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Abstract

This paper incorporates costly information into a model of observational learning. Individuals would like 
to avoid the cost of buying information and free-ride on the public history. The paper characterizes when 
learning is nevertheless complete. Necessary and sufficient conditions for complete learning follow from 
an elementary principle: a player purchases information only if it can influence her action. With a “coarse” 
action space, learning is complete if and only if for every cost c > 0, a positive measure of types can acquire, 
at cost less than c, an experiment that can overturn the public history. With a “rich” action space, learning 
is complete if and only if for every cost c > 0, a positive measure of types can acquire any informative 
signal at cost weakly less than c. The results are applied to financial markets to evaluate when markets are 
informationally efficient despite information being costly.
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1. Introduction

Why do individuals imitate each other? The observational learning literature, initiated by 
Banerjee (1992) and Bikhchandani et al. (1992), offers the following perspective: when Alice 
sees many others before her choosing the same action, she infers that sufficiently many of them 
have private information that favors that action. That inference can induce her to follow suit 
even if her own information indicates otherwise. By joining the herd, Alice’s action obscures her 
information from future players, and thus, induces informational inefficiency.

Understanding how this motive for imitation influences long-run behavior is the main theme 
of the herding literature. Are herds guaranteed to form, and if so, can they persist indefinitely on 
incorrect actions? In a seminal paper, Smith and Sørensen (2000) show that herding is inevitable 
but herds persist indefinitely on incorrect actions if and only if information is of bounded persua-
siveness.

These insights are developed in a setting where all individuals obtain information for free. 
But individuals often have to devote time and resources to acquire information. Once players 
find it costly to acquire information, there is a new motive for herding, namely that a player 
can use the “wisdom of the crowd” to avoid incurring the cost of information acquisition. For 
example, when choosing among health insurance plans, individuals typically find it costly to 
learn about the various characteristics of these plans, and one might instead choose the same 
plans that one learns that one’s co-workers have chosen (Sorensen, 2006). Analogously, in the 
adoption of agricultural technology, individuals may herd on the technological choices of others 
rather than learn about the efficacy of various technological interventions oneself (Conley and 
Udry, 2001). Information costs strengthen the motive to herd.

The goal of this paper is to ask the main question of the herding literature once information 
is costly—when do herds persist only on correct actions and never on incorrect actions? This 
paper answers this question by combining the most basic principle of information demand—
information is valuable only if it can change one’s action1—with the martingale techniques of 
Smith and Sørensen (2000) to characterize long-run learning. The lesson provided by the main 
result, Theorem 1, is simple:

Herds persist only on correct actions if and only if for every interior public belief, players 
acquire information that can overturn it with positive probability.

This result applies in both discrete and continuous action spaces, with information costs being 
modeled non-parametrically, and allowing for players to be heterogeneous in their information 
acquisition costs. Below, I describe more of the framework, the obstacles that are encountered, 
and the intuition for this result.

Individuals sequentially choose from a menu of options while being uncertain about the re-
alization of a payoff-relevant state of the world. Prior to making that choice, each individual 
observes the full history of prior choices, and then chooses whether to conduct an experiment (or 
test) whose stochastic result reveals some information about the underlying state of the world. 
The cost of that experiment may depend both on its characteristics (e.g., its informativeness) and 
on characteristics particular to that individual. This heterogeneity captures differences in both 

1 This fundamental property is implicit in Blackwell’s comparison of information structures (Blackwell, 1951, 1953) 
and is described by Arrow (1971) who attributes it to Marschak (1959). This property is also used by Schlee (1990) and 
Grant et al. (1998) as a point of contrast for theories in which information has intrinsic value.
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absolute and comparative advantage in information acquisition across players. For example, Bob 
may find it more costly than Alice to acquire any kind of information. Alternatively, Alice may 
find it less costly than Carol to evaluate the long-run cost of a health insurance plan, but finds it 
more costly to evaluate the quality of covered medical services.

Because Alice observes the full history of prior actions before choosing which test to run, the 
choice of information acquisition is endogenous: if all her predecessors choose the same option, 
she has less reason to acquire information (since the chance that she’ll overturn their consensus 
is low), but if instead, those before her have not settled on a single choice, information may be 
valuable. Hence, Alice’s choice of tests varies across histories.

In addition to being endogenous, Alice’s choice of information acquisition must reflect her 
strategic reasoning (and her reasoning about others’ reasoning). She recognizes that her prede-
cessors faced the same choice as she does, and some of them may have been tempted to not 
acquire any information at all. She cannot directly observe who acquired information nor what 
they learned, but forms inferences based on the prior history.

The heterogeneity of players and the endogenous nature of information acquisition make it 
infeasible to tractably characterize short-run and medium-run behavior without parametric re-
strictions on the decision problem and information structure. This paper sidesteps these issues by 
using asymptotic methods to characterize long-run behavior. While beliefs about the true state 
ebb and flow as individuals acquire information and act, the Martingale Convergence Theorem 
guarantees that learning eventually stops. Does it stop before individuals have settled on the right 
action?

Theorem 1 summarized above offers the necessary and sufficient condition for learning to 
settle only on the right action, and I explain the role of that condition. For learning to converge 
to the truth (with probability 1), at any belief short of certainty, information must be acquired 
with positive probability. If at any such interior belief, there is strictly positive probability that a 
player is willing to acquire information that can overturn it, then that interior belief is unstable: 
either the prior consensus is overturned or it isn’t, and in either case, the outcome is informative to 
subsequent players. Thus, a sufficient condition for actions to settle only on the right action is that 
there is some form of information that can both overturn the prior consensus and is sufficiently 
inexpensive that a positive mass of players acquires it.

This condition is also necessary. If at some interior public belief, the only information that can 
overturn it is too costly for all players, then no one is willing to acquire any information. At that 
point, learning stops at an interior belief, which implies that with positive probability, players 
may have converged to taking the wrong action.

This necessary and sufficient condition bears different implications for different decision 
problems. With a “coarse” action space (e.g. finite), information can overturn only if it can 
“swing” a player’s action whereas with a sufficiently rich action space, all that the information 
has to do is induce a player to “tweak” her action. This paper develops the language of respon-
siveness to describe this distinction between “coarse” and “rich” action spaces, and shows that 
the distinction is more than that of finite versus continuous action spaces.

