
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