A decision problem is responsive if any change in a player’s belief changes her optimal ac-
tion. The quintessential example is a “prediction problem” proposed by Lee (1993)2 in which 
each player chooses a in [0, 1], and obtains a payoff of −(a − ω)2 in state ω. In this problem, 

2 This prediction problem has also been studied by others within the social learning literature. A partial and incomplete 
list is Vives (1997), Burguet and Vives (2000), Eyster and Rabin (2010, 2014), and Guarino and Jehiel (2013).
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the optimal action shifts monotonically with a player’s beliefs about the states. By contrast, if a 
player’s optimal action does not always shift with her beliefs, that decision problem is unrespon-
sive. A particular kind of unresponsive decision problem is where the extreme action that she 
chooses when she is absolutely certain of the state remains her optimal action when she is suffi-
ciently confident; such a decision problem is unresponsive at certainty. Every finite action model 
is unresponsive at certainty because every weakly undominated action is optimal for a range of 
beliefs. However, a continuous action choice model may also be unresponsive at certainty; see 
Section 3.2 for examples that include risky investments and lumpy actions that have fixed costs.

Theorem 1 characterizes long-run behavior. For responsive decision problems, learning ob-
tains whenever some informative experiment is conducted with positive probability at every 
interior belief. By contrast, if the decision problem is unresponsive at certainty, it must be that at 
each interior public belief, players (with positive probability) purchase signals that can overturn 
that belief. A sufficient condition is that the affordable signal induces unbounded likelihood ra-
tios, but this is not necessary; it is necessary and sufficient that for every degree of confidence, 
there is an affordable signal that can generate that degree of confidence. Accordingly, stronger 
conditions are needed to preclude bad herds in this case.

The paper applies these results to financial markets, particularly to revisit the question of 
Grossman and Stiglitz (1980): when information is costly, can markets be informationally effi-
cient? I consider a trading model in which noisy and speculative traders deal with a market-maker 
in a fixed sequential order, and each trader faces the choice of buying or selling a security, or 
remaining inactive. Theorem 3 shows that the flexibility of the price mechanism renders the 
decision problem responsive even though each trader chooses from finitely many options.

Related literature Burguet and Vives (2000) are the first to investigate the role of costly infor-
mation in social learning. Theirs is a model of social learning wherein at each time period, each 
of a continuum of short-lived players faces the decision problem of Lee (1993), which is respon-
sive. Each player chooses the precision with which to observe the state of the world and takes 
an action. Because learning would be trivially resolved by observing the choices of a continuum 
of players, the model assumes that all past play is observed with noise. Players face the same 
information acquisition costs, which have a parametric structure: each player chooses the preci-
sion of a normally distributed signal where higher precision is more costly. Their analysis and 
mine are complementary in that they study how assumptions on the marginal cost of informa-
tion evaluated at 0 influence the prospects for complete learning when all players are identical. 
By contrast, I focus on a setting where the costs of information acquisition vary across players. 
Moreover, the results here pertain to both responsive and unresponsive decision problems in the 
sequential choice of individual players, all of whom perfectly observe the past history. While ev-
ery experiment in their environment necessarily induces unbounded likelihood ratios, my results 
show that this may be unnecessary for complete learning in this responsive decision problem. 
Instead, Theorem 1 shows that learning is complete so long as the experiment is even mildly 
informative, with induced likelihood ratios that are bounded away from 0 and 1.

Hendricks et al. (2012) study a sequential search problem in which each player can choose 
a costly perfect signal about her value for the product, and observes only the fraction of people 
who have purchased the product (and not the previous history). Because players do not observe 
the completely ordered history, their analysis does not afford an elementary martingale treatment, 
and hence, their analysis and setting aren’t comparable to that here.

Mueller-Frank and Pai (2016) study a costly search process in which the payoff from each 
action is distributed i.i.d. and when a player “searches an action”, he observes the value of that 
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action perfectly without learning that of any other. The action space here is finite, and therefore, 
the decision problem is unresponsive at certainty. Information takes a particular form in their 
paper: it is perfect about one action and completely noisy about others. Complete learning obtains 
if and only if some type in the support can obtain perfect noise-free information for free, and 
otherwise, learning is incomplete. Apart from the differences in the framework and approach, the 
results of my paper show that information need not be perfect for complete learning to obtain.

Perhaps surprisingly, none of these prior papers nest the standard herding model and this paper 
is the first to do so. The motivation here is to offer a more direct contrast of observational learn-
ing with and without information acquisition costs. Accordingly, rather than adopt a particular 
parametric structure, the analysis pursues a more elementary approach that yields a simpler and 
more general treatment of long-run behavior across both responsive and unresponsive decision 
problems. Thus, the scope and form of analysis here both significantly differ from the papers 
mentioned above and showcase how the techniques that Smith and Sørensen (2000) develop for 
observational learning without information costs are useful even when information is costly.

2. Model

Each of an infinite sequence of players i = 1, 2, 3, . . . chooses an action ai from a menu A
that contains at least two actions and is a compact subset of �. The payoff from these actions 
depends on the state of the world ω, which is high (ω = 1) or low (ω = 0). Choosing action a in 
state ω generates a payoff of u(a, ω), which is continuous in a for each ω. No action is weakly 
dominated: if u(a, 0) > u(a′, 0), then u(a, 1) < u(a′, 1). Therefore, there is no loss of generality 
in setting u(a, 0) to be strictly decreasing in a and u(a, 1) to be strictly increasing in a. The 
lowest and highest actions in A are a and a respectively, and these extreme actions maximize 
u(·, 0) and u(·, 1) respectively. The players’ common prior attributes probability π ∈ (0, 1) to 
the high state.

After player i observes actions chosen by predecessors, namely (aj )j=0,...,i−1, she chooses 
whether to acquire information about the state, and if she does so, exactly what kind of informa-
tion to acquire. Acquiring information is modeled as the choice of an experiment (or test) from 
a set of experiments X . An experiment X in X generates realizations (or outcomes) in [0, 1]
governed by the cumulative distribution function FX(·, ω) in state ω, and these realizations are 
drawn independently of the realizations observed by previous players.3 For every experiment 
X, the distributions FX(·, 0) and FX(·, 1) are mutually absolutely continuous, and have support 
Supp(X). Following convention, the realization of an experiment is normalized to be the poste-
rior belief that the state is high that would be induced with a neutral prior, and thus, realizations 
are drawn from a subset of [0, 1].4 Each experiment X is at least partially informative; in other 
words, there exists p ∈ [0, 1] such that FX(p, 0) �= FX(p, 1). The convex hull of Supp(X) is 

denoted 
[
p(X),p(X)

]
.

If the player chooses not to acquire any information, then she incurs no costs from information 
acquisition. If she chooses to acquire information, her cost depends both on the experiment she 
chooses and a privately observed cost-parameter that describes her strengths and weaknesses 

3 In other words, even if two players conduct the same experiment—or observe the same signal process—the realiza-
tions that they observe are i.i.d. conditional on the state.

4 In other words, if FX is differentiable at p, and p ∈ Supp(X), p = fX(p,1)
fX(p,1)+fX(p,0)

. If an individual has prior π , 
the signal realization p generates a posterior likelihood ratio of pπ .
(1−p)(1−π)
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in information acquisition. That privately observed cost parameter is denoted by θ and drawn 
according to a distribution ρ whose support is �, a compact subset of a metric space endowed 
with the Borel σ -algebra. Thus, a player earns a payoff of u(a, ω) in state ω from her action 
choice of a if she acquired no information at all, and u(a, ω) − c(X, θ) if she chooses to run the 
experiment X when her cost parameter is θ , where c(X, θ) is non-negative.5

Continuity and compactness conditions are imposed on this cost function. Because each ex-
periment X is summarized by a pair of distribution functions (FX(·, 0), FX(·, 1)), convergence 
in distributions (or equivalently, weak convergence) defines the appropriate notion of continuity 
for X .6 I assume that the set of experiments X is compact in this topology, and that c(X, θ) is 
continuous in X × �.7 Because c is continuous on the compact set X × �, the Heine-Cantor 
Theorem implies that c is uniformly continuous.

Each player observes actions of all predecessors but not their information. The public history 
before player t > 1 chooses to acquire information is ht ≡ (ai)i=1,...,t−1. After observing the 
public history and her type, a player chooses an experiment X to conduct and after observing 
its realization, chooses an action a. I study Perfect Bayesian Equilibria (henceforth PBE). In a 
PBE, σ , and history ht , let μt(h

t ) ≡ Pr(ω = 1|ht ) summarize the public belief after history ht . 
Consider the set H of infinite length histories, and for a history h∞ in H, let ht∞ be its truncation 
to actions in periods 1, . . . , t − 1. For ω ∈ {0, 1}, let Hω denote the set of histories in H such that 
limt→∞ μt(ht∞) = ω. Learning is complete if for each ω ∈ {0, 1}, Pr (h∞ ∈Hω | ω) = 1, and 
otherwise, learning is incomplete.

3. When is learning complete?

3.1. The affordability of information

This section introduces terminology to categorize costs of information acquisition. Imagine 
that a player has budgeted k ≥ 0 to spend on acquiring information. Fixing an experiment X, and 
depending on the realized cost parameter, some players may be able to afford X on the budget 
of k while others may not. The ex ante probability that a player can afford X without fully 
expending a budget of k is G(X, k) ≡ ρ ({θ ∈ � : c(X, θ) ≤ k}), where θ is the cost-parameter 
that describes a player’s costs of information acquisition, and ρ is the probability distribution that 
governs θ . Experiment X is affordable if G(X, k) > 0 for every k > 0: in other words, for every 
strictly positive budget, there is always a strictly positive mass of types that can afford experiment 
X with that budget.8 The opposite of affordability—namely that X is unaffordable—implies that 

5 While the model assumes a one-shot process of information acquisition, it can also serve as a reduced-form for a 
sequential information acquisition environment (e.g. Wald, 1947; Moscarini and Smith, 2001) in which each individual 
can choose dynamically how much information to acquire. Suppose that each player can acquire multiple signals sequen-
tially, conditioning the acquisition of a signal on the realizations of signals she has already acquired. A reduced-form 
version of this dynamic setting corresponds to X being every feasible strategy and c(X, θ) being the expected cost for a 
player whose cost parameter is θ . I thank Thomas Wiseman for making this suggestion.

6 A sequence of experiments {Xn}n=1,2,... converges in distribution to X if for every ω and p at which FX(p, ω) is 
continuous, FXn(p) → FX(p). This continuity notion is metrized using the Levy-Prokhorov metric (Billingsley, 1995).

7 In other words, when a sequence of experiments {Xn}n=1,2,... converges in distribution to X, and taking a sequence 
{θn}n=1,2,..., then c(X, θ) = limn→∞ c(Xn, θn).

8 Continuity of c(X, θ) in θ ensures that experiment X is affordable if and only if the support of the distribution of 
costs of conducting X includes 0.
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there is some cost ε > 0 such that almost-surely, a player cannot afford to conduct experiment X
for a budget less than ε.

More broadly, information is affordable if the set of experiments, X contains an affordable 
experiment, and otherwise, information is unaffordable. The following result establishes that if 
information is unaffordable, there must be fixed or lumpy costs in information acquisition.

Lemma 1. If information is unaffordable, there exists ε > 0 such that c(X, θ) > ε for every 
X, θ .

The argument for Lemma 1 relies on c being continuous on a compact set (and hence, uni-
formly continuous) and the measure over types, ρ, being full-support on �.

The above discussion pertains to all experiments. But in certain settings—e.g., a finite-action 
space—a player only values those experiments that can change her mind, swinging her optimal 
action from one to another. To this end, say that overturning information is affordable if for every 
p∗, p∗ ∈ (0, 1), there exists an affordable experiment X such that p(X) ≤ p∗ and an affordable 
experiment Y such that p(Y ) ≥ p∗.9 The affordability of overturning information implies that for 
any required level of confidence, there are affordable experiments that can (with positive chance) 
induce at least that level of confidence.

I call it “overturning” because of its role in overturning beliefs: if it is satisfied, then regardless 
of the budget for information acquisition, there is a positive probability of types who are acquir-
ing information that can “overturn” the public history. A sufficient, but not necessary, condition 
is that there exists an affordable experiment whose likelihood ratios are unbounded.10

Contrasting to this definition, say that overturning information is unaffordable if there exists 
ε > 0, p∗ > 0, and p∗ < 1 such that c(X, θ) < ε implies that Supp(X) ⊂ [p∗, p∗]. In other 
words, whenever a player is restricted to a sufficiently small budget, then all the experiments that 

can be afforded on this budget assume likelihood ratios that are a subset of 
[

p∗
1−p∗ ,

p∗
1−p∗

]
, and 

are therefore bounded from both directions.
A careful reader may see that overturning information being unaffordable is stronger than the 

negation of it being affordable, since the latter might bound likelihood ratios from only one di-
rection. Imposing bounds from both directions simplifies the exposition of Theorem 1 without 
changing its qualitative message. This issue is revisited after stating Theorem 1, and the corre-
sponding result using merely the negation of overturning information is described.

The cost structure of information accounts for two dimensions of interest: (i) each player 
chooses what kind of information to observe, and it may be that more precise information is 
more costly, and (ii) players are heterogeneous in the private costs incurred in learning the true 
state. Prior analyses of social learning have focused exclusively on either of these channels, to 
the exclusion of the other, and have not studied their interaction.11

9 For an experiment X, recall that the convex hull of the support of X is [p(X), p(X)].
10 For example, suppose that X is a set of experiments {X3, X4, . . .} such that Supp(Xn) = { 1

n , 13 , 23 , n−1
n }, where the 

ex ante probability that Xn generates a realization outside of { 1
3 , 23 } is at most 1

n , and c(Xn, θ) = 1
n . Then, there is no 

experiment that induces unbounded likelihood ratios, but nevertheless, overturning information is affordable.
11 Burguet and Vives (2000) model homogeneous players and account for how the marginal cost of information in-
fluences social learning in a continuous-action prediction problem. Mueller-Frank and Pai (2016) model heterogeneous 
players all of whom access a noise-free experiment but vary in their costs of accessing that experiment, and describe 
when learning is complete.
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3.2. The responsiveness of a decision problem

The other determinant of long-run learning is the nature of the decision problem: clearly, 
there is an important difference between the continuous-action prediction problem posed by Lee 
(1993) (and studied by others) and the finite-action decision problem of Bikhchandani et al. 
(1992). This paper revisits this distinction because it affects not only the dynamics of social 
learning (as pointed out in previous work) but also players’ value for information.

For a belief that places probability μ on the state being high (i.e., ω = 1), let a∗(μ) denote 
the maximizer of the expected payoff V (a, μ) ≡ μu(a, 1) + (1 −μ)u(a, 0). If there are multiple 
optimal actions at a belief, select the lowest one for convenience (this tie-breaking rule does 
not affect the analysis). Because V (a, μ) satisfies increasing-differences in its arguments, the 
maximizing action is non-decreasing with a player’s belief that the state is high.

Lemma 2. The optimal action, a∗(μ), is non-decreasing in the belief, μ, that the state is high.

Since A contains no weakly dominated actions, a is uniquely optimal when μ = 0 and a is 
uniquely optimal when μ = 1.

Let us pose Lee’s continuous-action prediction problem in this language. The payoff for each 
player is u(a, ω) = −(a −ω)2, the choice of actions, A, is [0, 1], and the optimal action at belief 
μ, a∗(μ), is simply μ. The conventional logic for why social learning obtains in this problem is 
that the optimal action reveals a player’s belief to subsequent players perfectly. Responsiveness, 
defined below, generalizes this property.

Say that the decision problem (A, u) is responsive if a∗(μ) �= a∗(μ′) whenever μ �= μ′, and 
otherwise, it is unresponsive. The prediction problem is, of course, responsive since a player’s 
belief always changes with her action. The quintessential example of unresponsiveness is the 
finite-action decision problem typically studied in the herding literature, where each (weakly 
undominated) action is optimal for a range of beliefs.

While a finite action space generates an unresponsive decision problem, decision problems 
may be unresponsive even when each player chooses from a continuum of weakly undominated 
actions. For example, take the prediction problem studied before but truncate the action space to [ 1

4 ,1
]
. Now the optimal action rule is a∗(μ) = max

{ 1
4 ,μ

}
, and thus, the player’s optimal action 

is locally unresponsive whenever she attributes probability less than 1
4 to the state being high. 

Her action, at these beliefs, is (locally) unresponsive to changes in belief. Information is still 
valuable for such a player: whenever μ is in 

(
0, 1

4

)
, a player places strictly positive probability 

on ω = 1, and if she knew that were the true state, she would choose a different action.
This truncation may appear to be artificial. Examples 1 and 2 show how this issue surfaces 

organically in investment problems with continuous investment choices.

Example 1. Suppose, as in Chari and Kehoe (2004), that players choose how much to invest in 
a risky project. The menu of actions is A = [0, 1] and investing a in the risky project generates a 
payoff h(a) if the technology is good (ω = 1) and 0 otherwise; however much is left is invested in 
a safe asset, which offers 1:1 returns corresponding to the investment. The payoff function then 
is u(a, ω) = h(a)1ω=1 + 1 − a, in which h is strictly concave, 1 < h′(0) < ∞, and h(0) = 0. 
Observe that a∗(μ) = 0 if μ < 1

h′(0)
, and therefore, the decision problem is unresponsive.12

12 A tractable example of such an investment function is h(a) = log(2a + 1), in which case a∗(μ) = max{μ − 1 , 0}.
2
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Example 2. Suppose that players choose, sequentially, how much to invest in a risky asset where 
each individual has wealth 1 and a strictly concave utility function, which for simplicity is log(·). 
Investing a in the risky asset yields a payoff of ka where k > 1 if the asset is good (ω = 1), and 

0 otherwise. The optimal allocation is a∗(μ) = max
{

kμ−1
k−1 ,0

}
. Since a player chooses to invest 

nothing in the risky asset if μ < 1
k

, the decision problem is unresponsive.

In both of these examples, and the truncated prediction problem, responsiveness fails at ex-
treme actions: for some state ω, a player chooses the exact same action when she attributes high 
probability to ω as she would if she were completely certain. Theorem 1 identifies that failing 
responsiveness in this particular way is critical for herding. Say that a decision problem is un-
responsive at certainty if an extreme action is optimal at an interior belief: a∗(μ) ∈ {a, a} for 
μ in (0, 1). In other words, an extreme action is chosen for an interval of beliefs, and not only 
for a degenerate belief. Apart from the examples above, a decision problem with finitely many 
actions is unresponsive at certainty because any action that is optimal at certainty is also optimal 
near-certainty.

3.3. Main result

Each player would like to avoid incurring the cost of buying information and is inclined to 
free-ride on the wisdom of others. Thus, she purchases information only if it may overturn the 
public history. This calculus couples the responsiveness of the decision problem with affordabil-
ity conditions to generate necessary and sufficient conditions for complete learning.

Theorem 1. Fix a prior π ∈ (0, 1).

1. If (A, u) is responsive, learning is complete if and only if information is affordable.
2. If (A, u) is unresponsive at certainty, learning is complete if overturning information is 

affordable, and is incomplete if overturning information is unaffordable.
3. If (A, u) is unresponsive, there exists an open set of priors, 	, and a set of experiments X

such that if π ∈ 	, learning is incomplete even if information is affordable.

When the decision problem is responsive, all that is necessary and sufficient is that some 
experiment—even one that is only mildly informative—be affordable. By contrast, if the decision 
problem is unresponsive at certainty, a more stringent condition is necessary and sufficient: the 
affordable experiment has to overturn the public history. Thus, stronger conditions are required 
for complete learning in decision problems that are unresponsive at certainty.

Whenever learning is incomplete, it is also inadequate in the sense of Aghion et al. (1991): 
because beliefs place positive probability on two distinct states at which the optimal action is also 
distinct, the action that is chosen when players are near certainty are not the same that would have 
been chosen if all uncertainty were resolved. In such cases, players still value information that 
can overturn the public history, but any such experiment is too costly for any player to purchase 
it.

The intuition for the first two parts of this result is described below, and the full proof is in the 
next subsection. Suppose throughout the sketch below that the public belief μ places probability 
1 − ε on a state, where ε is small. A player’s maximum willingness to pay for information at 
such a history is small given that she is almost certain about the state.
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Let us first begin with the case of responsive decision problems. In this case, at any interior 
belief, a player finds all information to be valuable because anything she learns influences her 
subsequent choice. Affordability of information guarantees that there exists an experiment such 
that for a strictly positive measure of types, the cost of information is sufficiently low that they are 
willing to acquire it. Because their actions reveal this information to subsequent players, public 
beliefs continue to ebb and flow until certainty is reached.13 By contrast, if information is unaf-
fordable, then conducting any experiment involves a strictly positive cost, regardless of θ , that is 
bounded from below. Accordingly, once the public belief is sufficiently close to certainty, then 
no player is willing to conduct any experiment regardless of its signal-to-noise ratio. Learning 
ceases short of certainty, which implies that with positive chance, players may be adopting the 
wrong action.

Now consider the case of a decision problem that is unresponsive at certainty. When a player is 
near-certainty, information is valuable if and only if it can swing one’s action; in other words, the 
information has to overturn the public belief. When overturning information is affordable, one 
can be assured that regardless of the degree of public confidence, there exist affordable experi-
ments that can overturn it. Therefore, information is acquired with strictly positive probability. 
Because that information influences actions with positive probability, learning never ceases at an 
interior belief. By contrast, if overturning information is unaffordable, then there exists a degree 
of near-certainty such that any experiment that can overturn that degree of confidence is sim-
ply too costly for anyone to be willing to acquire it. At that point, learning ceases because even 
though information has value, that value is outweighed by its cost.

The above result references the unaffordability of overturning information, but returning to 
the discussion in Section 3.1 about this being stronger than the negation of affordable overturn-
ing information, one may be left wondering about the exact necessary and sufficient condition. 
Say that a decision problem is unresponsive at ω ∈ {0, 1} if a∗(ω) = a∗(μ) for some μ ∈ (0, 1). 
Similarly, say that information that overturns ω is affordable if for every ε, there exists an afford-
able experiment that has realizations that would reduce the posterior belief that the state is ω to 
below ε. Now, the same argument as that of Theorem 1 establishes that if (A, u) is unresponsive 
at ω, then learning is complete at 
\{ω} if and only if information that overturns ω is affordable.

Benchmarks In evaluating Theorem 1, a natural comparison is to the behavior if information 
were completely costless. Ali (2018) offers this benchmark. Responsive decision problems in-
herit the key characteristic of Lee (1993): observational learning reduces to a pure statistical 
problem so that whenever players have access to any information, learning is guaranteed. By 
contrast, decision problems that are unresponsive at certainty inherit the properties of finite-
action games, and analogous to Smith and Sørensen (2000), learning is complete if and only if 
the set of likelihood ratios induced by experiments is unbounded. Whenever learning is incom-
plete, it is also inadequate since limit beliefs place positive probability on both states, and the 
optimal action differs across these states.

13 Theorem 11 differs from and complements the results of Burguet and Vives (2000). Apart from the difference in 
setting—they study intergenerational learning where at each time period, each of a continuum of one-period lived agents 
choose actions, and future generations observe only a noisy signal of the average action—there are two important qual-
itative differences. First, their analysis involves only information that can have unbounded likelihood ratios whereas the 
analysis here confirms that learning is assured even if likelihood ratios are bounded. Second, their analysis emphasizes 
the marginal cost of information at 0, which has no counterpart in the analysis here, and the analysis here emphasizes the 
heterogeneity of information acquisition costs across players, which has no counterpart in their analysis.
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To evaluate the role that free-riding plays once information is costly, another natural bench-
mark is to the behavior of a centralized social planner who considers when to acquire informa-
tion. Consider a social planner who chooses actions at t = 1, 2, 3, . . . and with costs of acquiring 
information in period t being c(·, θt ), where θt is drawn i.i.d. according to the measure ρ. She 
discounts payoffs from period t by δt−1 where δ < 1, but does not observe payoffs until the end 
of the game.14 When is her long-run learning complete?

Theorem 2. For a centralized Social Planner who is not perfectly patient (δ < 1), learning is 
complete either if (A, u) is responsive and information is affordable or if (A, u) is unresponsive 
at certainty and overturning information is affordable. If information is unaffordable, learning 
is incomplete.

The sufficient conditions for decentralized learning to be complete are also sufficient for cen-
tralized learning to be complete, and information being unaffordable is sufficient to guarantee that 
centralized learning is incomplete. The main difference between the decentralized and central-
ized solutions is when the decision problem is certainly unresponsive, overturning information 
is unaffordable, but information is affordable. In such cases—for example, if bounded informa-
tion were free—the centralized Social Planner would learn completely while the decentralized 
solution still features incomplete learning.15

3.4. Proof of Theorem 1

Let B(μ, p) be the Bayesian posterior when a player has a prior μ and observes a signal 
realization p. For each state ω, consider the likelihood ratio with respect to the other state: 
lt1(h

t ) = 1−μt (ht )
μt (ht )

and lt0(h
t ) = 1/lt1(h

t ). Treat 〈lti (·)〉∞t=1 as a stochastic process, and conditioning 
on ω = i, it is a non-negative martingale. The Martingale Convergence Theorem ensures that it 
converges almost-surely to a random variable l∞i whose support is in [0, ∞).

Case 1: (A, u) is responsive Suppose that information is affordable, and let X be an affordable 
experiment. Observe that when the public belief is μ ∈ (0, 1), the value of experiment X for a 
responsive individual is

V (X,μ) ≡ μ

1∫
0

u(a∗(B(μ,p)),1)dFX(p,1) + (1 − μ)

1∫
0

u(a∗(B(μ,p)),0)dFX(p,0)

whereas the value of not acquiring information is

14 I fix δ rather than studying the limits as δ → 1 because in that latter case, the Planner would be willing to undertake 
many experiments, analogous to bandit environments with perfectly patient players (Easley and Kiefer, 1988; Aghion et 
al., 1991; Ali, 2011).
15 I have compared behavior to that of a centralized Social Planner who observes the entire sequence of signals. As 
highlighted by Smith et al. (2017), a more subtle comparison is to a “teams-problem” whereby the Social Planner is 
designing the optimal rule for a team to follow that cannot observe each other’s information. With costless information, 
they show that the optimal solution rewards contrarianism. With costly information acquisition, the Social Planner has 
to reward the right information cost types to engage in information acquisition. It is a question for future study to 
characterize when such a teams-problem features complete learning, and whether its solution can be implemented via a 
simple scheme.
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V̄ (μ) ≡ μ

1∫
0

u(a∗(μ),1)dFX(p,1) + (1 − μ)

1∫
0

u(a∗(μ),0)dFX(p,0). (1)

Because X is informative, B(μ, p) differs from μ with strictly positive probability, and because 
u is responsive, a∗(B(μ, p)) �= a∗(μ). By revealed preference, V (X, μ) is strictly higher than 
V̄ (μ): the decision maker can guarantee herself the payoff of V̄ (μ) after choosing experiment X
by choosing a∗(μ) for every realization of p. Because she deviates from this plan with strictly 
positive probability, V (X, μ) − V̄ (μ) > 0. Therefore, there exists ε > 0 such that V (X, μ) −
V̄ (μ) > ε. Since X is affordable, G(X, ε) > 0, and therefore, a strictly positive measure prefers 
experiment X to not acquiring any information at all.

This observation guarantees that learning is complete, i.e., conditional on ω = i, the support of 
l∞i is {0}. Suppose towards a contradiction that l > 0 is in the support of l∞i . Consider any l̃ ∈ (l−
ε, l +ε), in which ε < l. The argument in the previous paragraph implies that at this public belief, 
a strictly positive measure of types obtains information and takes actions that perfectly reveal 
their signal realizations. The Strong Law of Large Numbers implies then that the probability that 
the public likelihood ratio remains perpetually in (l − ε, l + ε) is 0, and therefore, l > 0 cannot 
be in the support of l∞i . Therefore, the support of l∞i is {0}.

Suppose instead that information is unaffordable. Define γ ≡ maxω∈
 |u(a, ω) − u(a, ω)| as 
the difference in payoffs between taking the best and worst possible actions. This term, γ , is used 
to bound the value of information. Observe that by definition of a∗(μ),

max{μu(ā,1) + (1 − μ)u(ā,0),μu(a,1) + (1 − μ)u(a,0)}
≤ μu(a∗(μ),1) + (1 − μ)u(a∗(μ),0),

and therefore, for every μ,

[μu(a,1) + (1 − μ)u(a,0)] − [μu(a∗(μ),1) + (1 − μ)u(a∗(μ),0)]
≤ min{(1 − μ)γ,μγ }.

The LHS describes the value from obtaining a perfect signal, and the RHS offers a bound on 
that value. Select ε < γ such that according to Lemma 1, c(X, θ) > ε for every X ∈ X . Observe 
that if (1 − μ)γ < ε or μγ < ε, then no player is willing to incur a cost of ε for even a per-
fectly revealing experiment. Define μ∗ = 1 − ε

γ
and μ∗ = ε

γ
. Therefore, if the public belief ever 

crosses outside of [μ∗, μ∗], no player acquires any information. These are cascade regions and 
if learning does not stop earlier, it stops when μt enters [0, μ∗] ∪ [μ∗, 1]. I argue that these cas-
cade regions generate incomplete learning. Suppose that ω = i, and towards a contradiction that 
learning is complete. Then, lti cannot exceed γ−ε

ε
since players stop acquiring information once 

it does so. The Bounded Convergence Theorem yields that E[l∞i ] = limt→∞ E[lti ] = l0
i , where 

the second equality follows from 〈lti (·)〉∞t=1 being a martingale. Because l0
i is strictly positive, we 

have reached a contradiction to the claim that Pr(l∞i = 0 | ω = i) = 1.

Case 2: (A, u) is unresponsive at certainty Suppose that overturning information is affordable, 
and towards a contradiction that for μ ∈ (0, 1), μ

1−μ
or its reciprocal is in the support of l∞i . Let X

be an affordable experiment such that there exists a set of signal realizations P̃ such that for every 
p ∈ P̃ , a∗(B(μ, p)) �= a∗(μ) and 

∫
P̃

dFX(p, ω) > 0 for every ω ∈ 
. The value of experiment 
X for a responsive individual is V (X, μ) as characterized in (1). Mirroring the argument of Case 
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1, it follows from revealed preference that V (X, μ) − V̄ (μ) > 0, and therefore, there exists ε > 0
such that V (X, μ) − V̄ (μ) > ε. Because X is affordable, G(X, ε) > 0, and thus, a strictly positive 
measure of types prefers experiment X to not acquiring information. Therefore, a strictly positive 
measure of types are conducting experiments that influence their actions. Since the posterior 
beliefs after these actions depart from μ with strictly positive probability, it follows that when 
ω = i, 〈lti 〉 converges almost-surely to the random variable l∞i with support {0}.

Suppose that overturning information is unaffordable. Consider ε, p∗, p∗ such that c(X, θ) <
ε implies Supp(X) is a subset of [p∗, p∗]. Let μ and μ be the highest and lowest beliefs such 
that a∗(μ) = a and a∗(μ) = a. Since the decision problem is unresponsive at certainty, either 
μ > 0 or μ < 1 or both. Define

μ+ = min

{
ε

γ
,

μ(1 − p∗)
μ + p∗ − 2μp∗

}
,

μ+ = max

{
1 − ε

γ
,

μ(1 − p∗)
μ + p∗ − 2μp∗

}

Observe that for a public belief μ ∈ [0, μ+] ∪ [μ+, 1], the most that a player would pay for a 
signal that perfectly reveals the state is ε. So if a player acquires information at all, she acquires 
a bounded experiment X in which Supp(X) is a subset of [p∗, p∗]. However, beliefs are suffi-
ciently concentrated around a state i that for all p ∈ [p∗, p∗], a∗(B(μ, p)) = a∗(δi), where δi is 
the belief that puts probability 1 on state i. Since her actions are unaffected by the realizations 
of X, she has no gain from conducting experiment X, and subsequent players gain no information 
from observing her actions. Therefore, once the public belief enters [0, μ+] ∪ [μ+, 1], learning 
must cease.

Towards clarifying the impact on learning, suppose that ω = 1 and μ+ > 0. If π ≤ μ+, 
then we are done. Otherwise, if learning has not stopped before, it does so once 〈lt1〉 ex-

ceeds 1−μ+
μ+ . Suppose towards a contradiction that learning is complete at ω = 1. It must be 

that lt1 <
1−μ+
μ+ for every t since otherwise learning would cease above that threshold. The 

Bounded Convergence Theorem implies that E[l∞1 ] = limt→∞ E[lt1] = l0
1 > 0, which contra-

dicts Pr(l∞1 = 0 | ω = 1) = 1. An analogous argument applies if ω = 0 and μ+ < 1.

Case 3: (A, u) is unresponsive Suppose that (A, u) is unresponsive. Because a∗(μ) is non-
decreasing (as shown in Lemma 2), being non-responsive implies that there exists μ and μ < μ

such that a∗(μ) is constant for every μ ∈ [μ, μ]. Suppose that the prior π is in (μ, μ′) and that 
the set of experiments X contains only the experiment X such that with a prior π , the posterior 
beliefs induced by X all lie within [μ, μ]. Suppose that the cost parameter, θ , is distributed uni-
formly from [0, 1] and that c(X, θ) = θ for every θ . Then for every k > 0, G(X, k) = k > 0 and 
therefore, X is affordable. Nevertheless, no player acquires information because no realization 
of experiment X changes her action from a∗(π). Therefore, learning is incomplete even though 
information is affordable. �
4. Are markets informationally efficient?

Once information is costly, do markets aggregate information? This is the classic question 
posed by Grossman and Stiglitz (1980). The analysis below revisits this issue using a model 
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of sequential trading (Glosten and Milgrom, 1985; Avery and Zemsky, 1998) but with costly 
information.

Consider a single security whose true value, V (ω), depends on the realization of ω ∈ {0, 1}, 
and satisfies 0 ≤ V (0) < V (1) < ∞. Players share a common prior that ω = 1 with probability 
π ∈ (0, 1). Of the pool of traders, some are noise traders, and the rest are speculative traders. 
In a period, the trader is a speculative trader with probability q ∈ (0, 1), independently of the 
type of other traders. Traders arrive in a fixed sequential order, and each faces a one-time trading 
decision: she can buy or sell a unit of the security, or remain inactive. Conditional on a trader 
being a noisy trader, she chooses each of these actions with probability 1

3 . A speculative trader 
has a payoff of V (ω) − P from buying a security at price P , a payoff of P − V (ω) from selling 
a security at price P , and a payoff of 0 from being inactive. These prices are set by a risk-neutral 
market-maker who has no private information and is subject to competition. After each history 
ht , the market-maker posts a bid price P(ht ) at which he is willing to buy a security and an ask 
price P(ht ) at which he is willing to sell a security. The market-maker’s zero profit condition 
implies that P(ht ) ≥ μ(ht )V (1) + (1 − μ(ht ))V (0) ≥ P(ht ), where μ(ht ) is the public belief 
that ω = 1 after history ht .

Each speculative trader can conduct an experiment X that offers information about ω, and 
incurs cost c(X, θ), where θ is the information cost type of that speculative trader. Individuals 
observe the full history of past trading behavior and prices. As in Section 2, consider a set of H
of infinite length histories, and for such a history, let ht∞ be its truncation to periods 1, . . . , t − 1.

One may investigate two roles for prices. The first is the degree to which asymmetric infor-
mation influences the bid-ask spread, and the second is the degree to which information is aggre-
gated. Formally, the bid-ask spread vanishes if Pr

(
limt→∞(P (ht∞) − P(ht∞)) = 0 | ω ) = 1 for 

every state ω; in other words, with probability 1, the gap between bid and ask prices vanishes. 
Analogously, prices converge to value if Pr(limt→∞ max{P(ht∞) − V (ω), P (ht∞) − V (ω))} =
0 | ω) = 1 for every state ω. In other words, with probability 1, market prices converge to the true 
value of the asset. The following result characterizes conditions for each.

Theorem 3. Prices converge to value if and only if information is affordable, but the bid-ask 
spread vanishes both when information is affordable and when it is unaffordable.

Here is the intuition. With prices being set by a competitive market-maker, the appropriate 
version of responsiveness is that of “responsiveness in equilibrium”: when the public belief is 
μ (which feeds into the prices set by the market-maker), and a trader’s private belief is ν, does 
a trader’s optimal action a∗(ν, μ) change as her belief ν varies in the interval [μ − ε, μ + ε]? 
The answer is yes because she wishes to sell the security whenever ν < μ and buy it whenever 
ν > μ. Accordingly, a speculative trader values any informative experiment, which leads to com-
plete learning if information is affordable. On the other hand, when information is unaffordable, 
then prices do not converge to value even though the bid-ask spread vanishes. Thus, in con-
junction with Lemma 1, markets are informationally inefficient when the process of information 
acquisition is “lumpy” or has fixed costs.

These results offer a herding analogue to the failures of information aggregation conjectured 
by Grossman and Stiglitz (1980): once the price becomes too informative, individuals may stop 
acquiring information if there are “fixed” or lumpy costs in information acquisition, and that 
force generates a long-run wedge between the price of an asset and its fundamental value. Absent 
such lumpiness, informational efficiency is guaranteed. The argument of Theorem 3 illustrates 
the importance of flexible prices in dynamically adjusting the tradeoffs (based on public beliefs) 
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between buying and selling securities. Were prices fixed and not adjusting with beliefs, traders 
would face a decision problem that is unresponsive at certainty, and in that case, overturning 
information would need to be affordable. The flexibility of prices guarantees that learning is 
complete even if the only affordable information is only minimally informative.

Appendix A. Omitted proofs

Proof of Lemma 1. Suppose that the conclusion is false. Then there exists a sequence
(Xn, θn)n=1,2,... such that c(Xn, θn) ≤ 1

n
. Because X ×� is compact, the sequence has a conver-

gent subsequence (Aliprantis and Border, 2006, Theorem 2.31). Let (X∗, θ∗) be a limit point of 
that subsequence. As a limit point, c(X∗, θ∗) ≤ 1

n
for each n, and therefore, c(X∗, θ∗) = 0.

Fix ε > 0. Because c is continuous, it follows that there exists δ > 0 such that for every θ in 
Nδ(θ

∗), c(X∗, θ) ≤ ε. Observe that

G(X∗, ε) = ρ({θ ∈ � : c(X∗, θ) ≤ ε}) ≥ ρ(Nδ(θ
∗)) > 0

where the equality is the definition of G, the weak inequality follows from Nδ(θ
∗) ⊆ {θ ∈ � :

c(X∗, θ) ≤ ε}, and the strict inequality follows from θ∗ being in the support of ρ (because ρ is a 
full-support distribution on �). So G(X∗, ε) > 0 for every ε > 0 and therefore, X∗ is affordable. 
Taking the contrapositive establishes the result. �
Proof of Lemma 2. Observe that Vμ(a, μ) = u(a, 1) − u(a, 0). Since u(a, 1) is increasing in 
a and u(a, 0) is decreasing in a, it follows that for a′′ > a′, Vμ(a′′, μ) > Vμ(a′, μ). Therefore 
V satisfies increasing-differences in (a, μ), and hence, the maximizer a∗(μ) is non-decreasing 
in μ. �
Proof of Theorem 2. First, consider the case where (resp. overturning) information is afford-
able, and (A, u) is responsive (resp. unresponsive at certainty). Suppose that ω = 0 (the argument 
is identical for ω = 1) and suppose towards a contradiction that learning were incomplete. So 
there exists μ ∈ (0, 1) such that μ

1−μ
is in the support of l∞0 . The one-shot deviation principle 

establishes a contradiction. Consider an affordable informative (resp. overturning) experiment 
X. We have already established in the proof of Theorem 1 that there exists ε > 0 such that 
V (X, μ) − V̄ (μ) > ε. Because G(X, ε) > 0, it follows that for a strictly positive measure of 
cost-parameters, the Social Planner benefits from a one-shot deviation where she conducts ex-
periment X rather than not acquiring information, which is a contradiction.

Now suppose that information is unaffordable. Let ε < γ be such that c(X, θ) > ε. Consider 
beliefs μ∗ = 1 − (1−δ)ε

γ
and μ∗ = (1−δ)ε

γ
. Notice that for beliefs μ ∈ [μ∗, 1] ∪ [0, μ∗], the Social 

Planner would not be willing to pay ε once for a fully revealing signal. Therefore, if learning 
does not stop beforehand, it stops once beliefs reach this region. �
Proof of Theorem 3. Fix an equilibrium of the game. Each trader’s best response at a history ht

depends only on the public belief μ(ht). Let P(μ) and P(μ) denote the ask and bid prices for a 
history that generates public belief μ.

As before, 〈lti 〉 is a martingale conditioning on ω = i, and converges almost-surely to a random 
variable l∞i . Suppose that μ ∈ (0, 1), μ

1−μ
or its reciprocal is in the support of l∞i . For μ to be 

a limit belief, it must be that there is no more trading done on the basis of information, and 
therefore, P(μ) = P(μ) = μV (1) + (1 − μ)V (0). Therefore, the bid-ask spread vanishes.
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If a speculative trader does not acquire information, then it is optimal at those prices for 
her to remain inactive (or at least, she is indifferent between trading and not). Suppose that 
information is affordable. Let X be an informative experiment, which implies that with strictly 
positive probability, X generates realizations p such that B(μ, p) �= μ. But if B(μ, p) < μ, then 
it is strictly optimal for her to sell the security, and if B(μ, p) > μ, then it is strictly optimal 
for her to buy the security. Therefore, it follows, as in the proof of Theorem 1 that the value of 
acquiring signal X strictly exceeds that of not acquiring any information. Since X is affordable, a 
strictly positive measure of types acquires information and trades speculatively. But then setting 
P(μ) = P(μ) = μV (1) + (1 − μ)V (0) is not an equilibrium price for the market-maker.

Suppose instead that information is unaffordable, and let ε > 0 be a cost such that any infor-
mative experiment costs more than ε. If the public belief is μ, an upper-bound on how much a 
speculative trader values perfect information is

μ [V (1) − (μV (1) + (1 − μ)V (0))] + (1 − μ) [μV (1) + (1 − μ)V (0) − V (0)]

= 2μ(1 − μ)(V (1) − V (0)).

Therefore, there exists μ∗ and μ∗ such that if μ < μ∗ or μ > μ∗, the value of perfect informa-
tion is smaller than ε. Consider towards a contradiction an infinite history h∞ such that in state 
ω, limt→∞ max{P(ht∞) − V (ω), P (ht∞) − V (ω))} = 0. Such a history would require players 
to acquire information and trade speculatively for μ arbitrarily close to 0 or 1. But once μ es-
capes [μ∗, μ∗], no speculative trader has any incentive to conduct an experiment, leading to a 
contradiction. �
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